1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
#' Angrist and Newey's version of Chamberlain test for fixed effects
#'
#' Angrist and Newey's version of the Chamberlain test
#'
#' Angrist and Newey's test is based on the results of the artifactual
#' regression of the within residuals on the covariates for all the
#' periods.
#'
#' @aliases aneweytest
#' @param formula a symbolic description for the model to be estimated,
#' @param data a `data.frame`,
#' @param subset see [lm()],
#' @param na.action see [lm()],
#' @param index the indexes,
#' @param \dots further arguments.
#' @return An object of class `"htest"`.
#' @export
#' @author Yves Croissant
#' @references
#' \insertRef{ANGR:NEWE:91}{plm}
#'
#' @seealso [piest()] for Chamberlain's test
#' @keywords htest
#' @examples
#'
#' data("RiceFarms", package = "plm")
#' aneweytest(log(goutput) ~ log(seed) + log(totlabor) + log(size), RiceFarms, index = "id")
#'
aneweytest <- function(formula, data, subset, na.action, index = NULL, ...){
# NB: code fails for unbalanced data -> is Angrist and Newey's test only for balanced data?
# unbalanced case is currently caught and a message is printed
mf <- match.call()
# compute the model.frame using plm with model = NA
mf[[1L]] <- as.name("plm")
mf$model <- NA
data <- eval(mf, parent.frame())
# estimate the within model without instrument and extract the fixed
# effects
formula <- as.Formula(formula)
mf$formula <- formula(formula, rhs = 1)
index <- index(data)
id <- index[[1L]]
time <- index[[2L]]
periods <- unique(time)
pdim <- pdim(data)
T <- pdim$nT$T
n <- pdim$nT$n
N <- pdim$nT$N
Ti <- pdim$Tint$Ti
balanced <- pdim$balanced
if(!balanced) stop("'aneweytest' not implemented for unbalanced data")
ht <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "na.action",
"effect", "model", "inst.method", "restict.matrix",
"restrict.rhs", "index"), names(ht), 0)
ht <- ht[c(1L, m)]
ht[[1L]] <- as.name("plm")
ht$model <- "within"
ht$effect <- "individual"
ht <- eval(ht, parent.frame())
.resid <- split(resid(ht), time)
# extract the covariates (no intercept), and isolate time-invariant covariates
X <- model.matrix(data, model = "pooling", rhs = 1, lhs = 1)[ , -1, drop = FALSE]
cst <- attr(model.matrix(data, model = "within", rhs = 1, lhs = 1), "constant")
# get constant columns and remove the intercept
if (length(cst) > 0L) cst <- cst[- match("(Intercept)", cst)]
if (length(cst) > 0L){
vr <- colnames(X)[!(colnames(X) %in% cst)]
Z <- X[ , cst, drop = FALSE]
X <- X[ , vr, drop = FALSE]
Kz <- ncol(Z)
namesZ <- colnames(Z)
} else {
Z <- NULL
Kz <- 0
namesZ <- NULL
}
Kx <- ncol(X)
# time-demean and split by period:
attr(X, "index") <- index
X <- Within(X, effect ="time")
X.ncol <- NCOL(X)
namesX <- colnames(X)
X <- split(X, time)
X <- lapply(X, function(m) matrix(m, ncol = X.ncol))
# put column names for split matrices in X:
for (i in seq_along(periods)){
colnames(X[[i]]) <- paste(namesX, periods[i], sep = ".")
}
if (!is.null(Z)){
Z <- Z[time == periods[1], , drop = FALSE]
Z <- t(t(Z) - .colMeans(Z, nrow(Z), ncol(Z))) # TODO: could use Within() framework
}
XX <- cbind(Reduce("cbind", X), Z)
# compute the unconstrained estimates
# NA-freeness guaranteed by model frame construction, so can use lm.fit
# (non-collinearity is not catered for but code errors anywayif collinearity
# is present a bit later)
# was: LMS <- lapply(.resid, function(x) lm(x ~ XX - 1))
LMS <- lapply(.resid, function(x) lm.fit(XX, x))
YTOT <- vapply(.resid, function(x) crossprod(x), FUN.VALUE = 0.0, USE.NAMES = FALSE)
DEV <- vapply(LMS, function(x) crossprod(x$residuals), FUN.VALUE = 0.0, USE.NAMES = FALSE)
stat <- c("chisq" = sum(1 - DEV / YTOT) * (n - ncol(XX)))
df <- c("df" = (T ^ 2 - T - 1) * Kx)
aneweytest <- structure(list(statistic = stat,
parameter = df,
method = "Angrist and Newey's test of within model",
p.value = pchisq(stat, df = df, lower.tail = FALSE),
alternative = "within specification does not apply",
data.name = paste(deparse(formula))),
class = "htest")
aneweytest
}
#' Chamberlain estimator and test for fixed effects
#'
#' General estimator useful for testing the within specification
#'
#' The Chamberlain method consists in using the covariates of all the
#' periods as regressors. It allows to test the within specification.
#'
#' @aliases piest
#' @param formula a symbolic description for the model to be estimated,
#' @param object,x an object of class `"piest"` and of class `"summary.piest"`
#' for the print method of summary for piest objects,
#' @param data a `data.frame`,
#' @param subset see [lm()],
#' @param na.action see [lm()],
#' @param index the indexes,
#' @param robust logical, if `FALSE`, the error is assumed to be spherical,
#' if `TRUE`, a robust estimation of the covariance matrix is computed,
#' @param \dots further arguments.
#' @return An object of class `"piest"`.
#' @export
#' @author Yves Croissant
#' @references
#'
#' \insertRef{CHAM:82}{plm}
#'
#' @seealso [aneweytest()]
#' @keywords htest
#' @examples
#'
#' data("RiceFarms", package = "plm")
#' pirice <- piest(log(goutput) ~ log(seed) + log(totlabor) + log(size), RiceFarms, index = "id")
#' summary(pirice)
#'
piest <- function(formula, data, subset, na.action, index = NULL, robust = TRUE, ...){
# NB: code fails for unbalanced data -> is Chamberlain's test only for balanced data?
# unbalanced case is currently caught and a message is printed
cl <- match.call(expand.dots = TRUE)
mf <- match.call()
# compute the model.frame using plm with model = NA
mf[[1L]] <- as.name("plm")
mf$model <- NA
data <- eval(mf, parent.frame())
# estimate the within model without instrument and extract the fixed
# effects
formula <- as.Formula(formula)
mf$formula <- formula(formula, rhs = 1)
index <- index(data)
id <- index[[1L]]
time <- index[[2L]]
pdim <- pdim(data)
balanced <- pdim$balanced
T <- pdim$nT$T
n <- pdim$nT$n
N <- pdim$nT$N
Ti <- pdim$Tint$Ti
if(!balanced) stop("'piest' not implemented for unbalanced data")
# extract the response, time-demean and split by period
y <- pmodel.response(data, model = "pooling", effect = "individual")
Y <- Within(y, "time")
Y <- split(Y, time)
# extract the covariates, and isolate time-invariant covariates
X <- model.matrix(data, model = "pooling", rhs = 1, lhs = 1)[ , -1, drop = FALSE]
cst <- attr(model.matrix(data, model = "within", rhs = 1, lhs = 1), "constant")
# get constant columns and remove the intercept
if (length(cst) > 0L) cst <- cst[- match("(Intercept)", cst)]
if (length(cst) > 0L){
vr <- colnames(X)[!(colnames(X) %in% cst)]
Z <- X[ , cst, drop = FALSE]
X <- X[ , vr, drop = FALSE]
Kz <- ncol(Z)
namesZ <- colnames(Z)
} else {
Z <- NULL
Kz <- 0
namesZ <- NULL
}
Kx <- ncol(X)
namesX <- colnames(X)
# time-demean X and split by period:
attr(X, "index") <- index
X <- Within(X, effect ="time")
periods <- unique(time)
X.ncol <- NCOL(X)
X <- split(X, time)
X <- lapply(X, function(m) matrix(m, ncol = X.ncol))
# put column names for split matrices in X:
for (i in seq_along(periods)){
colnames(X[[i]]) <- paste(namesX, periods[i], sep = ".")
}
if (!is.null(Z)){
Z <- Z[time == periods[1L], , drop = FALSE]
Z <- t(t(Z) - .colMeans(Z, nrow(Z), ncol(Z))) # TODO: can use Within() framework
}
XX <- cbind(Reduce("cbind", X), Z)
# compute the unconstrained estimates
# NA-freeness guaranteed by model frame construction, so can use lm.fit
# (non-collinearity is not cared for but code error if collinearity is
# present anyway a bit later)
# was: LMS <- lapply(Y, function(x) lm(x ~ XX - 1))
LMS <- lapply(Y, function(x) lm.fit(XX, x))
# compute the empirical covariance of the covariates
Sxxm1 <- solve(crossprod(XX) / n)
# compute the residuals matrix
.resid <- sapply(LMS, resid)
# extract the pi vector of unconstrained estimates
pi <- unlist(lapply(LMS, coef), use.names = FALSE)
if(robust) {
Omega <- lapply(seq_len(n),
function(i)
tcrossprod(.resid[i, ]) %x%
(Sxxm1 %*% tcrossprod(XX[i, ]) %*% Sxxm1))
Omega <- Reduce("+", Omega) / n
} else {
Omega <- (crossprod(.resid) / n) %x% Sxxm1
}
# construct the matrix of linear restrictions R | R x theta = pi
R <- matrix(0, T * (T * Kx + Kz), (T + 1) * Kx + Kz)
for (i in seq_len(Kx)){
R[ ((1:T) - 1) * (Kx * T + Kz) + (Kx * (1:T - 1)) + i , i] <- 1
}
if (Kz > 0){
for (i in seq_len(Kz)){
R[ (Kx * T) + (1:T - 1) * (Kx * T + Kz) + i, Kx + i] <- 1
}
}
for (i in seq_len(Kx * T)){
R[((1:T) - 1) * (Kx * T + Kz) + i , Kx + Kz + i] <- 1
}
solve_Omega <- solve(Omega)
A <- solve(t(R) %*% solve_Omega %*% R)
.coef <- as.numeric(A %*% t(R) %*% solve_Omega %*% as.numeric(pi))
# .coef <- as.numeric(solve(t(R) %*% R) %*% t(R) %*% as.numeric(pi))
namescoef <- if(Kz > 0) c(namesX, namesZ, colnames(XX)[- c(ncol(XX) - 0:(Kz-1))])
else c(namesX, namesZ, colnames(XX))
names(.coef) <- rownames(A) <- colnames(A) <- namescoef
resb <- as.numeric(R %*% .coef) - as.numeric(pi)
piconst <- matrix(R %*% .coef, ncol = T)
OOmega <- Omega ## TODO: OOmega is never used
.resid <- matrix(unlist(Y, use.names = FALSE), ncol = length(Y)) - XX %*% piconst
if(TRUE){ ## TODO: this is always TRUE...!
if(robust) { ## and Omega is calc. again, with a
## new .resid input but with same lapply-construct
Omega <- lapply(seq_len(n),
function(i)
tcrossprod(.resid[i, ]) %x%
(Sxxm1 %*% tcrossprod(XX[i, ]) %*% Sxxm1))
Omega <- Reduce("+", Omega) / n
} else {
Omega <- (crossprod(.resid) / n) %x% Sxxm1
}
}
A <- solve(t(R) %*% solve(Omega) %*% R)
stat <- c("chisq" = n * resb %*% solve(Omega) %*% resb)
df <- c("df" = Kx * (T ^ 2 - T - 1)) ## TODO: df is overwritten in next line...?!
df <- c("df" = length(pi) - length(.coef))
pitest <- list(statistic = stat,
parameter = df,
method = "Chamberlain's pi test",
p.value = pchisq(stat, df = df, lower.tail = FALSE),
alternative = "within specification does not apply",
data.name = paste(deparse(formula))
)
structure(list(coefficients = .coef,
pi = pi,
daub = resb,
vcov = A / n,
formula = formula,
R = R,
model = data,
pitest = structure(pitest, class = "htest"),
Omega = Omega,
moments = resb,
call = cl),
class = c("piest", "panelmodel"))
}
#' @rdname piest
#' @export
print.piest <- function(x, ...) print(x$pitest, ...)
#' @rdname piest
#' @export
summary.piest <- function(object,...){
# construct the table of coefficients
std.err <- sqrt(diag(vcov(object)))
b <- coefficients(object)
z <- b / std.err
p <- 2 * pnorm(abs(z), lower.tail = FALSE)
object$coefficients <- cbind("Estimate" = b,
"Std. Error" = std.err,
"z-value" = z,
"Pr(>|z|)" = p)
class(object) <- c("summary.piest", "piest", "panelmodel")
object
}
#' @rdname piest
#' @param digits number of digits for printed output,
#' @param width the maximum length of the lines in the printed output,
#' @export
print.summary.piest <- function(x, digits = max(3, getOption("digits") - 2),
width = getOption("width"), subset = NULL, ...){
if(is.null(subset)) printCoefmat(coef(x), digits = digits, ...)
else printCoefmat(coef(x)[subset, , drop = FALSE], digits = digits, ...)
print(x$pitest, ...)
invisible(x)
}
|