File: make.pconsecutive_pbalanced.R

package info (click to toggle)
r-cran-plm 2.6-2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,032 kB
  • sloc: sh: 13; makefile: 4
file content (683 lines) | stat: -rw-r--r-- 31,938 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
### This file:
### make.pconsecutive.*
### make.pbalanced.*
###
### is.pconsecutive.* is in separate file is.pconsecutive.R

#  consecutive: "consecutive in the numbers": t, t+1, t+2, ... where t is an integer,
#                i.e., the time index var is interpreted as a numerical
# 

## in the future, maybe make.pconsective could gain an additional argument 'fill' for the filled value (currently NA)
##      if so, check other packages (data.table, dplyr, tidyr, ...) what the argument is called there
##      arg would need to be a (named) list (for (p)data.frame methods) because columns of 
##      (p)data.frames are of arbitrary classes


#' Make data consecutive (and, optionally, also balanced)
#' 
#' This function makes the data consecutive for each individual (no "gaps" in
#' time dimension per individual) and, optionally, also balanced
#' 
#' (p)data.frame and pseries objects are made consecutive, meaning their time
#' periods are made consecutive per individual.  For consecutiveness, the time
#' dimension is interpreted to be numeric, and the data are extended to a
#' regularly spaced sequence with distance 1 between the time periods for each
#' individual (for each individual the time dimension become a sequence t, t+1,
#' t+2, \ldots{}, where t is an integer). Non--index variables are filled with
#' `NA` for the inserted elements (rows for (p)data.frames, vector
#' elements for pseries).
#' 
#' With argument `balanced = TRUE`, additionally to be made consecutive,
#' the data also can be made a balanced panel/pseries.  Note: This means
#' consecutive AND balanced; balancedness does not imply consecutiveness. In
#' the result, each individual will have the same time periods in their time
#' dimension by taking the min and max of the time index variable over all
#' individuals (w/o `NA` values) and inserting the missing time periods.
#' Looking at the number of rows of the resulting (pdata.frame) (elements for
#' pseries), this results in `nrow(make.pconsecutive(<.>, balanced = FALSE))` <=
#' `nrow(make.pconsecutive(<.>, balanced = TRUE))`. For making the data only
#' balanced, i.e., not demanding consecutiveness at the same time, use
#' [make.pbalanced()] (see **Examples** for a comparison)).
#' 
#' Note: rows of (p)data.frames (elements for pseries) with `NA` values in
#' individual or time index are not examined but silently dropped before the
#' data are made consecutive. In this case, it is not clear which individual or
#' time period is meant by the missing value(s). Especially, this means: If
#' there are `NA` values in the first/last position of the original time
#' periods for an individual, which usually depicts the beginning and ending of
#' the time series for that individual, the beginning/end of the resulting time
#' series is taken to be the min and max (w/o `NA` values) of the original
#' time series for that individual, see also **Examples**. Thus, one might
#' want to check if there are any `NA` values in the index variables
#' before applying `make.pconsecutive`, and especially check for `NA` values
#' in the first and last position for each individual in original data and, if
#' so, maybe set those to some meaningful begin/end value for the time series.
#' 
#' @aliases make.pconsecutive
#' @param x an object of class `pdata.frame`, `data.frame`,
#'     or `pseries`,
#' @param balanced logical, indicating whether the data should
#'     _additionally_ be made balanced (default: FALSE),
#' @param index only relevant for `data.frame` interface; if
#'     `NULL`, the first two columns of the data.frame are
#'     assumed to be the index variables; if not `NULL`, both
#'     dimensions ('individual', 'time') need to be specified by
#'     `index` as character of length 2 for data frames, for
#'     further details see [pdata.frame()],
#' @param \dots further arguments.
#' @return An object of the same class as the input `x`, i.e., a
#'     pdata.frame, data.frame or a pseries which is made
#'     time--consecutive based on the index variables. The returned
#'     data are sorted as a stacked time series.
#' @export
#' @author Kevin Tappe
#' @seealso [is.pconsecutive()] to check if data are
#'     consecutive; [make.pbalanced()] to make data only
#'     balanced (not consecutive).\cr [punbalancedness()]
#'     for two measures of unbalancedness, [pdim()] to check
#'     the dimensions of a 'pdata.frame' (and other objects),
#'     [pvar()] to check for individual and time variation
#'     of a 'pdata.frame' (and other objects), [lag()] for
#'     lagged (and leading) values of a 'pseries' object.\cr
#'     [pseries()], [data.frame()],
#'     [pdata.frame()].
#' @keywords attribute
#' @examples
#' 
#' # take data and make it non-consecutive
#' # by deletion of 2nd row (2nd time period for first individual)
#' data("Grunfeld", package = "plm")
#' nrow(Grunfeld)                             # 200 rows
#' Grunfeld_missing_period <- Grunfeld[-2, ]
#' is.pconsecutive(Grunfeld_missing_period)   # check for consecutiveness
#' make.pconsecutive(Grunfeld_missing_period) # make it consecutiveness
#' 
#' 
#' # argument balanced:
#' # First, make data non-consecutive and unbalanced
#' # by deletion of 2nd time period (year 1936) for all individuals
#' # and more time periods for first individual only
#' Grunfeld_unbalanced <- Grunfeld[Grunfeld$year != 1936, ]
#' Grunfeld_unbalanced <- Grunfeld_unbalanced[-c(1,4), ]
#' all(is.pconsecutive(Grunfeld_unbalanced)) # FALSE
#' pdim(Grunfeld_unbalanced)$balanced        # FALSE
#' 
#' g_consec_bal <- make.pconsecutive(Grunfeld_unbalanced, balanced = TRUE)
#' all(is.pconsecutive(g_consec_bal)) # TRUE
#' pdim(g_consec_bal)$balanced        # TRUE
#' nrow(g_consec_bal)                 # 200 rows
#' head(g_consec_bal)                 # 1st individual: years 1935, 1936, 1939 are NA
#' 
#' g_consec <- make.pconsecutive(Grunfeld_unbalanced) # default: balanced = FALSE
#' all(is.pconsecutive(g_consec)) # TRUE
#' pdim(g_consec)$balanced        # FALSE
#' nrow(g_consec)                 # 198 rows
#' head(g_consec)                 # 1st individual: years 1935, 1936 dropped, 1939 is NA 
#' 
#' 
#' # NA in 1st, 3rd time period (years 1935, 1937) for first individual
#' Grunfeld_NA <- Grunfeld
#' Grunfeld_NA[c(1, 3), "year"] <- NA
#' g_NA <- make.pconsecutive(Grunfeld_NA)
#' head(g_NA)        # 1936 is begin for 1st individual, 1937: NA for non-index vars
#' nrow(g_NA)        # 199, year 1935 from original data is dropped
#' 
#' 
#' # pdata.frame interface
#' pGrunfeld_missing_period <- pdata.frame(Grunfeld_missing_period)
#' make.pconsecutive(Grunfeld_missing_period)
#' 
#' 
#' # pseries interface
#' make.pconsecutive(pGrunfeld_missing_period$inv)
#' 
#' 
#' # comparison to make.pbalanced (makes the data only balanced, not consecutive)
#' g_bal <- make.pbalanced(Grunfeld_unbalanced)
#' all(is.pconsecutive(g_bal)) # FALSE
#' pdim(g_bal)$balanced        # TRUE
#' nrow(g_bal) # 190 rows
#' 
make.pconsecutive <- function(x, ...){
  UseMethod("make.pconsecutive")
}

# no export needed
make.pconsecutive.indexes <- function(x, index, balanced = FALSE, ...) {
# make.pconsecutive.indexes: helper function, not exported
# returns list with 3 elements:
#   1 "consec_index":        consecutive data.frame to serve as the new index data.frame in other functions, 
#   2 "NArows_former_index": information about dropped lines (logical vector with length of original data)
#   3 "has_fancy_rownames":  logical whether fancy row.names were used in original data (can only be TRUE for pdata.frame or pseries)
 
  if (inherits(x, "pdata.frame") || inherits(x, "pseries")) {
    pdataframe_or_pseries <- TRUE
    index_orig <- attr(x, which = "index")
    id_orig    <- index_orig[[1L]] # can leave as factor if it is a factor
    times_orig <- index_orig[[2L]]
    if (!is.numeric(times_orig) && is.factor(times_orig)) times_orig <- as.numeric(levels(times_orig))[as.integer(times_orig)]
    # time var needs to be numeric [as.character needed here!]
    # [R FAQ 7.10 for coercing factors to numeric 
    # as.numeric(levels(factor_var))[as.integer(factor_var)] is more efficient than as.numeric(as.character(factor_var))
    
    # check if fancy rownames are used (to restore them later)
    if (inherits(x, "pseries")) {
      has_fancy_rownames <- isTRUE(all.equal(names(x), fancy.row.names(index_orig)))
      rownames_mode <- mode(attr(x, "names"))
      rownames_typeof <- typeof(attr(x, "names"))
    } else {
      # pdata.frame
      has_fancy_rownames <- isTRUE(all.equal(row.names(x), fancy.row.names(index_orig)))
      rownames_mode <- mode(attr(x, "row.names"))
      rownames_typeof <- typeof(attr(attr(x, "index"), "row.names")) # here we want the typeof of the index

    }
  }
  if (inherits(x, "data.frame") && !inherits(x, "pdata.frame")) {
    # x is a data.frame, but no pdata.frame
    pdataframe_or_pseries <- FALSE
    has_fancy_rownames    <- FALSE
    index_orig <- x[ , index]
    id_orig    <- index_orig[[1L]]
    times_orig <- index_orig[[2L]]
    id_orig_typeof    <- typeof(id_orig)
    times_orig_typeof <- typeof(times_orig)
    rownames_mode <- mode(attr(x, "row.names"))
    rownames_typeof <- typeof(attr(x, "row.names"))
    
  }
  
  df_index <- data.frame(id = id_orig, times = times_orig)
  
  # remove any rows with NA in id or time variable as it is impossible to
  # infer their values, thus: drop them
  is_NA <- is.na(id_orig) | is.na(times_orig)
  df_index <- df_index[!is_NA, ]
  
  n_id_orig <- length(unique(id_orig))
  
  if (!balanced) { 
    min_values <- by(df_index[ , "times"], df_index[ , "id"], min)
    max_values <- by(df_index[ , "times"], df_index[ , "id"], max)
    
    times_filled_list <- sapply(seq_len(n_id_orig), function(i) {
        seq(from = min_values[i], to = max_values[i], by = 1)
      }, simplify = FALSE, USE.NAMES = FALSE)
  
  } else {
    min_value <- min(df_index[, "times"])
    max_value <- max(df_index[, "times"])
    
    times_filled_list <- sapply(seq_len(n_id_orig), function(i) {
        seq(from = min_value, to = max_value, by = 1)
      }, simplify = FALSE, USE.NAMES = FALSE)
  }
  
  times_filled_vector <- unlist(times_filled_list, use.names = FALSE)
  id_times <- lengths(times_filled_list, use.names = FALSE)
  
  id_filled_vector <- unlist(mapply(rep, unique(id_orig), id_times, SIMPLIFY = FALSE), use.names = FALSE)
                      # SIMPLIFY = FALSE => always return list

  df_index_filled <- data.frame(id = id_filled_vector, times = times_filled_vector)
  names(df_index_filled)[1:2] <- names(index_orig)[1:2] # set original index names


  if (pdataframe_or_pseries) {
    df_index_filled[ , 1L] <- as.factor(df_index_filled[ , 1L])
    df_index_filled[ , 2L] <- as.factor(df_index_filled[ , 2L])
    class(df_index_filled) <- c("pindex", class(df_index_filled))
  } else {
    if (typeof(df_index_filled[ , 1L]) != id_orig_typeof)    { mode(df_index_filled[ , 1L]) <- id_orig_typeof    }
    if (typeof(df_index_filled[ , 2L]) != times_orig_typeof) { mode(df_index_filled[ , 2L]) <- times_orig_typeof }
  }

  # restore mode of row.names attribute
  # [was changed by above code due to some simplification by R's standard behaviour]
  mode(attr(df_index_filled, "row.names")) <- rownames_typeof
  
  res <- list(consec_index         = df_index_filled,
              NArows_former_index  = is_NA,
              has_fancy_rownames   = has_fancy_rownames)
  
  return(res)
} ### END: make.pconsecutive.indexes


#' @rdname make.pconsecutive
#' @export
make.pconsecutive.data.frame <- function(x, balanced = FALSE, index = NULL, ...){
  # if not NULL, index is must be character of length 2
  if (!is.null(index) && length(index) != 2L)
    stop("if argument 'index' is not NULL, 'index' needs to specify
         'individual' and 'time' dimension for make.pconsecutive to work on a data.frame")
  
  # assume first two columns to be the index vars
  index_orig_names <- if(is.null(index)) names(x)[1:2] else index
    
  list_ret_make_index <- make.pconsecutive.indexes(x, index_orig_names, balanced = balanced, ...)
  
  index_df_filled    <- list_ret_make_index[["consec_index"]]
  NArows_old_index   <- list_ret_make_index[["NArows_former_index"]]
  has_fancy_rownames <- list_ret_make_index[["has_fancy_rownames"]]
  
  # silently drop rows with NA in either individual or time variable of original index
  x <- x[!NArows_old_index, ]
  
  index_df_filled_plus_x <- merge(index_df_filled, x, by.x = names(index_df_filled)[1:2],
                                                      by.y = index_orig_names,
                                                      all.x = TRUE)
  
  # restore mode of row.names attribute [was changed by above code due to some simplification as R's standard behaviour]
  mode(attr(index_df_filled_plus_x, "row.names")) <- typeof(attr(index_df_filled, "row.names"))
  
  # restore original order of columns, esp. place index vars at original position
  index_df_filled_plus_x <- index_df_filled_plus_x[ , names(x)]
    
  return(index_df_filled_plus_x)
} ### END: make.pconsecutive.data.frame

#' @rdname make.pconsecutive
#' @export
make.pconsecutive.pdata.frame <- function(x, balanced = FALSE, ...){
  orig_column_names <- names(x)
    
  list_ret_make_index <- make.pconsecutive.indexes(x, balanced = balanced, ...)
  index_df_filled    <- list_ret_make_index[["consec_index"]]
  NArows_old_index   <- list_ret_make_index[["NArows_former_index"]]
  has_fancy_rownames <- list_ret_make_index[["has_fancy_rownames"]]
  
  # silently drop rows with NA in either individual or time variable of original index
  # do dropping only if there is any NA row, because calling the subsetting slightly changes the pdata.frame
  if (any(NArows_old_index)) x <- x[!NArows_old_index, ]
  
  # if index not as vars in pdata.frame: pad index vars in columns 1,2 to enable merging
  # determine position of index vars is c(NA, NA) if index vars are not columns in x
  pos_indexvars <- pos.index(x)
  index_orig_names <- names(pos_indexvars)
  if (anyNA(pos_indexvars)) {
    index_orig <- attr(x, "index")
    x <- cbind(index_orig, x)
  }
  
  x_df_filled <- merge(index_df_filled, x, by = index_orig_names, all.x = TRUE)
  # merge produces a pdata.frame with 'pseries' in columns (if [.pseries is active])
  # -> remove pseries features from columns
  x_df_filled <- lapply(x_df_filled, remove_pseries_features)
  
  # make pdata.frame (index vars are already in columns 1,2)
  x_pdf_filled <- pdata.frame(x_df_filled, row.names = has_fancy_rownames)
  
  # save order of attributes to restore order later
  # attrib_names_before <- names(attributes(x_pdf_filled))
  
  # restore original order of columns:
  # this also places index vars at original position or drops them if they were not in original pdata.frame
  # (do only if order of columns differs or index is not in pdata.frame to avoid adding extra attributes by subsetting)
  if (!isTRUE(all.equal(orig_column_names, names(x_pdf_filled)))) x_pdf_filled <- x_pdf_filled[ , orig_column_names]
  
  # restore mode of row.names attribute [was changed by above code due to some simplification as R's standard behaviour]
  mode(attr(attr(x_pdf_filled, "index"), "row.names")) <- typeof(attr(index_df_filled, "row.names"))

  # reorder attributes: subsetting with R's [.data.frame changes order
  # order of attribute shall be assumed to be a set rather than having an order, see do not reorder (see ?attributes)
    ##  attributes(x_pdf_filled) <- attributes(x_pdf_filled)[attrib_names_before]
    
  return(x_pdf_filled)
} ### END: make.pconsecutive.pdata.frame

#' @rdname make.pconsecutive
#' @export
make.pconsecutive.pseries <- function(x, balanced = FALSE, ...) {
  is_p <- is.pconsecutive(x)
  is_bal <- is.pbalanced(x)
  make_balanced <- balanced == TRUE && !is_bal # consecutive AND balancedness requested but data not balanced 
                                               #  -> independent of the consecutiveness, we need to treat the balancedness
  
  if (anyNA(is_p) || !all(is_p) || make_balanced) {
    
    list_ret_make_index <- make.pconsecutive.indexes(x, balanced = balanced, ...)
    df_index_filled    <- list_ret_make_index[["consec_index"]]
    NArows_old_index   <- list_ret_make_index[["NArows_former_index"]]
    has_fancy_rownames <- list_ret_make_index[["has_fancy_rownames"]]
    
    df_old_index <- attr(x, "index")
    class(df_old_index) <- "data.frame"
    
    # strip x to its pure form (no index, no class pseries)
    df_old_index$x <- remove_pseries_features(x)
    
    # silently drop entries with NA in either individual or time variable of original index
    df_old_index <- df_old_index[!NArows_old_index, ]
    
    df_index_filled_plus_x <- merge(df_index_filled, df_old_index, by.x = names(df_index_filled)[1:2],
                                    by.y = names(df_old_index)[1:2],
                                    all.x = TRUE)
    
    pdf_index_filled_plus_x <- pdata.frame(df_index_filled_plus_x,
                                           drop.index = FALSE,
                                           row.names = has_fancy_rownames)
    
    x <- pdf_index_filled_plus_x$x
  }
  return(x)
}



############# make.pbalanced #############
## make.pbalanced.* methods make the input balanced (but not consecutive).
## It does so by either 
## balance.type = "fill": filling in only those missing time periods are 
##                        introduced that are present for at least one individual
##                        (union of time periods)
##
## balance.type = "shared.times": remove all observations with time periods
##                                not shared among all individuals
##                                (keep intersect of time periods)
##
##                "shared.individuals": drop individuals which don't have all time periods
##                                      (symmetric to "shared.times")



#' Make data balanced
#' 
#' This function makes the data balanced, i.e., each individual has the same
#' time periods, by filling in or dropping observations
#' 
#' (p)data.frame and pseries objects are made balanced, meaning each
#' individual has the same time periods.  Depending on the value of
#' `balance.type`, the balancing is done in different ways:
#' \itemize{ \item `balance.type = "fill"` (default): The union
#' of available time periods over all individuals is taken (w/o
#' `NA` values).  Missing time periods for an individual are
#' identified and corresponding rows (elements for pseries) are
#' inserted and filled with `NA` for the non--index variables
#' (elements for a pseries).  This means, only time periods present
#' for at least one individual are inserted, if missing.
#' 
#' \item `balance.type = "shared.times"`: The intersect of available time
#' periods over all individuals is taken (w/o `NA` values).  Thus, time
#' periods not available for all individuals are discarded, i. e., only time
#' periods shared by all individuals are left in the result).
#' 
#' \item `balance.type = "shared.individuals"`: All available time periods
#' are kept and those individuals are dropped for which not all time periods
#' are available, i. e., only individuals shared by all time periods are left
#' in the result (symmetric to `"shared.times"`).  }
#' 
#' The data are not necessarily made consecutive (regular time series
#' with distance 1), because balancedness does not imply
#' consecutiveness. For making the data consecutive, use
#' [make.pconsecutive()] (and, optionally, set argument
#' `balanced = TRUE` to make consecutive and balanced, see also
#' **Examples** for a comparison of the two functions.
#' 
#' Note: Rows of (p)data.frames (elements for pseries) with `NA`
#' values in individual or time index are not examined but silently
#' dropped before the data are made balanced. In this case, it cannot
#' be inferred which individual or time period is meant by the missing
#' value(s) (see also **Examples**).  Especially, this means:
#' `NA` values in the first/last position of the original time
#' periods for an individual are dropped, which are usually meant to
#' depict the beginning and ending of the time series for that
#' individual.  Thus, one might want to check if there are any
#' `NA` values in the index variables before applying
#' `make.pbalanced`, and especially check for `NA` values in the
#' first and last position for each individual in original data and,
#' if so, maybe set those to some meaningful begin/end value for the
#' time series.
#' 
#' @aliases make.pbalanced
#' @param x an object of class `pdata.frame`, `data.frame`,
#'     or `pseries`;
#' @param balance.type character, one of `"fill"`,
#'     `"shared.times"`, or `"shared.individuals"`, see
#'     **Details**,
#' @param index only relevant for `data.frame` interface; if
#'     `NULL`, the first two columns of the data.frame are
#'     assumed to be the index variables; if not `NULL`, both
#'     dimensions ('individual', 'time') need to be specified by
#'     `index` as character of length 2 for data frames, for
#'     further details see [pdata.frame()],
#' @param \dots further arguments.
#' @return An object of the same class as the input `x`, i.e., a
#'     pdata.frame, data.frame or a pseries which is made balanced
#'     based on the index variables. The returned data are sorted as a
#'     stacked time series.
#' @export
#' @author Kevin Tappe
#' @seealso [is.pbalanced()] to check if data are balanced;
#'     [is.pconsecutive()] to check if data are consecutive;
#'     [make.pconsecutive()] to make data consecutive (and,
#'     optionally, also balanced).\cr [punbalancedness()]
#'     for two measures of unbalancedness, [pdim()] to check
#'     the dimensions of a 'pdata.frame' (and other objects),
#'     [pvar()] to check for individual and time variation
#'     of a 'pdata.frame' (and other objects), [lag()] for
#'     lagging (and leading) values of a 'pseries' object.\cr
#'     [pseries()], [data.frame()],
#'     [pdata.frame()].
#' @keywords attribute
#' @examples
#' 
#' # take data and make it unbalanced
#' # by deletion of 2nd row (2nd time period for first individual)
#' data("Grunfeld", package = "plm")
#' nrow(Grunfeld)                            # 200 rows
#' Grunfeld_missing_period <- Grunfeld[-2, ]
#' pdim(Grunfeld_missing_period)$balanced    # check if balanced: FALSE
#' make.pbalanced(Grunfeld_missing_period)   # make it balanced (by filling)
#' make.pbalanced(Grunfeld_missing_period, balance.type = "shared.times") # (shared periods)
#' nrow(make.pbalanced(Grunfeld_missing_period))
#' nrow(make.pbalanced(Grunfeld_missing_period, balance.type = "shared.times"))
#' 
#' # more complex data:
#' # First, make data unbalanced (and non-consecutive) 
#' # by deletion of 2nd time period (year 1936) for all individuals
#' # and more time periods for first individual only
#' Grunfeld_unbalanced <- Grunfeld[Grunfeld$year != 1936, ]
#' Grunfeld_unbalanced <- Grunfeld_unbalanced[-c(1,4), ]
#' pdim(Grunfeld_unbalanced)$balanced        # FALSE
#' all(is.pconsecutive(Grunfeld_unbalanced)) # FALSE
#' 
#' g_bal <- make.pbalanced(Grunfeld_unbalanced)
#' pdim(g_bal)$balanced        # TRUE
#' unique(g_bal$year)          # all years but 1936
#' nrow(g_bal)                 # 190 rows
#' head(g_bal)                 # 1st individual: years 1935, 1939 are NA
#' 
#' # NA in 1st, 3rd time period (years 1935, 1937) for first individual
#' Grunfeld_NA <- Grunfeld
#' Grunfeld_NA[c(1, 3), "year"] <- NA
#' g_bal_NA <- make.pbalanced(Grunfeld_NA)
#' head(g_bal_NA)        # years 1935, 1937: NA for non-index vars
#' nrow(g_bal_NA)        # 200
#' 
#' # pdata.frame interface
#' pGrunfeld_missing_period <- pdata.frame(Grunfeld_missing_period)
#' make.pbalanced(Grunfeld_missing_period)
#' 
#' # pseries interface
#' make.pbalanced(pGrunfeld_missing_period$inv)
#' 
#' # comparison to make.pconsecutive
#' g_consec <- make.pconsecutive(Grunfeld_unbalanced)
#' all(is.pconsecutive(g_consec)) # TRUE
#' pdim(g_consec)$balanced        # FALSE
#' head(g_consec, 22)             # 1st individual:   no years 1935/6; 1939 is NA; 
#'                                # other indviduals: years 1935-1954, 1936 is NA
#' nrow(g_consec)                 # 198 rows
#' 
#' g_consec_bal <- make.pconsecutive(Grunfeld_unbalanced, balanced = TRUE)
#' all(is.pconsecutive(g_consec_bal)) # TRUE
#' pdim(g_consec_bal)$balanced        # TRUE
#' head(g_consec_bal)                 # year 1936 is NA for all individuals
#' nrow(g_consec_bal)                 # 200 rows
#' 
#' head(g_bal)                        # no year 1936 at all
#' nrow(g_bal)                        # 190 rows
#' 
make.pbalanced <- function(x, balance.type = c("fill", "shared.times", "shared.individuals"), ...) {
  UseMethod("make.pbalanced")
}


#' @rdname make.pbalanced
#' @export
make.pbalanced.pdata.frame <- function(x, balance.type = c("fill", "shared.times", "shared.individuals"), ...) {

  balance.type <- match.arg(balance.type)
  index <- attr(x, "index")
  
  switch(balance.type,
         "fill" = {
            x_consec_bal <- make.pconsecutive(x, balanced = TRUE)
            
            # delete time periods that were not present for any individual, but introduced by
            # making data consecutive
            # result: no time periods are added that are not present for at least one individual
            times_present_orig <- attr(x_consec_bal, "index")[[2L]] %in% unique(index[[2L]])
            result <- x_consec_bal[times_present_orig, ]
            
            # drop not present factor levels (some new levels were introduced by making data consecutive first):
              # drop from index
              index_result <- attr(result, "index")
              index_result[[2L]] <- droplevels(index_result[[2L]])
              attr(result, "index") <- index_result
              
              # drop from time column (if time index column present in pdata.frame)
              pos_indexvars <- pos.index(result) # position of index vars is c(NA, NA) if index vars are not present as columns
              index_orig_names <- names(pos_indexvars)
              if (!anyNA(pos_indexvars)) {
                result[ , pos_indexvars[2L]] <- droplevels(result[ , pos_indexvars[2L]])
              }
        },
        "shared.times" = {
            keep <- intersect_index(index, "time")
            result <- x[keep, ]
        },
        "shared.individuals" = {
            keep <- intersect_index(index, "individual")
            result <- x[keep, ]
        })
  return(result)
} ## END make.pbalanced.pdata.frame


#' @rdname make.pbalanced
#' @export
make.pbalanced.pseries <- function(x, balance.type = c("fill", "shared.times", "shared.individuals"), ...) {

  balance.type <- match.arg(balance.type)
  index <- attr(x, "index")

  switch(balance.type,
         "fill" = {
            x_consec_bal <- make.pconsecutive(x, balanced = TRUE)
            
            # delete time periods that were not present for any individual, but introduced by
            # making data consecutive
            # result: no time periods are added that are not present for at least one individual
              x_consec_bal_index <- attr(x_consec_bal, "index")
              times_present_orig <- x_consec_bal_index[[2L]] %in% unique(index[[2L]])
              result <- x_consec_bal[times_present_orig] # this drops the pseries features (index, class "pseries")
                                                         # because there is no function "[.pseries]" (as of 2016-05-14)
              
              # drop introduced extra periods also from index
              x_consec_bal_index <- x_consec_bal_index[times_present_orig, ]
            # re-attach index and restore original class(es)
            attr(result, "index") <- x_consec_bal_index
            attr(result, "class") <- attr(x, "class")
            },
         
         "shared.times" = {
           keep <- intersect_index(index, "time")
           result <- x[keep]
           # restore 'pseries' features
           # (no subsetting method for pseries in the package (yet),
           #  usual vector subsetting removes the pseries features)
           attr(result, "index") <- index[keep, ]
           class(result) <- unique(c("pseries", class(result)))
           },
         
         "shared.individuals" = {
           keep <- intersect_index(index, "individual")
           result <- x[keep]
           # restore 'pseries' features
           # (no subsetting method for pseries in the package (yet),
           #  usual vector subsetting removes the pseries features)
           attr(result, "index") <- index[keep, ]
           class(result) <- unique(c("pseries", class(result)))
         })
  return(result)
} ## END make.pbalanced.pseries


#' @rdname make.pbalanced
#' @export
make.pbalanced.data.frame <- function(x, balance.type = c("fill", "shared.times", "shared.individuals"), index = NULL, ...) {
  # NB: for data.frame interface: the data is also sorted as stack time series

  balance.type <- match.arg(balance.type)

  ## identify index of data.frame  
      # if not NULL, index is must be character of length 2
      if (!is.null(index) && length(index) != 2L)
        stop("if argument 'index' is not NULL, 'index' needs to specify
             'individual' and 'time' dimension for make.pconsecutive to work on a data.frame")
      
      # assume first two columns to be the index vars
      if (is.null(index)) index_orig_names <- names(x)[1:2]
        else index_orig_names <- index
      
      index_df <- x[ , index_orig_names]
  
  switch(balance.type,
         "fill" = {
            x_consec_bal <- make.pconsecutive(x, index = index_orig_names, balanced = TRUE)
            
            # delete time periods that were not present for any individual, but introduced by
            # making data consecutive
            # result: no time periods are added that are not present for at least one individual
            times_present_orig <- x_consec_bal[ , index_orig_names[2L]] %in% unique(index_df[[2L]])
            result <- x_consec_bal[times_present_orig , ]},
         
        "shared.times" = {
           keep <- intersect_index(index_df, "time")
           result <- x[keep, ]},
        
        "shared.individuals" = {
           keep <- intersect_index(index_df, "individual")
           result <- x[keep, ]
         })
  return(result)
} ## END make.pbalanced.data.frame



# helper function: returns logical vector which rows/entries to keep
#                  when balance.type = "shared.times" or "shared.individuals"
#                  (intersect of all time periods or individuals)
intersect_index <- function(index, by) {
  # intersect() is defined on vectors (not factors)
  #  -> convert respective index to character before
  unclass(index) # unclass for speed
  switch(by,
         "time" = {
           id <- index[[1L]]
           time <- as.character(index[[2L]])
         },
         "individual" = {
           id <- index[[2L]]
           time <- as.character(index[[1L]])
         })
  
  times_by_ids <- split(time, id)
  common_times <- Reduce(intersect, times_by_ids) 
  keep_entries <- time %in% common_times
  return(keep_entries)
}