1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
|
############## Pesaran's CD test and Breusch/Pagan LM Test (also scaled) ###############
## Pesaran's CD test for cross-sectional dependence in panel data models
## (and Breusch and Pagan's LM and scaled LM)
## ref. Pesaran, General diagnostic tests..., CESifo WP 1229, 2004
## In case K+1>T the group-specific model is not estimable;
## as in Greene 11.7.2, formula (11.23) we use the group-specific residuals
## of a consistent estimator. This may be pooled OLS, RE, FE. Here the
## default is set to FE.
## Note that the test can be performed on the results of plm objects with
## any kind of effects: having "time" effects means checking for
## xs-dependence *after* introducing time dummies.
## In principle, the test can be performed on the results of *any*
## panelmodel object. Some issues remain regarding standardization of
## model output: some missing pieces are, e.g., the 'model$indexes'
## in ggls. ''fd'' models are also not compatible because of indexes
## keeping the original timespan, while data lose the first period.
## production version, generic and based on plm
## version 11: added test = "bcsclm"
##
## version 10:
## substantial optimization for speed, now fast (few seconds) on N=3000
## all methods pass on a pseries to pcdres()
## make toy example
#dati <- data.frame(ind=rep(1:7, 4), time=rep(1:4, each=7), x=rnorm(28),
# group=rep(c(1,1,2,2,2,3,3), 4))
#pdati <- pdata.frame(dati)
#' Tests of cross-section dependence for panel models
#'
#' Pesaran's CD or Breusch--Pagan's LM (local or global) tests for cross
#' sectional dependence in panel models
#'
#' These tests are originally meant to use the residuals of separate
#' estimation of one time--series regression for each cross-sectional
#' unit in order to check for cross--sectional dependence (`model = NULL`).
#' If a different model specification (`model = "within"`, `"random"`,
#' \ldots{}) is assumed consistent, one can resort to its residuals for
#' testing (which is common, e.g., when the time dimension's length is
#' insufficient for estimating the heterogeneous model).
#'
#' If the time
#' dimension is insufficient and `model = NULL`, the function defaults
#' to estimation of a `within` model and issues a warning. The main
#' argument of this function may be either a model of class
#' `panelmodel` or a `formula` and `data frame`; in the second case,
#' unless `model` is set to `NULL`, all usual parameters relative to
#' the estimation of a `plm` model may be passed on. The test is
#' compatible with any consistent `panelmodel` for the data at hand,
#' with any specification of `effect` (except for `test = "bcsclm"` which
#' requires a within model with either individual or two-ways effect).
#' E.g., specifying `effect = "time"` or `effect = "twoways"` allows
#' to test for residual cross-sectional dependence after the introduction
#' of time fixed effects to account for common shocks.
#'
#' A **local** version of either test can be computed by supplying a
#' proximity matrix (elements coercible to `logical`) with argument
#' `w` which provides information on whether any pair of individuals
#' are neighbours or not. If `w` is supplied, only neighbouring pairs
#' will be used in computing the test; else, `w` will default to
#' `NULL` and all observations will be used. The matrix need not be
#' binary, so commonly used "row--standardized" matrices can be
#' employed as well. `nb` objects from \CRANpkg{spdep} must instead be
#' transformed into matrices by \CRANpkg{spdep}'s function `nb2mat`
#' before using.
#'
#' The methods implemented are suitable also for unbalanced panels.
#'
#' Pesaran's CD test (`test="cd"`), Breusch and Pagan's LM test
#' (`test="lm"`), and its scaled version (`test="sclm"`) are all
#' described in \insertCite{PESA:04;textual}{plm} (and complemented by
#' Pesaran (2005)). The bias-corrected scaled test (`test="bcsclm"`)
#' is due to \insertCite{BALT:FENG:KAO:12}{plm} and only valid for
#' within models including the individual effect (it's unbalanced
#' version uses max(Tij) for T) in the bias-correction term).
#' \insertCite{BREU:PAGA:80;textual}{plm} is the original source for
#' the LM test.
#'
#' The test on a `pseries` is the same as a test on a pooled
#' regression model of that variable on a constant, i.e.,
#' `pcdtest(some_pseries)` is equivalent to `pcdtest(plm(some_var ~ 1,
#' data = some_pdata.frame, model = "pooling")` and also equivalent to
#' `pcdtest(some_var ~ 1, data = some_data)`, where `some_var` is
#' the variable name in the data which corresponds to `some_pseries`.
#'
#' @aliases pcdtest
#' @param x an object of class `formula`, `panelmodel`, or `pseries`
#' (depending on the respective interface) describing the model to
#' be tested,
#' @param data a `data.frame`,
#' @param index an optional numerical index, if `NULL`, the first two
#' columns of the data.frame provided in argument `data` are
#' assumed to be the index variables; for further details see
#' [pdata.frame()],
#' @param model an optional character string indicating which type of
#' model to estimate; if left to `NULL`, the original
#' heterogeneous specification of Pesaran is used,
#' @param test the type of test statistic to be returned. One of
#' \itemize{ \item `"cd"` for Pesaran's CD statistic, \item `"lm"`
#' for Breusch and Pagan's original LM statistic, \item `"sclm"`
#' for the scaled version of Breusch and Pagan's LM statistic,
#' \item `"bcsclm"` for the bias-corrected scaled version of
#' Breusch and Pagan's LM statistic, \item `"rho"` for the average
#' correlation coefficient, \item `"absrho"` for the average
#' absolute correlation coefficient,}
#' @param w either `NULL` (default) for the global tests or -- for the
#' local versions of the statistics -- a `n x n` `matrix`
#' describing proximity between individuals, with \eqn{w_ij = a}
#' where \eqn{a} is any number such that `as.logical(a)==TRUE`, if
#' \eqn{i,j} are neighbours, \eqn{0} or any number \eqn{b} such
#' that `as.logical(b)==FALSE` elsewhere. Only the lower
#' triangular part (without diagonal) of `w` after coercing by
#' `as.logical()` is evaluated for neighbouring information (but
#' `w` can be symmetric). See also **Details** and
#' **Examples**,
#' @param \dots further arguments to be passed on for model estimation to `plm`,
#' such as `effect` or `random.method`.
#' @return An object of class `"htest"`.
#' @export
#' @references
#'
#' \insertRef{BALT:FENG:KAO:12}{plm}
#'
#' \insertRef{BREU:PAGA:80}{plm}
#'
#' \insertRef{PESA:04}{plm}
#'
#' \insertRef{PESA:15}{plm}
#'
#' @keywords htest
#' @examples
#'
#' data("Grunfeld", package = "plm")
#' ## test on heterogeneous model (separate time series regressions)
#' pcdtest(inv ~ value + capital, data = Grunfeld,
#' index = c("firm", "year"))
#'
#' ## test on two-way fixed effects homogeneous model
#' pcdtest(inv ~ value + capital, data = Grunfeld, model = "within",
#' effect = "twoways", index = c("firm", "year"))
#'
#' ## test on panelmodel object
#' g <- plm(inv ~ value + capital, data = Grunfeld, index = c("firm", "year"))
#' pcdtest(g)
#'
#' ## scaled LM test
#' pcdtest(g, test = "sclm")
#'
#' ## test on pseries
#' pGrunfeld <- pdata.frame(Grunfeld)
#' pcdtest(pGrunfeld$value)
#'
#' ## local test
#' ## define neighbours for individual 2: 1, 3, 4, 5 in lower triangular matrix
#' w <- matrix(0, ncol= 10, nrow=10)
#' w[2,1] <- w[3,2] <- w[4,2] <- w[5,2] <- 1
#' pcdtest(g, w = w)
#'
pcdtest <- function(x, ...)
{
UseMethod("pcdtest")
}
## this formula method here only for adding "rho" and "absrho"
## arguments
#' @rdname pcdtest
#' @export
pcdtest.formula <- function(x, data, index = NULL, model = NULL,
test = c("cd", "sclm", "bcsclm", "lm", "rho", "absrho"),
w = NULL, ...) {
#data <- pdata.frame(data, index = index)
test <- match.arg(test)
if(test == "bcsclm" && (is.null(model) || model != "within"))
stop("for test = 'bcsclm', set argument model = 'within'")
# evaluate formula in parent frame
cl <- match.call(expand.dots = TRUE)
cl$model <- if(test != "bcsclm") "pooling" else "within"
if(test == "bcsclm") {
# check args model and effect for test = "bcsclm"
if(is.null(cl$effect)) cl$effect <- "individual" # make default within model is individual within
eff <- isTRUE(cl$effect == "individual" || cl$effect == "twoways")
if(model != "within" || !eff) stop("for test = 'bcsclm', requirement is model = \"within\" and effect = \"individual\" or \"twoways\"")
}
names(cl)[2L] <- "formula"
m <- match(plm.arg, names(cl), 0L)
cl <- cl[c(1L, m)]
cl[[1L]] <- as.name("plm")
mymod <- eval(cl, parent.frame()) # mymod is either "pooling" or "within" (the latter iff for test = "bcsclm")
hetero.spec <- if(is.null(model)) TRUE else FALSE
if(hetero.spec && min(pdim(mymod)$Tint$Ti) < length(mymod$coefficients)+1) {
warning("Insufficient number of observations in time to estimate heterogeneous model: using within residuals",
call. = FALSE)
hetero.spec <- FALSE
model <- "within"
}
ind0 <- unclass(attr(model.frame(mymod), "index")) # unclass for speed
tind <- as.numeric(ind0[[2L]])
ind <- as.numeric(ind0[[1L]])
unind <- unique(ind)
n <- length(unind)
if(hetero.spec) {
## estimate individual normal regressions one by one
## (original heterogeneous specification of Pesaran)
X <- model.matrix(mymod)
y <- model.response(model.frame(mymod))
# split X, y per individual
X.ncol <- NCOL(X)
tX <- split(X, ind)
tX <- lapply(tX, function(m) matrix(m, ncol = X.ncol))
ty <- split(y, ind)
# calc. residuals
res.i <- mapply(function(X, y) lm.fit(X, y)$residuals, tX, ty, SIMPLIFY = FALSE)
# construct indexes
ind.i <- rep(seq_len(n), lengths(res.i))
tind.i <- split(tind, ind)
tind.i <- unlist(tind.i, use.names = FALSE)
## make pseries of (all) residuals
resdata <- data.frame(ee = unlist(res.i, use.names = FALSE),
ind = ind.i,
tind = tind.i)
pee <- pdata.frame(resdata, index = c("ind", "tind"))
tres <- pee$ee
} else {
# else case is one of:
# a) insufficient number of observations for heterogen. spec. or
# b) model specified when function was called (incl. case test = "bcsclm")
if(test != "bcsclm") {
# Estimate the model specified originally in function call or due to
# forced model switch to within model by insufficient number of
# observations for heterogen. spec.
# (for test = "bcsclm" it is ensured that a within model was already
# estimated -> no need to estimate again a within model)
cl$model <- model
mymod <- eval(cl, parent.frame())
}
tres <- resid(mymod)
}
return(pcdres(tres = tres, n = n, w = w,
form = paste(deparse(x)),
test = test))
}
## panelmodel method: just fetch resid (as a pseries) and hand over to pcdres
#' @rdname pcdtest
#' @export
pcdtest.panelmodel <- function(x, test = c("cd", "sclm", "bcsclm", "lm", "rho", "absrho"),
w = NULL, ...) {
test <- match.arg(test)
model <- describe(x, "model")
effect <- describe(x, "effect")
eff <- (effect == "individual" || effect == "twoways")
if (test == "bcsclm" && (model != "within" || !eff))
stop("for test = 'bcsclm', model x must be a within individual or twoways model")
tres <- resid(x)
index <- unclass(attr(model.frame(x), "index")) # unclass for speed
#tind <- as.numeric(index[[2L]])
ind <- as.numeric(index[[1L]])
unind <- unique(ind)
n <- length(unind)
#t <- pdim(x)$Tint$Ti
#nT <- length(ind)
#k <- length(x$coefficients)
return(pcdres(tres = tres, n = n, w = w,
form = paste(deparse(x$formula)),
test = test))
}
#' @rdname pcdtest
#' @export
pcdtest.pseries <- function(x, test = c("cd", "sclm", "bcsclm", "lm", "rho", "absrho"),
w = NULL, ...) {
## calculates local or global CD test on a pseries 'x' just as it
## would on model residuals
## important difference here: a pseries _can_ have NAs
# input check
if (!inherits(x, "pseries")) stop("input 'x' needs to be of class \"pseries\"")
form <- paste(deparse(substitute(x)))
pos.na <- is.na(x)
if (any(pos.na)) {
x <- subset_pseries(x, !pos.na) # TODO: use [.pseries (pseries subsetting) once implemented
warning("NA values encountered in input and removed")
if (length(x) == 0L) stop("input is empty after removal of NA values")
}
## get indices
ix <- unclass(attr(x, "index")) # unclass for speed
tind <- as.numeric(ix[[2L]])
ind <- as.numeric(ix[[1L]])
## det. number of groups and df
unind <- unique(ind)
n <- length(unind)
return(pcdres(tres = x, n = n, w = w,
form = form,
test = match.arg(test)))
}
pcdres <- function(tres, n, w, form, test) {
# 'form' is a character describing the formula (not a formula object!)
# and goes into htest_object$data.name
## Take model residuals as pseries, and calc. test
## (from here on, what's needed for rho_ij is ok)
## this function is the modulus calculating the test,
## to be called from pcdtest.formula,
## pcdtest.panelmodel or pcdtest.pseries
## now (since v10) tres is the pseries of model residuals
## calc matrix of all possible pairwise corr.
## coeffs. (200x speedup from using cor())
wideres <- t(preshape(tres, na.rm = FALSE))
rho <- cor(wideres, use = "pairwise.complete.obs")
## find length of intersecting pairs
## fast method, times down 200x
ix <- unclass(attr(tres, "index")) # unclass for speed
## tabulate which obs in time for each ind are !na
presence.tab <- collapse::qtable(ix[[2L]], ix[[1L]])
## calculate t.ij
t.ij <- crossprod(presence.tab)
# input check
if (!is.null(w)) {
dims.w <- dim(w)
if(dims.w[1L] != n || dims.w[2L] != n)
stop(paste0("matrix 'w' describing proximity of individuals has wrong dimensions: ",
"should be ", n, " x ", n, " (no. of individuals) but is ", dims.w[1L], " x ", dims.w[2L]))
}
## begin features for local test ####################
## higher orders omitted for now, use wlag() explicitly
## if global test, set all elements in w to 1
if(is.null(w)) {
w <- matrix(1, ncol = n, nrow = n)
dep <- ""
} else { dep <- "local" }
## make (binary) selector matrix based on the contiguity matrix w
## and extracting elements corresponding to ones in the lower triangle
## excluding the diagonal
## transform in logicals (0=FALSE, else=TRUE: no need to worry
## about row-std. matrices)
selector.mat <- matrix(as.logical(w), ncol = n)
## some sanity checks for 'w' (not perfect sanity, but helps)
if (sum(selector.mat[lower.tri(selector.mat, diag = FALSE)]) == 0) {
stop(paste0("no neighbouring individuals defined in proximity matrix 'w'; ",
"only lower triangular part of 'w' (w/o diagonal) is evaluated"))
} else {
if (sum(selector.mat[upper.tri(selector.mat, diag = FALSE)]) != 0) {
if (!isSymmetric((unname(selector.mat)))) { # unname needed to ignore rownames and colnames
stop(paste0("proximity matrix 'w' is ambiguous: upper and lower triangular part ",
"define different neighbours (it is sufficient to provide information ",
"about neighbours only in the lower triangluar part of 'w'"))
}
}
}
## if no intersection or only 1 shared period of e_it and e_jt
## => exclude from calculation and issue a warning.
## In general, length(m.ij) gives the number of shared periods by individuals i, j
## Thus, non intersecting pairs are indicated by length(m.ij) == 0 (t.ij[i,j] == 0)
no.one.intersect <- (t.ij <= 1)
if (any(no.one.intersect, na.rm = TRUE)) {
# t.ij is a lower triangular matrix: do not divide by 2 to get the number of non-intersecting pairs!
number.of.non.one.intersecting.pairs <- sum(no.one.intersect, na.rm = TRUE)
number.of.total.pairs <- (n*(n-1))/2
share.on.one.intersect.pairs <- number.of.non.one.intersecting.pairs / number.of.total.pairs * 100
warning(paste("Some pairs of individuals (",
signif(share.on.one.intersect.pairs, digits = 2),
" percent) do not have any or just one time period in common and have been omitted from calculation", sep=""))
selector.mat[no.one.intersect] <- FALSE
}
## set upper tri and diagonal to FALSE
selector.mat[upper.tri(selector.mat, diag = TRUE)] <- FALSE
## number of elements in selector.mat
## elem.num = 2*(N*(N-1)) in Pesaran (2004), formulae (6), (7), (31), ...
elem.num <- sum(selector.mat)
## end features for local test ######################
## Breusch-Pagan or Pesaran statistic for cross-sectional dependence,
## robust vs. unbalanced panels:
switch(test,
lm = {
CDstat <- sum((t.ij*rho^2)[selector.mat])
pCD <- pchisq(CDstat, df = elem.num, lower.tail = FALSE)
names(CDstat) <- "chisq"
parm <- elem.num
names(parm) <- "df"
testname <- "Breusch-Pagan LM test"
},
sclm = {
CDstat <- sqrt(1/(2*elem.num))*sum((t.ij*rho^2-1)[selector.mat])
pCD <- 2*pnorm(abs(CDstat), lower.tail = FALSE)
names(CDstat) <- "z"
parm <- NULL
testname <- "Scaled LM test"
},
bcsclm = {
# Baltagi/Feng/Kao (2012), formula (11)
# (unbalanced case as sclm + bias correction as EViews: max(T_ij) instead of T)
CDstat <- sqrt(1/(2*elem.num))*sum((t.ij*rho^2-1)[selector.mat]) - (n/(2*(max(t.ij)-1)))
pCD <- 2*pnorm(abs(CDstat), lower.tail = FALSE)
names(CDstat) <- "z"
parm <- NULL
testname <- "Bias-corrected Scaled LM test"
},
cd = {
# (Pesaran (2004), formula (31))
CDstat <- sqrt(1/elem.num)*sum((sqrt(t.ij)*rho)[selector.mat])
pCD <- 2*pnorm(abs(CDstat), lower.tail = FALSE)
names(CDstat) <- "z"
parm <- NULL
testname <- "Pesaran CD test"
},
rho = {
CDstat <- sum(rho[selector.mat])/elem.num
pCD <- NULL
names(CDstat) <- "rho"
parm <- NULL
testname <- "Average correlation coefficient"
},
absrho = {
CDstat <- sum(abs(rho)[selector.mat])/elem.num
pCD <- NULL
names(CDstat) <- "|rho|"
parm <- NULL
testname <- "Average absolute correlation coefficient"
})
##(insert usual htest features)
RVAL <- list(statistic = CDstat,
parameter = parm,
method = paste(testname, "for", dep,
"cross-sectional dependence in panels"),
alternative = "cross-sectional dependence",
p.value = pCD,
data.name = form)
class(RVAL) <- "htest"
return(RVAL)
}
preshape <- function(x, na.rm = TRUE, ...) {
## reshapes pseries,
## e.g., of residuals from a panelmodel,
## in wide form
inames <- names(attr(x, "index"))
mres <- reshape(cbind(as.vector(x),
attr(x, "index")),
direction = "wide",
timevar = inames[2L],
idvar = inames[1L])
## drop ind in first column
mres <- mres[ , -1L, drop = FALSE]
## reorder columns (may be scrambled depending on first
## available obs in unbalanced panels)
mres <- mres[ , order(dimnames(mres)[[2L]])]
## if requested, drop columns (time periods) with NAs
if(na.rm) {
na.cols <- vapply(mres, FUN = anyNA, FUN.VALUE = TRUE, USE.NAMES = FALSE)
if(sum(na.cols) > 0L) mres <- mres[ , !na.cols, drop = FALSE]
}
return(mres)
}
#' Cross--sectional correlation matrix
#'
#' Computes the cross--sectional correlation matrix
#'
#'
#' @param x an object of class `pseries`
#' @param grouping grouping variable,
#' @param groupnames a character vector of group names,
#' @param value to complete,
#' @param \dots further arguments.
#' @return A matrix with average correlation coefficients within a group
#' (diagonal) and between groups (off-diagonal).
#' @export
#' @keywords htest
#' @examples
#'
#' data("Grunfeld", package = "plm")
#' pGrunfeld <- pdata.frame(Grunfeld)
#' grp <- c(rep(1, 100), rep(2, 50), rep(3, 50)) # make 3 groups
#' cortab(pGrunfeld$value, grouping = grp, groupnames = c("A", "B", "C"))
#'
cortab <- function(x, grouping, groupnames = NULL,
value = "statistic", ...) {
## makes matrix containing within (diagonal) and between (off-diagonal)
## correlation
## needs a pseries and a groupings vector of **same length**
## would use a better naming, and also passing a char or factor as
## grouping index
## x must be a pseries
if(!inherits(x, "pseries")) stop("First argument must be a pseries")
if(length(x) != length(grouping)) stop("arguments 'x' and 'grouping' must have same length")
fullind <- as.numeric(attr(x, "index")[ , 1L])
ids <- unique(fullind)
n <- length(ids)
regs <- seq_along(unique(grouping))
if(!(is.numeric(grouping))) grouping <- as.numeric(as.factor(grouping))
idnames <- as.character(ids)
if(is.null(groupnames)) {
groupnames <- as.character(unique(grouping))
}
## make matrices of between-regions correlations
## (includes within correlation on diagonal)
## for each pair of regions (nb: no duplicates, e.g., 3.1 but not 1.3)
## make w<1.n>:
for(h in seq_along(regs)) {
for(k in seq_len(h)) {
statew <- matrix(0, ncol = n, nrow = n)
## make statew for cor. between h and k
for(i in seq_len(n)) {
## get first region (all values equal, so take first one)
ireg <- grouping[fullind == ids[i]][1L] # TODO: can be made faster via split()-approach
if(ireg == h) {
for(j in seq_len(n)) {
jreg <- grouping[fullind == ids[j]][1L] # TODO: can be made faster via split()-approach
if(jreg == k) statew[i, j] <- 1
}
}
}
if(h!=k) statew <- statew + t(statew)
## just for debugging reasons:
dimnames(statew) <- list(idnames, idnames)
## eliminate self.correlation of states if i=j
diag(statew) <- 0
## not needed: pcdtest seems to do this by construction
eval(parse(text=paste("w", h, ".", k, " <- statew", sep="")))
}
}
## notice: without the line
## '' if(i!=j) statew <- statew + t(statew) ''
## all wn.n matrices would have values only on one half (upper
## or lower triangle)
## make generic table of regions' within and between correlation
## argument: a pseries
#YC regnames is undefined, so is myw
tab.g <- function(x, regs, regnames, test="rho", value) {
myw <- 0
tabg <- matrix(NA, ncol=length(regs), nrow=length(regs))
for(i in seq_along(regs)) {
for(j in seq_len(i)) {
## take appropriate w matrix
eval(parse(text = paste("myw<-w", i, ".", j, sep = "")))
tabg[i, j] <- pcdtest(x, test = "rho", w = myw)[[value]]
}
}
dimnames(tabg) <- list(groupnames, groupnames)
return(tabg)
}
regnames <- ""
mytab <- tab.g(x, regs = regs, regnames = regnames, test = "rho", value = value)
return(mytab)
}
|