1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
|
## taken from pmg to estimate CIPS test statistic as "average of t's"
## since version 4: added type warning, and output single CADF
## regressions as well, use func gettvalue for speed. estimation loop
## for single TS models is now lm(formula, data) with 'data' properly
## subsetted; this allows for decent output of individual mods.
## needed for standalone operation:
#plm <- plm:::plm
#pdim <- plm:::pdim
#model.matrix.plm <- plm:::model.matrix.plm
#pmodel.response <- plm:::pmodel.response.plm
## Reference is
## Pesaran, M.H. (2007) A simple panel unit root test in the presence of
## cross-section dependence, Journal of Applied Econometrics, 22(2), pp. 265-312
#' Cross-sectionally Augmented IPS Test for Unit Roots in Panel Models
#'
#' Cross-sectionally augmented Im, Pesaran and Shin (IPS) test for
#' unit roots in panel models.
#'
#' Pesaran's \insertCite{pes07}{plm} cross-sectionally augmented version of
#' the IPS unit root test \insertCite{IM:PESAR:SHIN:03}{plm} (H0: `pseries`
#' has a unit root) is a so-called second-generation panel unit root test: it
#' is in fact robust against cross-sectional dependence, provided that the default
#' `model="cmg"` is calculated. Else one can obtain the standard
#' (`model="mg"`) or cross-sectionally demeaned (`model="dmg"`)
#' versions of the IPS test.
#'
#' Argument `type` controls how the test is executed:
#' - `"none"`: no intercept, no trend (Case I in \insertCite{pes07}{plm}),
#' - `"drift"`: with intercept, no trend (Case II),
#' - `"trend"` (default): with intercept, with trend (Case III).
#'
#' @param x an object of class `"pseries"`,
#' @param lags integer, lag order for Dickey-Fuller augmentation,
#' @param type one of `"trend"` (default), `"drift"`, `"none"`,
#' @param model one of `"cmg"` (default), `"mg"`, `"dmg"`,
#' @param truncated logical, specifying whether to calculate the
#' truncated version of the test (default: `FALSE`),
#' @param \dots further arguments passed to `critvals.cips`
#' (non-exported function).
#' @return An object of class `"htest"`.
#' @author Giovanni Millo
#' @export
#' @seealso [purtest()], [phansitest()]
#' @references
#'
#' \insertAllCited{}
#'
#' @aliases cipstest
#' @keywords htest
#' @examples
#'
#' data("Produc", package = "plm")
#' Produc <- pdata.frame(Produc, index=c("state", "year"))
#' ## check whether the gross state product (gsp) is trend-stationary
#' cipstest(Produc$gsp, type = "trend")
#'
cipstest <- function (x, lags = 2, type = c("trend", "drift", "none"),
model = c("cmg", "mg", "dmg"), truncated = FALSE, ...) {
## type = c("trend", "drift", "none") corresponds to Case III, II, I
## in Pesaran (2007), respectively.
## input checks
if(!inherits(x, "pseries")) stop("Argument 'x' has to be a pseries")
if(!is.numeric(lags)) stop("Argument 'lags' has to be an integer") # but accept numeric as well
if(round(lags) != lags) stop("Argument 'lags' has to be an integer")
# TODO: does 'lags' always need to be >= 1? if so, check for this, too
dati <- pmerge(diff(x), lag(x))
dati <- pmerge(dati, diff(lag(x)))
## minimal column names
indexnames <- c("ind", "tind")
dimnames(dati)[[2L]][1:2] <- indexnames
clnames <- c("de", "le", "d1e")
dimnames(dati)[[2L]][3:5] <- clnames
## add lags if lags > 1
if(lags > 1L) {
for(i in 2:lags) {
dati <- pmerge(dati, diff(lag(x, i)))
clnames <- c(clnames, paste("d", i, "e", sep = ""))
}
}
dimnames(dati)[[2]][3:(lags+4)] <- clnames
deterministic <- switch(match.arg(type),
"trend" = {"+as.numeric(tind)"},
"drift" = {""},
"none" = {"-1"})
## make formula
adffm <- as.formula(paste("de~le+",
paste(clnames[3:(lags+2)], collapse = "+"),
deterministic, sep = ""))
## estimate preliminary pooling plm, to take care of all diffs
## and lags in a 'panel' way (would be lost in single TS regr.s)
pmod <- plm(adffm, data = dati, model = "pooling")
## this as in pmg()
index <- attr(model.frame(pmod), "index")
ind <- index[[1L]] ## individual index
tind <- index[[2L]] ## time index
## set dimension variables
pdim <- pdim(pmod)
balanced <- pdim$balanced
nt <- pdim$Tint$nt
Ti <- pdim$Tint$Ti
T. <- pdim$nT$T
n <- pdim$nT$n
N <- pdim$nT$N
## set index names
time.names <- pdim$panel.names$time.names
id.names <- pdim$panel.names$id.names
coef.names <- names(coef(pmod))
## number of coefficients
k <- length(coef.names)
## CIPS test needs an ADF regression with k lags
## so fm <- has to be like diff(e) ~ lag(e)+diff(lag(e)) etc.
## model data, remove index and pseries attributes
X <- model.matrix(pmod)
attr(X, "index") <- NULL
y <- as.numeric(model.response(model.frame(pmod)))
## det. *minimum* group numerosity
t <- min(Ti) # == min(tapply(X[,1], ind, length))
## check min. t numerosity
## NB it is also possible to allow estimation if there *is* one group
## with t large enough and average on coefficients removing NAs
## Here we choose the explicit way: let estimation fail if we lose df
## but a warning would do...
if(t < (k+1)) stop("Insufficient number of time periods")
## one regression for each group i in 1..n
## and retrieve coefficients putting them into a matrix
## (might be unbalanced => t1!=t2 but we don't care as long
## as min(t)>k+1)
# prepare data as per requested model
switch(match.arg(model),
"mg" = {
## final data as dataframe, to be subset for single TS models
## (if 'trend' fix this variable's name)
switch(match.arg(type),
"trend" = {
## make datafr. removing intercept and add trend
adfdati <- data.frame(cbind(y, X[ , -1L, drop = FALSE]))
dimnames(adfdati)[[2L]] <- c(clnames, "trend")
adffm <- update(adffm, . ~ . -as.numeric(tind) + trend)},
"drift" = {
## make df removing intercept
adfdati <- data.frame(cbind(y, X[ , -1L, drop = FALSE]))
dimnames(adfdati)[[2L]] <- clnames},
"none" = {
## just make df (intercept isn't there)
adfdati <- data.frame(cbind(y, X))
dimnames(adfdati)[[2L]] <- clnames})
},
"dmg" = {
## demean (via means over group for each t)
## we do not care about demeaning the intercept or not as it is
## eliminated anyway
demX <- Within(X, effect = tind, na.rm = TRUE)
demy <- Within(y, effect = tind, na.rm = TRUE)
## final data as dataframe, to be subset for single TS models
## (if 'trend' fix this variable's name)
switch(match.arg(type),
"trend" = {
## make datafr. removing intercept and add trend
adfdati <- data.frame(cbind(demy, demX[ , -1L, drop = FALSE]))
dimnames(adfdati)[[2L]] <- c(clnames, "trend")
adffm <- update(adffm, . ~ . -as.numeric(tind) + trend)},
"drift" = {
## make df removing intercept
adfdati <- data.frame(cbind(demy, demX[ , -1L, drop = FALSE]))
dimnames(adfdati)[[2L]] <- clnames},
"none" = {
## just make df (intercept isn't there)
adfdati <- data.frame(cbind(demy, demX))
dimnames(adfdati)[[2L]] <- clnames})
},
"cmg" = {
deterministic2 <- switch(match.arg(type),
"trend" = {"+trend"},
"drift" = {""},
"none" = {"-1"})
## adjust formula
adffm <- as.formula(paste("de~le+",
paste(clnames[3:(lags+2)], collapse = "+"),
"+", paste(paste(clnames, "bar", sep = "."),
collapse = "+"),
deterministic2, sep = ""))
## between-periods transformation (take means over groups for each t)
Xm <- Between(X, effect = tind, na.rm = TRUE)
ym <- Between(y, effect = tind, na.rm = TRUE)
## final data as dataframe, to be subset for single TS models
## (purge intercepts etc., if 'trend' fix this variable's name)
switch(match.arg(type),
"trend" = {
## purge intercept, averaged intercept and averaged trend
## (the latter is always last col. of Xm)
augX <- cbind(X[ , -1L, drop = FALSE], ym, Xm[ , -c(1L, dim(Xm)[[2L]]), drop = FALSE])
adfdati <- data.frame(cbind(y, augX))
dimnames(adfdati)[[2L]] <- c(clnames, "trend",
paste(clnames, "bar", sep="."))
adffm <- update(adffm, . ~ . -as.numeric(tind) + trend)},
"drift" = {
# remove intercepts
augX <- cbind(X[ , -1L, drop = FALSE], ym, Xm[ , -1L, drop = FALSE])
adfdati <- data.frame(cbind(y, augX))
dimnames(adfdati)[[2L]] <- c(clnames,
paste(clnames, "bar", sep="."))},
"none" = {
## no intercepts here, so none to be removed
augX <- cbind(X, ym, Xm)
adfdati <- data.frame(cbind(y, augX))
dimnames(adfdati)[[2L]] <- c(clnames,
paste(clnames, "bar", sep="."))
})
})
## Estimate each x-sect. i=1..n with the data as prepared above:
# * for "dmg" this is:
## for each x-sect. i=1..n estimate (over t) a demeaned model
## (y_it-my_t) = alpha_i + beta_i*(X_it-mX_t) + err_it
# * for "cmg" this is:
## for each x-sect. i=1..n estimate (over t) an augmented model
## y_it = alpha_i + beta_i*X_it + c1_i*my_t + c2_i*mX_t + err_it
adfdati.list <- split(adfdati, ind)
tmods <- lapply(adfdati.list, function(tdati) lm(adffm, tdati, model = FALSE))
# TODO: check if my.lm.fit can be used instead of lm (with minor modifications
# to code down below for t-val extraction etc.)
## CIPS statistic as an average of the t-stats on the coefficient of 'le'
tstats <- vapply(tmods, function(mod) gettvalue(mod, "le"), FUN.VALUE = 0.0, USE.NAMES = FALSE)
if(truncated) {
## set bounds, Pesaran (2007), p. 277
## NB: there is a typo in the paper (see p. 279/281 to confirm):
## Case I: "with an intercept or trend" -> "with_out_ an intercept or trend"
## "with_out_ an intercept or trend (Case I): K1 = 6.12, K2 = 4.16"
## "with an intercept and no trend (Case II): K1 = 6.19, K2 = 2.61"
## "with a linear trend (Case III): K1 = 6.42, K2 = 1.70"
## (use negative values for K1's to ease assignment if bound is reached)
trbounds <- switch(match.arg(type),
"none" = {c(-6.12, 4.16)},
"drift" = {c(-6.19, 2.61)},
"trend" = {c(-6.42, 1.70)})
## formulae (34) in Pesaran (2007):
## truncate at lower bound
tstats <- ifelse(tstats > trbounds[1L], tstats, trbounds[1L])
## truncate at upper bound
tstats <- ifelse(tstats < trbounds[2L], tstats, trbounds[2L])
}
## here allow for '...' to pass 'na.rm=TRUE' in case (but see what happens
## if unbalanced!
cipstat <- mean(tstats, ...) #sum(tstats)/n
pval <- critvals.cips(stat = cipstat, n= n, T. = T.,
type = type, truncated = truncated)
## if pval out of critical values' then set at boundary and issue
## a warning
if(pval == "> 0.10") {
pval <- 0.10
warning("p-value greater than printed p-value")
} else if(pval == "< 0.01") {
pval <- 0.01
warning("p-value smaller than printed p-value")
}
parameter <- lags
names(parameter) <- "lag order"
names(cipstat) <- "CIPS test"
RVAL <- list(statistic = cipstat,
parameter = parameter,
data.name = paste(deparse(substitute(x))),
tmods = tmods,
method = "Pesaran's CIPS test for unit roots",
alternative = "Stationarity",
p.value = pval)
class(RVAL) <- "htest"
return(RVAL)
}
## separate function computing critical values:
critvals.cips <- function(stat, n, T., type = c("trend", "drift", "none"),
truncated = FALSE) {
## auxiliary function for cipstest()
## extracts --or calculates by interpolation-- p-values for the
## (averaged) CIPS statistic depending on whether n and T,
## given the critical values of average of individual cross-sectionally
## augmented Dickey-Fuller distribution
## Non truncated version
rnam <- c(10, 15, 20, 30, 50, 70, 100, 200)
cnam <- rnam
znam <- c(1, 5, 10)
## In all following tables N in rows, T in cols unlike Pesaran (2007)
## No intercept, no trend (Case I); Table II(a) Pesaran (2007), p. 279
## 1% critical values
nvals1 <- cbind(
c(-2.16, -2.02, -1.93, -1.85, -1.78, -1.74, -1.71, -1.70),
c(-2.03, -1.91, -1.84, -1.77, -1.71, -1.68, -1.66, -1.63),
c(-2.00, -1.89, -1.83, -1.76, -1.70, -1.67, -1.65, -1.62),
c(-1.98, -1.87, -1.80, -1.74, -1.69, -1.67, -1.64, -1.61),
c(-1.97, -1.86, -1.80, -1.74, -1.69, -1.66, -1.63, -1.61),
c(-1.95, -1.86, -1.80, -1.74, -1.68, -1.66, -1.63, -1.61),
c(-1.94, -1.85, -1.79, -1.74, -1.68, -1.65, -1.63, -1.61),
c(-1.95, -1.85, -1.79, -1.73, -1.68, -1.65, -1.63, -1.61)
)
## 5% critical values
nvals5 <- cbind(
c(-1.80, -1.71, -1.67, -1.61, -1.58, -1.56, -1.54, -1.53),
c(-1.74, -1.67, -1.63, -1.58, -1.55, -1.53, -1.52, -1.51),
c(-1.72, -1.65, -1.62, -1.58, -1.54, -1.53, -1.52, -1.50),
c(-1.72, -1.65, -1.61, -1.57, -1.55, -1.54, -1.52, -1.50),
c(-1.72, -1.64, -1.61, -1.57, -1.54, -1.53, -1.52, -1.51),
c(-1.71, -1.65, -1.61, -1.57, -1.54, -1.53, -1.52, -1.51),
c(-1.71, -1.64, -1.61, -1.57, -1.54, -1.53, -1.52, -1.51),
c(-1.71, -1.65, -1.61, -1.57, -1.54, -1.53, -1.52, -1.51)
)
## 10% critical values
nvals10 <- cbind(
c(-1.61, -1.56, -1.52, -1.49, -1.46, -1.45, -1.44, -1.43),
c(-1.58, -1.53, -1.50, -1.48, -1.45, -1.44, -1.44, -1.43),
c(-1.58, -1.52, -1.50, -1.47, -1.45, -1.45, -1.44, -1.43),
c(-1.57, -1.53, -1.50, -1.47, -1.46, -1.45, -1.44, -1.43),
c(-1.58, -1.52, -1.50, -1.47, -1.45, -1.45, -1.44, -1.43),
c(-1.57, -1.52, -1.50, -1.47, -1.46, -1.45, -1.44, -1.43),
c(-1.56, -1.52, -1.50, -1.48, -1.46, -1.45, -1.44, -1.43),
c(-1.57, -1.53, -1.50, -1.47, -1.45, -1.45, -1.44, -1.43)
)
## make critical values' cube
nvals <- array(data = NA_real_, dim = c(8L, 8L, 3L))
nvals[ , , 1L] <- nvals1
nvals[ , , 2L] <- nvals5
nvals[ , , 3L] <- nvals10
dimnames(nvals) <- list(rnam, cnam, znam)
## Intercept only (Case II), Table II(b) in Pesaran (2007), p. 280
## 1% critical values
dvals1 <- cbind(
c(-2.97, -2.76, -2.64, -2.51, -2.41, -2.37, -2.33, -2.28),
c(-2.66, -2.52, -2.45, -2.34, -2.26, -2.23, -2.19, -2.16),
c(-2.60, -2.47, -2.40, -2.32, -2.25, -2.20, -2.18, -2.14),
c(-2.57, -2.45, -2.38, -2.30, -2.23, -2.19, -2.17, -2.14),
c(-2.55, -2.44, -2.36, -2.30, -2.23, -2.20, -2.17, -2.14),
c(-2.54, -2.43, -2.36, -2.30, -2.23, -2.20, -2.17, -2.14),
c(-2.53, -2.42, -2.36, -2.30, -2.23, -2.20, -2.18, -2.15),
c(-2.53, -2.43, -2.36, -2.30, -2.23, -2.21, -2.18, -2.15)
)
## 5% critical values
dvals5 <- cbind(
c(-2.52, -2.40, -2.33, -2.25, -2.19, -2.16, -2.14, -2.10),
c(-2.37, -2.28, -2.22, -2.17, -2.11, -2.09, -2.07, -2.04),
c(-2.34, -2.26, -2.21, -2.15, -2.11, -2.08, -2.07, -2.04),
c(-2.33, -2.25, -2.20, -2.15, -2.11, -2.08, -2.07, -2.05),
c(-2.33, -2.25, -2.20, -2.16, -2.11, -2.10, -2.08, -2.06),
c(-2.33, -2.25, -2.20, -2.15, -2.12, -2.10, -2.08, -2.06),
c(-2.32, -2.25, -2.20, -2.16, -2.12, -2.10, -2.08, -2.07),
c(-2.32, -2.25, -2.20, -2.16, -2.12, -2.10, -2.08, -2.07)
)
## 10% critical values
dvals10 <- cbind(
c(-2.31, -2.22, -2.18, -2.12, -2.07, -2.05, -2.03, -2.01),
c(-2.22, -2.16, -2.11, -2.07, -2.03, -2.01, -2.00, -1.98),
c(-2.21, -2.14, -2.10, -2.07, -2.03, -2.01, -2.00, -1.99),
c(-2.21, -2.14, -2.11, -2.07, -2.04, -2.02, -2.01, -2.00),
c(-2.21, -2.14, -2.11, -2.08, -2.05, -2.03, -2.02, -2.01),
c(-2.21, -2.15, -2.11, -2.08, -2.05, -2.03, -2.02, -2.01),
c(-2.21, -2.15, -2.11, -2.08, -2.05, -2.03, -2.03, -2.02),
c(-2.21, -2.15, -2.11, -2.08, -2.05, -2.04, -2.03, -2.02)
)
## make critical values' cube
dvals <- array(data = NA_real_, dim = c(8L, 8L, 3L))
dvals[ , , 1L] <- dvals1
dvals[ , , 2L] <- dvals5
dvals[ , , 3L] <- dvals10
dimnames(dvals) <- list(rnam, cnam, znam)
## Intercept and trend (Case III), Table II(c) in Pesaran (2007), p. 281
## 1% critical values
tvals1 <- cbind(
c(-3.88, -3.61, -3.46, -3.30, -3.15, -3.10, -3.05, -2.98),
c(-3.24, -3.09, -3.00, -2.89, -2.81, -2.77, -2.74, -2.71),
c(-3.15, -3.01, -2.92, -2.83, -2.76, -2.72, -2.70, -2.65),
c(-3.10, -2.96, -2.88, -2.81, -2.73, -2.69, -2.66, -2.63),
c(-3.06, -2.93, -2.85, -2.78, -2.72, -2.68, -2.65, -2.62),
c(-3.04, -2.93, -2.85, -2.78, -2.71, -2.68, -2.65, -2.62),
c(-3.03, -2.92, -2.85, -2.77, -2.71, -2.68, -2.65, -2.62),
c(-3.03, -2.91, -2.85, -2.77, -2.71, -2.67, -2.65, -2.62)
)
## 5% critical values
tvals5 <- cbind(
c(-3.27, -3.11, -3.02, -2.94, -2.86, -2.82, -2.79, -2.75),
c(-2.93, -2.83, -2.77, -2.70, -2.64, -2.62, -2.60, -2.57),
c(-2.88, -2.78, -2.73, -2.67, -2.62, -2.59, -2.57, -2.55),
c(-2.86, -2.76, -2.72, -2.66, -2.61, -2.58, -2.56, -2.54),
c(-2.84, -2.76, -2.71, -2.65, -2.60, -2.58, -2.56, -2.54),
c(-2.83, -2.76, -2.70, -2.65, -2.61, -2.58, -2.57, -2.54),
c(-2.83, -2.75, -2.70, -2.65, -2.61, -2.59, -2.56, -2.55),
c(-2.83, -2.75, -2.70, -2.65, -2.61, -2.59, -2.57, -2.55)
)
## 10% critical values
tvals10 <- cbind(
c(-2.98, -2.89, -2.82, -2.76, -2.71, -2.68, -2.66, -2.63),
c(-2.76, -2.69, -2.65, -2.60, -2.56, -2.54, -2.52, -2.50),
c(-2.74, -2.67, -2.63, -2.58, -2.54, -2.53, -2.51, -2.49),
c(-2.73, -2.66, -2.63, -2.58, -2.54, -2.52, -2.51, -2.49),
c(-2.73, -2.66, -2.63, -2.58, -2.55, -2.53, -2.51, -2.50),
c(-2.72, -2.66, -2.62, -2.58, -2.55, -2.53, -2.52, -2.50),
c(-2.72, -2.66, -2.63, -2.59, -2.55, -2.53, -2.52, -2.50),
c(-2.73, -2.66, -2.63, -2.59, -2.55, -2.54, -2.52, -2.51)
)
## make critical values' cube
tvals <- array(data = NA_real_, dim = c(8L, 8L, 3L))
tvals[ , , 1L] <- tvals1
tvals[ , , 2L] <- tvals5
tvals[ , , 3L] <- tvals10
dimnames(tvals) <- list(rnam, cnam, znam)
## if truncated substitute values according to Tables II(a), II(b), II(c)
## in Pesaran (2007)
if(truncated) {
# Case III (Intercept and trend)
tvals[,1,1] <- -c(3.51, 3.31, 3.20, 3.10, 3.00, 2.96, 2.93, 2.88) # II(c), 1%
tvals[,2,1] <- -c(3.21, 3.07, 2.98, 2.88, 2.80, 2.76, 2.74, 2.70) # II(c), 1%
tvals[,1,2] <- -c(3.10, 2.97, 2.89, 2.82, 2.75, 2.73, 2.70, 2.67) # II(c), 5%
tvals[,2,2] <- -c(2.92, 2.82, 2.76, 2.69, 2.64, 2.62, 2.59, 2.57) # II(c), 5%
tvals[,1,3] <- -c(2.87, 2.78, 2.73, 2.67, 2.63, 2.60, 2.58, 2.56) # II(c), 10%
tvals[,2,3] <- -c(2.76, 2.68, 2.64, 2.59, 2.55, 2.53, 2.51, 2.50) # II(c), 10%
# Case II (Intercept only)
dvals[,1,1] <- -c(2.85, 2.66, 2.56, 2.44, 2.36, 2.32, 2.29, 2.25) # II(b), 1%
dvals[,1,2] <- -c(2.47, 2.35, 2.29, 2.22, 2.16, 2.13, 2.11, 2.08) # II(b), 5%
dvals[,1,3] <- -c(2.28, 2.20, 2.15, 2.10, 2.05, 2.03, 2.01, 1.99) # II(b), 10%
# Case I (No intercept, no trend)
nvals[,1,1] <- -c(2.14, 2.00 ,1.91, 1.84, 1.77, 1.73, 1.71, 1.69) # II(a), 1%
nvals[,1,2] <- -c(1.79, 1.71, 1.66, 1.61, 1.57, 1.55, 1.53, 1.52) # II(a), 5%
nvals[,1,3][c(2,4,7)] <- -c(1.55, 1.48, 1.43) # II(a), 10%
}
## set this according to model
cvals <- switch(match.arg(type),
"trend" = tvals,
"drift" = dvals,
"none" = nvals)
## find intervals for current n and T.
nintl <- findInterval(n, rnam)
ninth <- nintl + 1
nintv <- rnam[nintl:ninth]
tintl <- findInterval(T., cnam)
tinth <- tintl + 1
tintv <- cnam[tintl:tinth]
## for each critical value
cv <- numeric(3)
for(i in 1:3) {
## on N dim
if(n %in% rnam) {
## if n is exactly one of the tabulated values:
tl <- cvals[which(rnam == n), tintl, i]
th <- cvals[which(rnam == n), tinth, i]
} else {
## interpolate interval of interest to get cvals(n,T.)
tl <- approx(nintv, cvals[nintl:ninth, tintl, i],
n = max(nintv) - min(nintv))$y[n - min(nintv)]
th <- approx(nintv, cvals[nintl:ninth, tinth, i],
n = max(nintv) - min(nintv))$y[n - min(nintv)]
}
## on T. dim
if(T. %in% cnam) {
## if T. is exactly one of the tabulated values:
if(n %in% rnam) {
## ... and n too:
cv[i] <- cvals[which(rnam == n), which(cnam == T.), i]
} else {
## or if n is not, interpolate n on T.'s exact row:
cv[i] <- approx(nintv, cvals[nintl:ninth, which(cnam == T.), i],
n = max(nintv) - min(nintv))$y[n - min(nintv)]
}
} else {
## idem: interpolate T.-interval to get critical value
cv[i] <- approx(tintv, c(tl, th),
n = max(tintv) - min(tintv))$y[T. - min(tintv)]
}
}
## approximate p-values' sequence
cvprox <- approx(cv, c(0.01, 0.05, 0.1), n = 200)
cvseq <- cvprox$x
pvseq <- cvprox$y
if(stat < min(cv)) {
pval <- "< 0.01"
} else {
if(stat > max(cv)) {
pval <- "> 0.10"
} else {
if(stat %in% cv) {
## if exactly one of the tabulated values
pval <- c(0.01, 0.05, 0.10)[which(cv == stat)]
} else {
## find interval where true p-value lies and
## set p-value as the mean of bounds
kk <- findInterval(stat, cvseq)
pval <- mean(pvseq[kk:(kk+1)])
}
}
}
return(pval)
}
gettvalue <- function(x, coefname) {
## non-exported
## helper function to extract one or more t value(s)
## (coef/s.e.) for a coefficient from model object useful if one wants
## to avoid the computation of a whole lot of values with summary()
# x: model object (usually class plm or lm) coefname: character
# indicating name(s) of coefficient(s) for which the t value(s) is
# (are) requested
# return value: named numeric vector of length == length(coefname)
# with requested t value(s)
beta <- coef(x)[coefname]
se <- sqrt(diag(vcov(x))[coefname])
tvalue <- beta / se
return(tvalue)
}
pseries2pdataframe <- function(x, pdata.frame = TRUE, ...) {
## non-exported
## Transforms a pseries in a (p)data.frame with the indices as regular columns
## in positions 1, 2 and (if present) 3 (individual index, time index, group index).
## if pdataframe = TRUE -> return a pdata.frame, if FALSE -> return a data.frame
## ellipsis (dots) passed on to pdata.frame()
if(!inherits(x, "pseries")) stop("input needs to be of class 'pseries'")
indices <- attr(x, "index")
class(indices) <- setdiff(class(indices), "pindex")
vx <- remove_pseries_features(x)
dfx <- cbind(indices, vx)
dimnames(dfx)[[2L]] <- c(names(indices), deparse(substitute(x)))
res <- if(pdata.frame == TRUE) {
pdata.frame(dfx, index = names(indices), ...)
} else { dfx }
return(res)
}
pmerge <- function(x, y, ...) {
## non-exported
## Returns a data.frame, not a pdata.frame.
## pmerge is used to merge pseries or pdata.frames into a data.frame or
## to merge a pseries to a data.frame
## transf. if pseries or pdata.frame
if(inherits(x, "pseries")) x <- pseries2pdataframe(x, pdata.frame = FALSE)
if(inherits(y, "pseries")) y <- pseries2pdataframe(y, pdata.frame = FALSE)
if(inherits(x, "pdata.frame")) x <- as.data.frame(x, keep.attributes = FALSE)
if(inherits(y, "pdata.frame")) y <- as.data.frame(y, keep.attributes = FALSE)
# input to merge() needs to be data.frames; not yet suitable for 3rd index (group variable)
z <- merge(x, y,
by.x = dimnames(x)[[2L]][1:2],
by.y = dimnames(y)[[2L]][1:2], ...)
return(z)
}
|