1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
|
#' Breusch--Godfrey Test for Panel Models
#'
#' Test of serial correlation for (the idiosyncratic component of) the
#' errors in panel models.
#'
#' This Lagrange multiplier test uses the auxiliary model on
#' (quasi-)demeaned data taken from a model of class `plm` which may
#' be a `pooling` (default for formula interface), `random` or
#' `within` model. It performs a Breusch--Godfrey test (using `bgtest`
#' from package \CRANpkg{lmtest} on the residuals of the
#' (quasi-)demeaned model, which should be serially uncorrelated under
#' the null of no serial correlation in idiosyncratic errors, as
#' illustrated in \insertCite{WOOL:10;textual}{plm}. The function
#' takes the demeaned data, estimates the model and calls `bgtest`.
#'
#' Unlike most other tests for serial correlation in panels, this one
#' allows to choose the order of correlation to test for.
#'
#' @aliases pbgtest
#' @importFrom lmtest bgtest
#' @param x an object of class `"panelmodel"` or of class `"formula"`,
#' @param order an integer indicating the order of serial correlation
#' to be tested for. `NULL` (default) uses the minimum number of
#' observations over the time dimension (see also section
#' **Details** below),
#' @param type type of test statistic to be calculated; either
#' `"Chisq"` (default) for the Chi-squared test statistic or `"F"`
#' for the F test statistic,
#' @param data only relevant for formula interface: data set for which
#' the respective panel model (see `model`) is to be evaluated,
#' @param model only relevant for formula interface: compute test
#' statistic for model `pooling` (default), `random`, or `within`.
#' When `model` is used, the `data` argument needs to be passed as
#' well,
#' @param \dots further arguments (see [lmtest::bgtest()]).
#' @return An object of class `"htest"`.
#' @note The argument `order` defaults to the minimum number of
#' observations over the time dimension, while for
#' `lmtest::bgtest` it defaults to `1`.
#' @export
#' @author Giovanni Millo
#' @seealso For the original test in package \CRANpkg{lmtest} see
#' [lmtest::bgtest()]. See [pdwtest()] for the analogous
#' panel Durbin--Watson test. See [pbltest()], [pbsytest()],
#' [pwartest()] and [pwfdtest()] for other serial correlation
#' tests for panel models.
#' @references
#'
#' \insertRef{BREU:78}{plm}
#'
#' \insertRef{GODF:78}{plm}
#'
#' \insertRef{WOOL:02}{plm}
#'
#' \insertRef{WOOL:10}{plm}
#'
#' \insertRef{WOOL:13}{plm}
#' Sec. 12.2, pp. 421--422.
#' @keywords htest
#' @examples
#'
#' data("Grunfeld", package = "plm")
#' g <- plm(inv ~ value + capital, data = Grunfeld, model = "random")
#'
#' # panelmodel interface
#' pbgtest(g)
#' pbgtest(g, order = 4)
#'
#' # formula interface
#' pbgtest(inv ~ value + capital, data = Grunfeld, model = "random")
#'
#' # F test statistic (instead of default type="Chisq")
#' pbgtest(g, type="F")
#' pbgtest(inv ~ value + capital, data = Grunfeld, model = "random", type = "F")
#'
pbgtest <- function (x, ...) {
UseMethod("pbgtest")
}
#' @rdname pbgtest
#' @export
pbgtest.panelmodel <- function(x, order = NULL, type = c("Chisq", "F"), ...) {
## residual serial correlation test based on the residuals of the demeaned
## model (see Wooldridge (2002), p. 288) and the regular lmtest::bgtest()
## structure:
## 1: take demeaned data from 'plm' object
## 2: est. auxiliary model by OLS on demeaned data
## 3: apply lmtest::bgtest() to auxiliary model and return the result
model <- describe(x, "model")
effect <- describe(x, "effect")
theta <- x$ercomp$theta
## retrieve demeaned data
demX <- model.matrix(x, model = model, effect = effect, theta = theta, cstcovar.rm = "all")
demy <- pmodel.response(model.frame(x), model = model, effect = effect, theta = theta)
## ...and group numerosities
Ti <- pdim(x)$Tint$Ti
## set lag order to minimum group numerosity if not specified by user
## (check whether this is sensible)
if(is.null(order)) order <- min(Ti)
## lmtest::bgtest on the demeaned model:
## pbgtest is the return value of lmtest::bgtest, exception made for the method attribute
auxformula <- demy ~ demX - 1
lm.mod <- lm(auxformula)
bgtest <- bgtest(lm.mod, order = order, type = type, ...)
bgtest$method <- "Breusch-Godfrey/Wooldridge test for serial correlation in panel models"
bgtest$alternative <- "serial correlation in idiosyncratic errors"
bgtest$data.name <- data.name(x)
names(bgtest$statistic) <- if(length(bgtest$parameter) == 1) "chisq" else "F"
return(bgtest)
}
#' @rdname pbgtest
#' @export
pbgtest.formula <- function(x, order = NULL, type = c("Chisq", "F"), data, model=c("pooling", "random", "within"), ...) {
## formula method for pbgtest;
## defaults to a pooling model
cl <- match.call(expand.dots = TRUE)
if (names(cl)[3L] == "") names(cl)[3L] <- "data"
if (is.null(cl$model)) cl$model <- "pooling"
names(cl)[2L] <- "formula"
m <- match(plm.arg, names(cl), 0)
cl <- cl[c(1L, m)]
cl[[1L]] <- quote(plm)
plm.model <- eval(cl,parent.frame())
pbgtest(plm.model, order = order, type = type, data = data, ...)
}
#' Wooldridge's Test for Unobserved Effects in Panel Models
#'
#' Semi-parametric test for the presence of (individual or time) unobserved
#' effects in panel models.
#'
#' This semi-parametric test checks the null hypothesis of zero
#' correlation between errors of the same group. Therefore, it has
#' power both against individual effects and, more generally, any kind
#' of serial correlation.
#'
#' The test relies on large-N asymptotics. It is valid under error
#' heteroskedasticity and departures from normality.
#'
#' The above is valid if `effect="individual"`, which is the most
#' likely usage. If `effect="time"`, symmetrically, the test relies on
#' large-T asymptotics and has power against time effects and, more
#' generally, against cross-sectional correlation.
#'
#' If the panelmodel interface is used, the inputted model must be a pooling
#' model.
#'
#' @aliases pwtest
#' @param x an object of class `"formula"`, or an estimated model of class
#' `panelmodel`,
#' @param effect the effect to be tested for, one of `"individual"`
#' (default) or `"time"`,
#' @param data a `data.frame`,
#' @param \dots further arguments passed to `plm`.
#' @return An object of class `"htest"`.
#' @export
#' @author Giovanni Millo
#' @seealso [pbltest()], [pbgtest()],
#' [pdwtest()], [pbsytest()], [pwartest()],
#' [pwfdtest()] for tests for serial correlation in panel models.
#' [plmtest()] for tests for random effects.
#' @references
#'
#' \insertRef{WOOL:02}{plm}
#'
#' \insertRef{WOOL:10}{plm}
#'
#' @keywords htest
#' @examples
#'
#' data("Produc", package = "plm")
#' ## formula interface
#' pwtest(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc)
#' pwtest(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc, effect = "time")
#'
#' ## panelmodel interface
#' # first, estimate a pooling model, than compute test statistics
#' form <- formula(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp)
#' pool_prodc <- plm(form, data = Produc, model = "pooling")
#' pwtest(pool_prodc) # == effect="individual"
#' pwtest(pool_prodc, effect="time")
#'
pwtest <- function(x, ...){
UseMethod("pwtest")
}
#' @rdname pwtest
#' @export
pwtest.formula <- function(x, data, effect = c("individual", "time"), ...) {
effect <- match.arg(effect, choices = c("individual", "time")) # match effect to pass it on to pwtest.panelmodel
cl <- match.call(expand.dots = TRUE)
if (names(cl)[3] == "") names(cl)[3] <- "data"
if (is.null(cl$model)) cl$model <- "pooling"
if (cl$model != "pooling") stop("pwtest only relevant for pooling models")
names(cl)[2] <- "formula"
m <- match(plm.arg, names(cl), 0)
cl <- cl[c(1L, m)]
cl[[1L]] <- quote(plm)
plm.model <- eval(cl,parent.frame())
pwtest.panelmodel(plm.model, effect = effect, ...) # pass on desired 'effect' argument to pwtest.panelmodel
## "RE" test a la Wooldridge (2002/2010), see 10.4.4
## (basically the scaled and standardized estimator for sigma from REmod)
## does not rely on normality or homoskedasticity;
## H0: composite errors uncorrelated
## ref. Wooldridge (2002), pp. 264-265; Wooldridge (2010), pp. 299-300
######### from here generic testing interface from
######### plm to my code
}
#' @rdname pwtest
#' @export
pwtest.panelmodel <- function(x, effect = c("individual", "time"), ...) {
if (describe(x, "model") != "pooling") stop("pwtest only relevant for pooling models")
effect <- match.arg(effect, choices = c("individual", "time"))
data <- model.frame(x)
## extract indices
## if effect="individual" std., else swap
xindex <- unclass(attr(data, "index")) # unclass for speed
index <- if(effect == "individual") xindex[[1L]] else xindex[[2L]]
## det. number of groups and df
n <- length(unique(index))
X <- model.matrix(x)
## ref. Wooldridge (2002), p.264 / Wooldridge (2010), p.299
## extract resids
u <- x$residuals
## est. random effect variance
## list of n "empirical omega-blocks"
## with averages of xproducts of t(i) residuals
## for each group 1..n
## (possibly different sizes if unbal., thus a list
## and thus, unlike Wooldridge (eq.10.37), we divide
## every block by *its* t(t-1)/2)
ut.list <- split(u, index)
tres <- lapply(ut.list, function(x) outer(x, x))
## det. # of upper triangle members (n*t(t-1)/2 if balanced)
## no needed, only for illustration
# ti <- vapply(tres, function(x) dim(x)[[1L]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
# uptrinum <- sum(ti*(ti-1)/2)
## sum over all upper triangles of emp. omega blocks:
## and sum over resulting vector (df corrected)
sum.uptri <- vapply(tres, function(x) sum(x[upper.tri(x, diag = FALSE)]), FUN.VALUE = 0.0, USE.NAMES = FALSE)
W <- sum(sum.uptri) # /sqrt(n) simplifies out
## calculate se(Wstat) as in 10.40
seW <- sqrt(as.numeric(crossprod(sum.uptri)))
## NB should we apply a df correction here, maybe that of the standard
## RE estimator? (see page 261)
Wstat <- W/seW
names(Wstat) <- "z"
pW <- 2*pnorm(abs(Wstat), lower.tail = FALSE) # unlike LM, test is two-tailed!
## insert usual htest features
RVAL <- list(statistic = Wstat,
parameter = NULL,
method = paste("Wooldridge's test for unobserved",
effect, "effects"),
alternative = "unobserved effect",
p.value = pW,
data.name = paste(deparse(substitute(formula))))
class(RVAL) <- "htest"
return(RVAL)
}
#' Wooldridge Test for AR(1) Errors in FE Panel Models
#'
#' Test of serial correlation for (the idiosyncratic component of) the errors
#' in fixed--effects panel models.
#'
#' As \insertCite{WOOL:10;textual}{plm}, Sec. 10.5.4 observes, under
#' the null of no serial correlation in the errors, the residuals of a
#' FE model must be negatively serially correlated, with
#' \eqn{cor(\hat{u}_{it}, \hat{u}_{is})=-1/(T-1)} for each
#' \eqn{t,s}. He suggests basing a test for this null hypothesis on a
#' pooled regression of FE residuals on their first lag:
#' \eqn{\hat{u}_{i,t} = \alpha + \delta \hat{u}_{i,t-1} +
#' \eta_{i,t}}. Rejecting the restriction \eqn{\delta = -1/(T-1)}
#' makes us conclude against the original null of no serial
#' correlation.
#'
#' `pwartest` estimates the `within` model and retrieves residuals,
#' then estimates an AR(1) `pooling` model on them. The test statistic
#' is obtained by applying a F test to the latter model to test the
#' above restriction on \eqn{\delta}, setting the covariance matrix to
#' `vcovHC` with the option `method="arellano"` to control for serial
#' correlation.
#'
#' Unlike the [pbgtest()] and [pdwtest()], this test does
#' not rely on large--T asymptotics and has therefore good properties in
#' ``short'' panels. Furthermore, it is robust to general heteroskedasticity.
#'
#' @aliases pwartest
#' @param x an object of class `formula` or of class `panelmodel`,
#' @param data a `data.frame`,
#' @param \dots further arguments to be passed on to `vcovHC` (see
#' Details and Examples).
#' @return An object of class `"htest"`.
#' @export
#' @author Giovanni Millo
#' @seealso [pwfdtest()], [pdwtest()], [pbgtest()], [pbltest()],
#' [pbsytest()].
#' @references
#'
#' \insertRef{WOOL:02}{plm}
#'
#' \insertRef{WOOL:10}{plm}
#'
#' @keywords htest
#' @examples
#'
#' data("EmplUK", package = "plm")
#' pwartest(log(emp) ~ log(wage) + log(capital), data = EmplUK)
#'
#' # pass argument 'type' to vcovHC used in test
#' pwartest(log(emp) ~ log(wage) + log(capital), data = EmplUK, type = "HC3")
#'
#'
pwartest <- function(x, ...) {
UseMethod("pwartest")
}
#' @rdname pwartest
#' @export
pwartest.formula <- function(x, data, ...) {
## small-sample serial correlation test for FE models
## ref.: Wooldridge (2002/2010) 10.5.4
cl <- match.call(expand.dots = TRUE)
if (is.null(cl$model)) cl$model <- "within"
if (cl$model != "within") stop("pwartest only relevant for within models")
if (names(cl)[3L] == "") names(cl)[3L] <- "data"
names(cl)[2L] <- "formula"
m <- match(plm.arg, names(cl), 0)
cl <- cl[c(1L, m)]
cl[[1L]] <- quote(plm)
plm.model <- eval(cl, parent.frame())
pwartest(plm.model, ...)
}
#' @rdname pwartest
#' @export
pwartest.panelmodel <- function(x, ...) {
mod.nam <- describe(x, "model")
if(mod.nam != "within") stop(paste0("pwartest only relevant for \"within\" ",
"models, but model = \"", mod.nam, "\""))
FEres <- x$residuals
data <- model.frame(x)
## this is a bug fix for incorrect naming of the "data" attr.
## for the pseries in pdata.frame()
attr(FEres, "data") <- NULL
N <- length(FEres)
FEres.1 <- c(NA, FEres[seq_len(N-1)])
xindex <- unclass(attr(data, "index")) # unclass for speed
id <- xindex[[1L]]
time <- xindex[[2L]]
lagid <- as.numeric(id) - c(NA, as.numeric(id)[seq_len(N-1)])
FEres.1[lagid != 0] <- NA
data <- data.frame(id, time, FEres = unclass(FEres), FEres.1 = unclass(FEres.1))
names(data)[c(1L, 2L)] <- c("id", "time")
data <- na.omit(data)
# calc. auxiliary model
auxmod <- plm(FEres ~ FEres.1, data = data, model = "pooling", index = c("id", "time"))
## calc. theoretical rho under H0: no serial corr. in errors
t. <- pdim(x)$nT$T
rho.H0 <- -1/(t.-1)
myH0 <- paste("FEres.1 = ", as.character(rho.H0), sep="")
## test H0: rho=rho.H0 with HAC
myvcov <- function(x) vcovHC(x, method = "arellano", ...) # more params may be passed via ellipsis
# calc F stat with restriction rho.H0 and robust vcov
FEARstat <- ((coef(auxmod)["FEres.1"] - rho.H0)/sqrt(myvcov(auxmod)["FEres.1", "FEres.1"]))^2
names(FEARstat) <- "F"
df1 <- c("df1" = 1)
df2 <- c("df2" = df.residual(auxmod))
pFEARstat <- pf(FEARstat, df1 = df1, df2 = df2, lower.tail = FALSE)
## insert usual htest features
RVAL <- list(statistic = FEARstat,
parameter = c(df1, df2),
p.value = pFEARstat,
method = "Wooldridge's test for serial correlation in FE panels",
alternative = "serial correlation",
data.name = paste(deparse(substitute(x))))
class(RVAL) <- "htest"
return(RVAL)
}
## Bera, Sosa-Escudero and Yoon type LM test for random effects
## under serial correlation (H0: no random effects) or the inverse;
## test="ar": serial corr. test robust vs. RE
## test="re": RE test robust vs. serial corr.
## test="j": joint test for serial corr. and random effects
# Reference for the _balanced_ tests="ar"|"re":
# Bera/Sosa-Escudero/Yoon (2001), Tests for the error component model in the presence of local misspecifcation,
# Journal of Econometrics 101 (2001), pp. 1-23.
#
# for original (balanced) test="j": Baltagi/Li (1991), A joint test for serial correlation and random individual effects,
# Statistics & Probability Letters 11 (1991), pp. 277-280.
#
# Reference for _un_balanced versions of all three tests (boil down to the balanced versions for balanced panels):
# Sosa-Escudero/Bera (2008), Tests for unbalanced error-components models under local misspecification,
# The Stata Journal (2008), Vol. 8, Number 1, pp. 68-78.
#
# Concise treatment of only _balanced_ tests in
# Baltagi (2005), Econometric Analysis of Panel Data, 3rd edition, pp. 96-97
# or Baltagi (2013), Econometric Analysis of Panel Data, 5th edition, pp. 108.
#
#
## Implementation follows the formulae for unbalanced panels, which reduce for balanced data to the formulae for balanced panels.
##
## Notation in code largely follows Sosa-Escudero/Bera (2008) (m in Sosa-Escudero/Bera (2008) is total number of observations -> N_obs)
## NB: Baltagi's book matrix A is slightly different defined: A in Baltagi is -A in Sosa-Escudera/Bera (2008)
#' Bera, Sosa-Escudero and Yoon Locally--Robust Lagrange Multiplier
#' Tests for Panel Models and Joint Test by Baltagi and Li
#'
#' Test for residual serial correlation (or individual random effects)
#' locally robust vs. individual random effects (serial correlation)
#' for panel models and joint test of serial correlation and the
#' random effect specification by Baltagi and Li.
#'
#' These Lagrange multiplier tests are robust vs. local
#' misspecification of the alternative hypothesis, i.e., they test the
#' null of serially uncorrelated residuals against AR(1) residuals in
#' a pooling model, allowing for local departures from the assumption
#' of no random effects; or they test the null of no random effects
#' allowing for local departures from the assumption of no serial
#' correlation in residuals. They use only the residuals of the
#' pooled OLS model and correct for local misspecification as outlined
#' in \insertCite{BERA:SOSA:YOON:01;textual}{plm}.
#'
#' For `test = "re"`, the default (`re.normal = TRUE`) is to compute
#' a one-sided test which is expected to lead to a more powerful test
#' (asymptotically N(0,1) distributed). Setting `re.normal = FALSE` gives
#' the two-sided test (asymptotically chi-squared(2) distributed). Argument
#' `re.normal` is irrelevant for all other values of `test`.
#'
#' The joint test of serial correlation and the random effect
#' specification (`test = "j"`) is due to
#' \insertCite{BALT:LI:91;textual}{plm} (also mentioned in
#' \insertCite{BALT:LI:95;textual}{plm}, pp. 135--136) and is added
#' for convenience under this same function.
#'
#' The unbalanced version of all tests are derived in
#' \insertCite{SOSA:BERA:08;textual}{plm}. The functions implemented
#' are suitable for balanced as well as unbalanced panel data sets.
#'
#' A concise treatment of the statistics for only balanced panels is
#' given in \insertCite{BALT:13;textual}{plm}, p. 108.
#'
#' Here is an overview of how the various values of the `test`
#' argument relate to the literature:
#'
#' \itemize{ \item `test = "ar"`: \itemize{ \item \eqn{RS*_{\rho}} in Bera
#' et al. (2001), p. 9 (balanced) \item \eqn{LM*_{\rho}} in Baltagi (2013), p.
#' 108 (balanced) \item \eqn{RS*_{\lambda}} in Sosa-Escudero/Bera (2008), p. 73
#' (unbalanced) }
#'
#' \item `test = "re", re.normal = TRUE` (default) (one-sided test,
#' asymptotically N(0,1) distributed): \itemize{ \item \eqn{RSO*_{\mu}} in Bera
#' et al. (2001), p. 11 (balanced) \item \eqn{RSO*_{\mu}} in Sosa-Escudero/Bera
#' (2008), p. 75 (unbalanced) }
#'
#' \item `test = "re", re.normal = FALSE` (two-sided test, asymptotically
#' chi-squared(2) distributed): \itemize{ \item \eqn{RS*_{\mu}} in Bera et al.
#' (2001), p. 7 (balanced) \item \eqn{LM*_{\mu}} in Baltagi (2013), p. 108
#' (balanced) \item \eqn{RS*_{\mu}} in Sosa-Escudero/Bera (2008), p. 73
#' (unbalanced) }
#'
#' \item `test = "j"`: \itemize{ \item \eqn{RS_{\mu\rho}} in Bera et al.
#' (2001), p. 10 (balanced) \item \eqn{LM} in Baltagi/Li (2001), p. 279
#' (balanced) \item \eqn{LM_{1}} in Baltagi and Li (1995), pp. 135--136
#' (balanced) \item \eqn{LM1} in Baltagi (2013), p. 108 (balanced) \item
#' \eqn{RS_{\lambda\rho}} in Sosa-Escudero/Bera (2008), p. 74 (unbalanced) } }
#'
#' @aliases pbsytest
#' @param x an object of class `formula` or of class `panelmodel`,
#' @param data a `data.frame`,
#' @param test a character string indicating which test to perform:
#' first--order serial correlation (`"ar"`), random effects (`"re"`)
#' or joint test for either of them (`"j"`),
#' @param re.normal logical, only relevant for `test = "re"`: `TRUE`
#' (default) computes the one-sided `"re"` test, `FALSE` the
#' two-sided test (see also Details); not relevant for other values of
#' `test` and, thus, should be `NULL`,
#' @param \dots further arguments.
#' @return An object of class `"htest"`.
#' @export
#' @author Giovanni Millo (initial implementation) & Kevin Tappe (extension to
#' unbalanced panels)
#' @seealso [plmtest()] for individual and/or time random effects
#' tests based on a correctly specified model; [pbltest()],
#' [pbgtest()] and [pdwtest()] for serial correlation tests
#' in random effects models.
#' @references
#'
#' \insertRef{BERA:SOSA:YOON:01}{plm}
#'
#' \insertRef{BALT:13}{plm}
#'
#' \insertRef{BALT:LI:91}{plm}
#'
#' \insertRef{BALT:LI:95}{plm}
#'
#' \insertRef{SOSA:BERA:08}{plm}
#'
#' @keywords htest
#'
#' @examples
#'
#' ## Bera et. al (2001), p. 13, table 1 use
#' ## a subset of the original Grunfeld
#' ## data which contains three errors -> construct this subset:
#' data("Grunfeld", package = "plm")
#' Grunsubset <- rbind(Grunfeld[1:80, ], Grunfeld[141:160, ])
#' Grunsubset[Grunsubset$firm == 2 & Grunsubset$year %in% c(1940, 1952), ][["inv"]] <- c(261.6, 645.2)
#' Grunsubset[Grunsubset$firm == 2 & Grunsubset$year == 1946, ][["capital"]] <- 232.6
#'
#' ## default is AR testing (formula interface)
#' pbsytest(inv ~ value + capital, data = Grunsubset, index = c("firm", "year"))
#' pbsytest(inv ~ value + capital, data = Grunsubset, index = c("firm", "year"), test = "re")
#' pbsytest(inv ~ value + capital, data = Grunsubset, index = c("firm", "year"),
#' test = "re", re.normal = FALSE)
#' pbsytest(inv ~ value + capital, data = Grunsubset, index = c("firm", "year"), test = "j")
#'
#' ## plm interface
#' mod <- plm(inv ~ value + capital, data = Grunsubset, model = "pooling")
#' pbsytest(mod)
#'
pbsytest <- function (x, ...) {
UseMethod("pbsytest")
}
#' @rdname pbsytest
#' @export
pbsytest.formula <- function(x, data, ..., test = c("ar", "re", "j"), re.normal = if (test == "re") TRUE else NULL) {
######### from here generic testing interface from
######### plm to my code
if (length(test) == 1L) test <- tolower(test) # for backward compatibility: allow upper case
test <- match.arg(test)
cl <- match.call(expand.dots = TRUE)
if (is.null(cl$model)) cl$model <- "pooling"
if (cl$model != "pooling") stop("pbsytest only relevant for pooling models")
names(cl)[2L] <- "formula"
if (names(cl)[3L] == "") names(cl)[3L] <- "data"
m <- match(plm.arg, names(cl), 0)
cl <- cl[c(1, m)]
cl[[1L]] <- as.name("plm")
plm.model <- eval(cl, parent.frame())
pbsytest(plm.model, test = test, re.normal = re.normal, ...)
}
#' @rdname pbsytest
#' @export
pbsytest.panelmodel <- function(x, test = c("ar", "re", "j"), re.normal = if (test == "re") TRUE else NULL, ...) {
test <- match.arg(test)
if (describe(x, "model") != "pooling") stop("pbsytest only relevant for pooling models")
# interface check for argument re.normal
if (test != "re" && !is.null(re.normal)) {
stop("argument 're.normal' only relevant for test = \"re\", set re.normal = NULL for other tests")}
poolres <- x$residuals
data <- model.frame(x)
## extract indices
index <- attr(data, "index")
iindex <- index[[1L]]
tindex <- index[[2L]]
## till here.
## ordering here if needed.
## this needs ordering of obs. on time, regardless
## whether before that on groups or after
## and numerosity check
## order by group, then time
oo <- order(iindex,tindex)
ind <- iindex[oo]
tind <- tindex[oo]
poolres <- poolres[oo]
pdim <- pdim(x)
n <- max(pdim$Tint$nt) ## det. number of groups
T_i <- pdim$Tint$Ti
N_t <- pdim$Tint$nt
t <- max(T_i) ## det. max. group numerosity
N_obs <- pdim$nT$N ## det. total number of obs. (m in Sosa-Escudera/Bera (2008), p. 69)
## calc. matrices A and B:
# Sosa-Escudera/Bera (2008), p. 74
# Baltagi (2013), p. 108 defines A=(S1/S2)-1 and, thus, has slightly different formulae [opposite sign in Baltagi]
S1 <- as.numeric(crossprod(tapply(poolres,ind,sum))) # == sum(tapply(poolres,ind,sum)^2)
S2 <- as.numeric(crossprod(poolres)) # == sum(poolres^2)
A <- 1 - S1/S2
unind <- unique(ind)
length.unind <- length(unind)
uu <- uu1 <- rep(NA_real_, length.unind) # pre-allocate
poolres.list <- split(poolres, ind)
for(i in seq_len(length.unind)) {
u.t <- poolres.list[[i]]
u.t.1 <- u.t[-length(u.t)]
u.t <- u.t[-1L]
uu[i] <- crossprod(u.t)
uu1[i] <- crossprod(u.t, u.t.1)
}
B <- sum(uu1)/sum(uu)
a <- as.numeric(crossprod(T_i)) # Sosa-Escudera/Bera (2008), p. 69
switch(test,
"ar" = {
# RS*_lambda from Sosa-Escudero/Bera (2008), p. 73 (unbalanced formula)
stat <- (B + (((N_obs - n)/(a - N_obs)) * A))^2 * (((a - N_obs)*N_obs^2) / ((N_obs - n)*(a - 3*N_obs + 2*n)))
df <- c(df = 1)
names(stat) <- "chisq"
pstat <- pchisq(stat, df = df, lower.tail = FALSE)
tname <- "Bera, Sosa-Escudero and Yoon locally robust test"
myH0_alt <- "AR(1) errors sub random effects"
},
"re" = {
if(re.normal) {
# RSO*_mu from Sosa-Escudero/Bera (2008), p. 75 (unbalanced formula), normally distributed
stat <- -sqrt( (N_obs^2) / (2*(a - 3*N_obs + 2*n))) * (A + 2*B)
names(stat) <- "z"
df <- NULL
pstat <- pnorm(stat, lower.tail = FALSE)
tname <- "Bera, Sosa-Escudero and Yoon locally robust test (one-sided)"
myH0_alt <- "random effects sub AR(1) errors"
} else {
# RS*_mu from Sosa-Escudero/Bera (2008), p. 73 (unbalanced formula), chisq(1)
stat <- ((N_obs^2) * (A + 2*B)^2) / (2*(a - 3*N_obs + 2*n))
names(stat) <- "chisq"
df <- c(df = 1)
pstat <- pchisq(stat, df = df, lower.tail = FALSE)
tname <- "Bera, Sosa-Escudero and Yoon locally robust test (two-sided)"
myH0_alt <- "random effects sub AR(1) errors"
}
},
"j" = {
# RS_lambda_mu in Sosa-Escudero/Bera (2008), p. 74 (unbalanced formula)
stat <- N_obs^2 * ( ((A^2 + 4*A*B + 4*B^2) / (2*(a - 3*N_obs + 2*n))) + (B^2/(N_obs - n)))
# Degrees of freedom in the joint test (test="j") of Baltagi/Li (1991) are 2 (chisquare(2) distributed),
# see Baltagi/Li (1991), p. 279 and again in Baltagi/Li (1995), p. 136
df <- c(df = 2)
names(stat) <- "chisq"
pstat <- pchisq(stat, df = df, lower.tail = FALSE)
tname <- "Baltagi and Li AR-RE joint test"
myH0_alt <- "AR(1) errors or random effects"
}
) # END switch
dname <- paste(deparse(substitute(formula)))
RVAL <- list(statistic = stat,
parameter = df,
method = tname,
alternative = myH0_alt,
p.value = pstat,
data.name = dname)
class(RVAL) <- "htest"
return(RVAL)
}
#' Durbin--Watson Test for Panel Models
#'
#' Test of serial correlation for (the idiosyncratic component of) the errors
#' in panel models.
#'
#' This Durbin--Watson test uses the auxiliary model on
#' (quasi-)demeaned data taken from a model of class `plm` which may
#' be a `pooling` (the default), `random` or `within` model. It
#' performs a Durbin--Watson test (using `dwtest` from package
#' \CRANpkg{lmtest} on the residuals of the (quasi-)demeaned model,
#' which should be serially uncorrelated under the null of no serial
#' correlation in idiosyncratic errors. The function takes the
#' demeaned data, estimates the model and calls `dwtest`. Thus, this
#' test does not take the panel structure of the residuals into
#' consideration; it shall not be confused with the generalized
#' Durbin-Watson test for panels in `pbnftest`.
#'
#' @aliases pdwtest
#' @importFrom lmtest dwtest
#' @param x an object of class `"panelmodel"` or of class
#' `"formula"`,
#' @param data a `data.frame`,
#' @param \dots further arguments to be passed on to `dwtest`,
#' e.g., `alternative`, see [lmtest::dwtest()] for
#' further details.
#' @return An object of class `"htest"`.
#' @export
#' @author Giovanni Millo
#' @seealso [lmtest::dwtest()] for the Durbin--Watson test
#' in \CRANpkg{lmtest}, [pbgtest()] for the analogous
#' Breusch--Godfrey test for panel models,
#' [lmtest::bgtest()] for the Breusch--Godfrey test for
#' serial correlation in the linear model. [pbltest()],
#' [pbsytest()], [pwartest()] and
#' [pwfdtest()] for other serial correlation tests for
#' panel models.
#'
#' For the Durbin-Watson test generalized to panel data models see
#' [pbnftest()].
#' @references
#'
#' \insertRef{DURB:WATS:50}{plm}
#'
#' \insertRef{DURB:WATS:51}{plm}
#'
#' \insertRef{DURB:WATS:71}{plm}
#'
#' \insertRef{WOOL:02}{plm}
#'
#' \insertRef{WOOL:10}{plm}
#'
#' @keywords htest
#' @examples
#'
#' data("Grunfeld", package = "plm")
#' g <- plm(inv ~ value + capital, data = Grunfeld, model="random")
#' pdwtest(g)
#' pdwtest(g, alternative="two.sided")
#' ## formula interface
#' pdwtest(inv ~ value + capital, data=Grunfeld, model="random")
#'
pdwtest <- function (x, ...) {
UseMethod("pdwtest")
}
#' @rdname pdwtest
#' @export
pdwtest.panelmodel <- function(x, ...) {
## does not respect panel structure:
## residual serial correlation test based on the residuals of the demeaned
## model and passed on to lmtest::dwtest() for the original DW test
## approach justified in Wooldridge (2002/2010), Econometric Analysis of Cross Section and Panel Data, p. 288/328.
##
## For the Bhargava et al. (1982) generalized DW test see pbnftest()
## structure:
## 1: take demeaned data from 'plm' object
## 2: est. auxiliary model by OLS on demeaned data
## 3: apply lmtest::dwtest() to auxiliary model and return the result
model <- describe(x, "model")
effect <- describe(x, "effect")
theta <- x$ercomp$theta
## retrieve demeaned data
demX <- model.matrix(x, model = model, effect = effect, theta = theta, cstcovar.rm = "all")
demy <- pmodel.response(model.frame(x), model = model, effect = effect, theta = theta)
## lmtest::dwtest on the demeaned model:
## ARtest is the return value of lmtest::dwtest, exception made for the method attribute
dots <- list(...)
order.by <- if(is.null(dots$order.by)) NULL else dots$order.by
alternative <- if(is.null(dots$alternative)) "greater" else dots$alternative
iterations <- if(is.null(dots$iterations)) 15 else dots$iterations
exact <- if(is.null(dots$exact)) NULL else dots$exact
tol <- if(is.null(dots$tol)) 1e-10 else dots$tol
demy <- remove_pseries_features(demy) # needed as lmtest::dwtest cannot cope with pseries
auxformula <- demy ~ demX - 1
lm.mod <- lm(auxformula)
ARtest <- dwtest(lm.mod, order.by = order.by,
alternative = alternative,
iterations = iterations, exact = exact, tol = tol)
# overwrite elements of the values produced by lmtest::dwtest
ARtest$method <- "Durbin-Watson test for serial correlation in panel models"
ARtest$alternative <- "serial correlation in idiosyncratic errors"
ARtest$data.name <- data.name(x)
return(ARtest)
}
#' @rdname pdwtest
#' @export
pdwtest.formula <- function(x, data, ...) {
## formula method for pdwtest;
## defaults to pooling model
cl <- match.call(expand.dots = TRUE)
if (is.null(cl$model)) cl$model <- "pooling"
names(cl)[2L] <- "formula"
if (names(cl)[3L] == "") names(cl)[3L] <- "data"
m <- match(plm.arg, names(cl), 0)
cl <- cl[c(1L, m)]
cl[[1L]] <- quote(plm)
plm.model <- eval(cl, parent.frame())
pdwtest(plm.model, ...)
}
## pbnftest references:
## * balanced and consecutive:
## Bhargava/Franzini/Narendranathan (1982), Serial Correlation and the Fixed Effects Model, Review of Economic Studies (1982), XLIX(4), pp. 533-549.
## (also in Baltagi (2005/2013), p. 98-99/109-110 for FE application)
## * unbalanced and/or non-consecutive: modified BNF statistic and LBI statistic
## Baltagi/Wu (1999), Unequally spaced panel data regressions with AR(1) disturbances. Econometric Theory, 15(6), pp. 814-823.
## (an example is also in Baltagi (2005/2013), p. 90/101)
#' Modified BNF--Durbin--Watson Test and Baltagi--Wu's LBI Test for Panel
#' Models
#'
#' Tests for AR(1) disturbances in panel models.
#'
#' The default, `test = "bnf"`, gives the (modified) BNF statistic,
#' the generalised Durbin-Watson statistic for panels. For balanced
#' and consecutive panels, the reference is
#' Bhargava/Franzini/Narendranathan (1982). The modified BNF is given
#' for unbalanced and/or non-consecutive panels (d1 in formula 16 of
#' \insertCite{BALT:WU:99;textual}{plm}).
#'
#' `test = "lbi"` yields Baltagi--Wu's LBI statistic
#' \insertCite{BALT:WU:99}{plm}, the locally best invariant test which
#' is based on the modified BNF statistic.
#'
#' No specific variants of these tests are available for random effect models.
#' As the within estimator is consistent also under the random effects
#' assumptions, the test for random effect models is performed by taking the
#' within residuals.
#'
#' No p-values are given for the statistics as their distribution is
#' quite difficult. \insertCite{BHAR:FRAN:NARE:82;textual}{plm} supply
#' tabulated bounds for p = 0.05 for the balanced case and consecutive
#' case.
#'
#' For large N, \insertCite{BHAR:FRAN:NARE:82}{plm} suggest it is
#' sufficient to check whether the BNF statistic is < 2 to test
#' against positive serial correlation.
#'
#' @aliases pbnftest
#' @param x an object of class `"panelmodel"` or of class `"formula"`,
#' @param test a character indicating the test to be performed, either
#' `"bnf"` or `"lbi"` for the (modified) BNF statistic or
#' Baltagi--Wu's LBI statistic, respectively,
#' @param data a `data.frame` (only relevant for formula interface),
#' @param model a character indicating on which type of model the test
#' shall be performed (`"pooling"`, `"within"`, `"random"`, only
#' relevant for formula interface),
#' @param \dots only relevant for formula interface: further arguments
#' to specify the model to test (arguments passed on to plm()),
#' e.g., `effect`.
#' @return An object of class `"htest"`.
#' @export
#' @author Kevin Tappe
#' @seealso [pdwtest()] for the original Durbin--Watson test using
#' (quasi-)demeaned residuals of the panel model without taking
#' the panel structure into account. [pbltest()], [pbsytest()],
#' [pwartest()] and [pwfdtest()] for other serial correlation
#' tests for panel models.
#' @references
#'
#' \insertRef{BALT:13}{plm}
#'
#' \insertRef{BALT:WU:99}{plm}
#'
#' \insertRef{BHAR:FRAN:NARE:82}{plm}
#'
#' @keywords htest
#' @examples
#'
#' data("Grunfeld", package = "plm")
#'
#' # formula interface, replicate Baltagi/Wu (1999), table 1, test case A:
#' data_A <- Grunfeld[!Grunfeld[["year"]] %in% c("1943", "1944"), ]
#' pbnftest(inv ~ value + capital, data = data_A, model = "within")
#' pbnftest(inv ~ value + capital, data = data_A, test = "lbi", model = "within")
#'
#' # replicate Baltagi (2013), p. 101, table 5.1:
#' re <- plm(inv ~ value + capital, data = Grunfeld, model = "random")
#' pbnftest(re)
#' pbnftest(re, test = "lbi")
#'
pbnftest <- function (x, ...) {
UseMethod("pbnftest")
}
#' @rdname pbnftest
#' @export
pbnftest.panelmodel <- function(x, test = c("bnf", "lbi"), ...) {
test <- match.arg(test)
# no test for random effects available: take FE as also consistent (Verbeek (2004, 2nd edition), p. 358)
model <- describe(x, "model")
if (model == "random") x <- update(x, model = "within")
consec <- all(is.pconsecutive(x))
balanced <- is.pbalanced(x)
# residuals are now class pseries, so diff.pseries is used and the
# differences are computed within observational units (not across as
# it would be the case if base::diff() is used and as it is done for
# lm-objects) NAs are introduced by the differencing as one
# observation is lost per observational unit
if (!inherits(residuals(x), "pseries")) stop("pbnftest internal error: residuals are not of class \"pseries\"") # check to be safe: need pseries
ind <- unclass(index(x))[[1L]] # unclass for speed
obs1 <- !duplicated(ind) # first ob of each individual
obsn <- !duplicated(ind, fromLast = TRUE) # last ob of each individual
#### d1, d2, d3, d4 as in Baltagi/Wu (1999), p. 819 formula (16)
res_crossprod <- as.numeric(crossprod(residuals(x))) # denominator
## d1 consists of two parts:
## d1.1: BNF statistic (sum of squared differenced residuals of consecutive time periods per individual)
## d1.2: sum of squared "later" residuals (not differenced) surrounded by gaps in time periods
## typo in Baltagi/Wu (1999) for d1: index j starts at j = 2, not j = 1
res_diff <- diff(residuals(x), shift = "time")
d1.1 <- sum(res_diff^2, na.rm = T) / res_crossprod # == BNF (1982), formula (4)
d1.2_contrib <- as.logical(is.na(res_diff) - obs1)
d1.2 <- as.numeric(crossprod(residuals(x)[d1.2_contrib])) / res_crossprod
d1 <- d1.1 + d1.2 # == modified BNF statistic = d1 in Baltagi/Wu (1999) formula (16)
# [reduces to original BNF in case of balanced and consecutive data (d1.2 is zero)]
if (test == "bnf") {
stat <- d1
names(stat) <- "DW"
method <- "Bhargava/Franzini/Narendranathan Panel Durbin-Watson Test"
if (!consec || !balanced) method <- paste0("modified ", method)
}
if (test == "lbi") {
## d2 contains the "earlier" obs surrounded by gaps in time periods
d2_contrib <- as.logical(is.na(lead(residuals(x), shift = "time")) - obsn)
d2 <- as.numeric(crossprod(residuals(x)[d2_contrib])) / res_crossprod
## d3, d4: sum squared residual of first/last time period for all individuals / crossprod(residuals)
d3 <- as.numeric(crossprod(residuals(x)[obs1])) / res_crossprod
d4 <- as.numeric(crossprod(residuals(x)[obsn])) / res_crossprod
stat <- d1 + d2 + d3 + d4
names(stat) <- "LBI"
method <- "Baltagi/Wu LBI Test for Serial Correlation in Panel Models"
}
result <- list(statistic = stat,
# p.value = NA, # none
method = method,
alternative = "serial correlation in idiosyncratic errors",
data.name = data.name(x))
class(result) <- "htest"
return(result)
}
#' @rdname pbnftest
#' @export
pbnftest.formula <- function(x, data, test = c("bnf", "lbi"), model = c("pooling", "within", "random"), ...) {
## formula method for pdwtest;
## defaults to pooling model
test <- match.arg(test)
model <- match.arg(model)
cl <- match.call(expand.dots = TRUE)
if (is.null(model)) model <- "pooling"
names(cl)[2L] <- "formula"
if (names(cl)[3L] == "") names(cl)[3L] <- "data"
m <- match(plm.arg, names(cl), 0)
cl <- cl[c(1L, m)]
cl[[1L]] <- quote(plm)
plm.model <- eval(cl, parent.frame())
pbnftest(plm.model, test = test)
}
######### Baltagi and Li's LM_rho|mu ########
## ex Baltagi and Li (1995) Testing AR(1) against MA(1)...,
## JE 68, 133-151, test statistic (one-sided) is LM_4;
## see also idem (1997), Monte Carlo results...,
## Annales d'Econometrie et Statistique 48, formula (8)
## from version 2: disposes of Kronecker products,
## thus much faster and feasible on large NT (original
## is already infeasible for NT>3000, this takes 10''
## on N=3000, T=10 and even 20000x10 (55'') is no problem;
## lme() hits the memory limit at ca. 20000x20)
#' Baltagi and Li Serial Dependence Test For Random Effects Models
#'
#' \insertCite{BALT:LI:95;textual}{plm}'s Lagrange multiplier test for
#' AR(1) or MA(1) idiosyncratic errors in panel models with random
#' effects.
#'
#' This is a Lagrange multiplier test for the null of no serial
#' correlation, against the alternative of either an AR(1) or a MA(1)
#' process, in the idiosyncratic component of the error term in a
#' random effects panel model (as the analytical expression of the
#' test turns out to be the same under both alternatives,
#' \insertCite{@see @BALT:LI:95 and @BALT:LI:97}{plm}. The
#' `alternative` argument, defaulting to `twosided`, allows testing
#' for positive serial correlation only, if set to `onesided`.
#'
#' @aliases pbltest
#' @importFrom nlme lme
#' @param x a model formula or an estimated random--effects model of
#' class `plm` ,
#' @param data for the formula interface only: a `data.frame`,
#' @param alternative one of `"twosided"`,
#' `"onesided"`. Selects either \eqn{H_A: \rho \neq 0} or
#' \eqn{H_A: \rho = 0} (i.e., the Normal or the Chi-squared
#' version of the test),
#' @param index the index of the `data.frame`,
#' @param \dots further arguments.
#' @return An object of class `"htest"`.
#' @export
#' @author Giovanni Millo
#' @seealso [pdwtest()], [pbnftest()], [pbgtest()],
#' [pbsytest()], [pwartest()] and
#' [pwfdtest()] for other serial correlation tests for
#' panel models.
#' @references
#'
#' \insertRef{BALT:LI:95}{plm}
#'
#' \insertRef{BALT:LI:97}{plm}
#'
#' @keywords htest
#' @examples
#'
#' data("Grunfeld", package = "plm")
#'
#' # formula interface
#' pbltest(inv ~ value + capital, data = Grunfeld)
#'
#' # plm interface
#' re_mod <- plm(inv ~ value + capital, data = Grunfeld, model = "random")
#' pbltest(re_mod)
#' pbltest(re_mod, alternative = "onesided")
#'
pbltest <- function (x, ...)
{
UseMethod("pbltest")
}
#' @rdname pbltest
#' @export
pbltest.formula <- function(x, data, alternative = c("twosided", "onesided"), index = NULL, ...) {
## this version (pbltest0) based on a "formula, pdataframe" interface
## reduce X to model matrix value (no NAs)
X <- model.matrix(x, data = data)
## reduce data accordingly
data <- data[which(row.names(data) %in% row.names(X)), ]
if (! inherits(data, "pdata.frame"))
data <- pdata.frame(data, index = index)
## need name of individual index
gindex <- dimnames(attr(data, "index"))[[2L]][1L]
## make random effects formula
rformula <- NULL
eval(parse(text = paste("rformula <- ~1|", gindex, sep = "")))
## est. MLE model
mymod <- lme(x, data = data, random = rformula, method = "ML")
nt. <- mymod$dims$N
n. <- as.numeric(mymod$dims$ngrps[1L])
t. <- nt./n.
Jt <- matrix(1, ncol = t., nrow = t.)/t.
Et <- diag(1, t.) - Jt
## make 'bidiagonal' matrix (see BL, p.136)
G <- matrix(0, ncol = t., nrow = t.)
for(i in 2:t.) {
G[i-1, i] <- 1
G[i, i-1] <- 1
}
## retrieve composite (=lowest level) residuals
uhat <- residuals(mymod, level = 0)
## sigma2.e and sigma2.1 as in BL
## break up residuals by group to get rid of Kronecker prod.
## data have to be balanced and sorted by group/time, so this works
## pre-allocate
uhat.i <- vector("list", n.)
s2e <- rep(NA, n.)
s21 <- rep(NA, n.)
for(i in seq_len(n.)) {
uhat.i[[i]] <- u.i <- uhat[t.*(i-1)+1:t.]
s2e[i] <- as.numeric(tcrossprod(crossprod(u.i, Et), u.i))
s21[i] <- as.numeric(tcrossprod(crossprod(u.i, Jt), u.i))
}
sigma2.e <- sum(s2e) / (n.*(t.-1))
sigma2.1 <- sum(s21) / n.
## calc. score under the null:
star1 <- (Jt/sigma2.1 + Et/sigma2.e) %*% G %*% (Jt/sigma2.1 + Et/sigma2.e)
star2 <- rep(NA, n.)
## again, do this group by group to avoid Kronecker prod.
for(i in seq_len(n.)) {
star2[i] <- as.numeric(crossprod(uhat.i[[i]], star1) %*% uhat.i[[i]])
}
star2 <- sum(star2)
Drho <- (n.*(t.-1)/t.) * (sigma2.1-sigma2.e)/sigma2.1 + sigma2.e/2 * star2
## star2 is (crossprod(uhat, kronecker(In, star1)) %*% uhat)
## components for the information matrix
a <- (sigma2.e - sigma2.1)/(t.*sigma2.1)
j.rr <- n. * (2 * a^2 * (t.-1)^2 + 2*a*(2*t.-3) + (t.-1))
j.12 <- n.*(t.-1)*sigma2.e / sigma2.1^2
j.13 <- n.*(t.-1)/t. * sigma2.e * (1/sigma2.1^2 - 1/sigma2.e^2)
j.22 <- (n. * t.^2) / (2 * sigma2.1^2)
j.23 <- (n. * t.) / (2 * sigma2.1^2)
j.33 <- (n./2) * (1/sigma2.1^2 + (t.-1)/sigma2.e^2)
## build up information matrix
Jmat <- matrix(nrow = 3L, ncol = 3L)
Jmat[1L, ] <- c(j.rr, j.12, j.13)
Jmat[2L, ] <- c(j.12, j.22, j.23)
Jmat[3L, ] <- c(j.13, j.23, j.33)
J11 <- n.^2 * t.^2 * (t.-1) / (det(Jmat) * 4*sigma2.1^2 * sigma2.e^2)
## this is the same as J11 <- solve(Jmat)[1,1], see BL page 73
switch(match.arg(alternative),
"onesided" = {
LMr.m <- Drho * sqrt(J11)
pval <- pnorm(LMr.m, lower.tail = FALSE)
names(LMr.m) <- "z"
method1 <- "one-sided"
method2 <- "H0: rho = 0, HA: rho > 0"
parameter <- NULL
},
"twosided" = {
LMr.m <- Drho^2 * J11
pval <- pchisq(LMr.m, df = 1, lower.tail = FALSE)
names(LMr.m) <- "chisq"
parameter <- c(df = 1)
method1 <- "two-sided"
method2 <- "H0: rho = 0, HA: rho != 0"
}
)
dname <- paste(deparse(substitute(x)))
method <- paste("Baltagi and Li", method1, "LM test")
alternative <- "AR(1)/MA(1) errors in RE panel model"
res <- list(statistic = LMr.m,
p.value = pval,
method = method,
alternative = alternative,
parameter = parameter,
data.name = dname)
class(res) <- "htest"
res
}
#' @rdname pbltest
#' @export
pbltest.plm <- function(x, alternative = c("twosided", "onesided"), ...) {
# only continue if random effects model
if (describe(x, "model") != "random") stop("Test is only for random effects models.")
# call pbltest.formula the right way
pbltest.formula(formula(x$formula), data = cbind(index(x), x$model),
index = names(index(x)), alternative = alternative, ...)
}
#' Wooldridge first--difference--based test for AR(1) errors in levels
#' or first--differenced panel models
#'
#' First--differencing--based test of serial correlation for (the idiosyncratic
#' component of) the errors in either levels or first--differenced panel
#' models.
#'
#' As \insertCite{WOOL:10;textual}{plm}, Sec. 10.6.3 observes, if the
#' idiosyncratic errors in the model in levels are uncorrelated (which
#' we label hypothesis `"fe"`), then the errors of the model in first
#' differences (FD) must be serially correlated with
#' \eqn{cor(\hat{e}_{it}, \hat{e}_{is}) = -0.5} for each \eqn{t,s}. If
#' on the contrary the levels model's errors are a random walk, then
#' there must be no serial correlation in the FD errors (hypothesis
#' `"fd"`). Both the fixed effects (FE) and the first--differenced
#' (FD) estimators remain consistent under either assumption, but the
#' relative efficiency changes: FE is more efficient under `"fe"`, FD
#' under `"fd"`.
#'
#' Wooldridge (ibid.) suggests basing a test for either hypothesis on
#' a pooled regression of FD residuals on their first lag:
#' \eqn{\hat{e}_{i,t}=\alpha + \rho \hat{e}_{i,t-1} +
#' \eta_{i,t}}. Rejecting the restriction \eqn{\rho = -0.5} makes us
#' conclude against the null of no serial correlation in errors of the
#' levels equation (`"fe"`). The null hypothesis of no serial
#' correlation in differenced errors (`"fd"`) is tested in a similar
#' way, but based on the zero restriction on \eqn{\rho} (\eqn{\rho =
#' 0}). Rejecting `"fe"` favours the use of the first--differences
#' estimator and the contrary, although it is possible that both be
#' rejected.
#'
#' `pwfdtest` estimates the `fd` model (or takes an `fd` model as
#' input for the panelmodel interface) and retrieves its residuals,
#' then estimates an AR(1) `pooling` model on them. The test statistic
#' is obtained by applying a F test to the latter model to test the
#' relevant restriction on \eqn{\rho}, setting the covariance matrix
#' to `vcovHC` with the option `method="arellano"` to control for
#' serial correlation.
#'
#' Unlike the `pbgtest` and `pdwtest`, this test does not rely on
#' large--T asymptotics and has therefore good properties in ''short''
#' panels. Furthermore, it is robust to general
#' heteroskedasticity. The `"fe"` version can be used to test for
#' error autocorrelation regardless of whether the maintained
#' specification has fixed or random effects
#' \insertCite{@see @DRUK:03}{plm}.
#'
#' @aliases pwfdtest
#' @param x an object of class `formula` or a `"fd"`-model (plm
#' object),
#' @param data a `data.frame`,
#' @param h0 the null hypothesis: one of `"fd"`, `"fe"`,
#' @param \dots further arguments to be passed on to `vcovHC` (see Details
#' and Examples).
#' @return An object of class `"htest"`.
#' @export
#' @author Giovanni Millo
#' @seealso `pdwtest`, `pbgtest`, `pwartest`,
#' @references
#'
#' \insertRef{DRUK:03}{plm}
#'
#' \insertRef{WOOL:02}{plm}
#' Sec. 10.6.3, pp. 282--283.
#'
#' \insertRef{WOOL:10}{plm}
#' Sec. 10.6.3, pp. 319--320
#'
#' @keywords htest
#' @examples
#'
#' data("EmplUK" , package = "plm")
#' pwfdtest(log(emp) ~ log(wage) + log(capital), data = EmplUK)
#' pwfdtest(log(emp) ~ log(wage) + log(capital), data = EmplUK, h0 = "fe")
#'
#' # pass argument 'type' to vcovHC used in test
#' pwfdtest(log(emp) ~ log(wage) + log(capital), data = EmplUK, type = "HC3", h0 = "fe")
#'
#'
#' # same with panelmodel interface
#' mod <- plm(log(emp) ~ log(wage) + log(capital), data = EmplUK, model = "fd")
#' pwfdtest(mod)
#' pwfdtest(mod, h0 = "fe")
#' pwfdtest(mod, type = "HC3", h0 = "fe")
#'
#'
pwfdtest <- function(x, ...) {
UseMethod("pwfdtest")
}
#' @rdname pwfdtest
#' @export
pwfdtest.formula <- function(x, data, ..., h0 = c("fd", "fe")) {
cl <- match.call(expand.dots = TRUE)
if (is.null(cl$model)) cl$model <- "fd"
names(cl)[2L] <- "formula"
if (names(cl)[3L] == "") names(cl)[3L] <- "data"
m <- match(plm.arg, names(cl), 0)
cl <- cl[c(1L, m)]
cl[[1L]] <- quote(plm)
plm.model <- eval(cl, parent.frame())
pwfdtest(plm.model, ..., h0 = h0)
}
#' @rdname pwfdtest
#' @export
pwfdtest.panelmodel <- function(x, ..., h0 = c("fd", "fe")) {
## first-difference-based serial correlation test for panel models
## ref.: Wooldridge (2002/2010), par. 10.6.3
# interface check
model <- describe(x, "model")
if (model != "fd") stop(paste0("input 'x' needs to be a \"fd\" model (first-differenced model), but is \"", model, "\""))
## fetch fd residuals
FDres <- x$residuals
## indices (full length! must reduce by 1st time period)
## this is an ad-hoc solution for the fact that the 'fd' model
## carries on the full indices while losing the first time period
## fetch dimensions and adapt to those of indices
pdim <- pdim(x)
n <- pdim$nT$n
Ti_minus_one <- pdim$Tint$Ti-1
## generate new individual index: drop one observation per individual
## NB: This is based on the assumption that the estimated FD model performs
## its diff-ing row-wise (it currently does so). If the diff-ing for FD
## is changed to diff-ing based on time dimension, this part about index
## creation needs to be re-worked because more than 1 observation per
## individual can be dropped
red_id <- integer()
for(i in seq_len(n)) {
red_id <- c(red_id, rep(i, Ti_minus_one[i]))
}
# additional check
# (but should error earlier already as the FD model should be non-estimable)
if(length(red_id) == 0L)
stop("only individuals with one observation in original data: test not feasible")
# make pdata.frame for auxiliary regression: time dimension is not relevant
# as the first observation of each individual was dropped -> let time dimension
# be created (is not related to the original times anymore)
auxdata <- pdata.frame(as.data.frame(cbind(red_id, FDres)), index = "red_id")
# lag residuals by row (as the FD model diffs by row)
# NB: need to consider change to shift = "time" if behaviour of FD model is changed
auxdata[["FDres.1"]] <- lag(auxdata[["FDres"]], shift = "row")
## pooling model FDres vs. lag(FDres), with intercept (might as well do it w.o.)
auxmod <- plm(FDres ~ FDres.1, data = auxdata, model = "pooling")
switch(match.arg(h0),
"fd" = {h0des <- "differenced"
## theoretical rho under H0: no serial
## corr. in differenced errors is 0
rho.H0 <- 0},
"fe" = {h0des <- "original"
## theoretical rho under H0: no serial
## corr. in original errors is -0.5
rho.H0 <- -0.5})
## test H0: rho=rho.H0 with HAC, more params may be passed via ellipsis
myvcov <- function(x) vcovHC(x, method = "arellano", ...)
# calc F stat with restriction rho.H0 and robust vcov
FDARstat <- ((coef(auxmod)["FDres.1"] - rho.H0)/sqrt(myvcov(auxmod)["FDres.1", "FDres.1"]))^2
names(FDARstat) <- "F"
df1 <- c(df1 = 1)
df2 <- c(df2 = df.residual(auxmod))
pFDARstat <- pf(FDARstat, df1 = df1, df2 = df2, lower.tail = FALSE)
## insert usual htest features
RVAL <- list(statistic = FDARstat,
parameter = c(df1, df2),
p.value = pFDARstat,
method = "Wooldridge's first-difference test for serial correlation in panels",
alternative = paste("serial correlation in", h0des, "errors"),
data.name = paste(deparse(substitute(x))))
class(RVAL) <- "htest"
return(RVAL)
}
|