File: test_uroot.R

package info (click to toggle)
r-cran-plm 2.6-2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,032 kB
  • sloc: sh: 13; makefile: 4
file content (1294 lines) | stat: -rw-r--r-- 57,662 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
padf <- function(x, exo = c("none", "intercept", "trend"), p.approx = NULL, ...){
 # p-value approximation for tau distribution of (augmented) Dickey-Fuller test
 # as used in some panel unit root tests in purtest().
 #
 # argument 'x' must be a numeric (can be length == 1 or >= 1)
 #  
 # p-values approximation is performed by the method of MacKinnon (1994) or
 # MacKinnon (1996), the latter yielding better approximated p-values but
 # requires package 'urca'.
 # Default is NULL: check for availability of 'urca' and, if available, perform
 # MacKinnon (1996); fall back to MacKinnon (1994) if 'urca' is not available.
 # User can demand a specific method by setting the argument 'p.approx' to either
 # "MacKinnon1994" or "MacKinnon1996".

  exo <- match.arg(exo)
  
  # check if ellipsis (dots) has p.approx (could be passed from purtest()'s dots)
  # and if so, use p.approx from ellipsis
  dots <- list(...)
  if (!is.null(dots$p.approx)) p.approx <- dots$p.approx
  
  if (!is.null(p.approx) && !p.approx %in% c("MacKinnon1994", "MacKinnon1996"))
    stop(paste0("unknown argument value: p.approx = \"", p.approx, "\""))
  
  # Check if package 'urca' is available on local machine. We placed 'urca' 
  # in 'Suggests' rather than 'Imports' so that it is not an absolutely 
  # required dependency.)
  ## Procedure for pkg check for pkg in 'Suggests' as recommended in 
  ## Wickham, R packages (http://r-pkgs.had.co.nz/description.html).
  urca <- if(!requireNamespace("urca", quietly = TRUE)) FALSE else TRUE
  
  # default: if no p.approx specified by input (NULL),
  # use MacKinnon (1996) if 'urca' is available, else MacKinnon (1994)
  p.approx <- if(is.null(p.approx)) { if(urca)  "MacKinnon1996" else "MacKinnon1994" } else p.approx
  
  if (!is.null(p.approx) && p.approx == "MacKinnon1996" && !urca) {
    # catch case when user demands MacKinnon (1996) per argument but 'urca' is unavailable
    warning("method MacKinnon (1996) requested via argument 'p.approx' but requires non-installed package 'urca'; falling back to MacKinnon (1994)")
    p.approx <- "MacKinnon1994"
  }
  
  if(p.approx == "MacKinnon1996") {
    # translate exo argument to what urca::punitroot expects
    punitroot.exo <- switch (exo,
                             "none"      = "nc",
                             "intercept" = "c",
                             "trend"     = "ct")

    res <- urca::punitroot(x, N = Inf, trend = punitroot.exo) # return asymptotic value
  }
  
  if(p.approx == "MacKinnon1994") {
    # values from MacKinnon (1994), table 3, 4
    small <- matrix(c(0.6344, 1.2378, 3.2496,
                      2.1659, 1.4412, 3.8269,
                      3.2512, 1.6047, 4.9588),
                    nrow = 3, byrow = TRUE)
    small <- t(t(small) / c(1, 1, 100))
    large <- matrix(c(0.4797, 9.3557, -0.6999,  3.3066,
                      1.7339, 9.3202, -1.2745, -1.0368,
                      2.5261, 6.1654, -3.7956, -6.0285),
                    nrow = 3, byrow = TRUE)
    large <- t(t(large) / c(1, 10, 10, 100))
    limit <- c(-1.04, -1.61, -2.89)
    rownames(small) <- rownames(large) <- names(limit) <- c("none", "intercept", "trend")

    c.x.x2 <- rbind(1, x, x ^ 2)
    psmall <- colSums(small[exo, ] * c.x.x2)
    plarge <- colSums(large[exo, ] * rbind(c.x.x2, x ^ 3))
    
    res <- as.numeric(pnorm(psmall * (x <= limit[exo]) + plarge * (x > limit[exo])))
  }
  attr(res, "p.approx") <- p.approx
  return(res)
} ## END padf


## IPS (2003), table 3 for Wtbar statistic
# x1: means without time trend from table 3 in IPS (2003)
adj.ips.wtbar.x1 <- c(
  -1.504,-1.514,-1.522,-1.520,-1.526,-1.523,-1.527,-1.519,-1.524,-1.532,
  -1.488,-1.503,-1.516,-1.514,-1.519,-1.520,-1.524,-1.519,-1.522,-1.530,
  -1.319,-1.387,-1.428,-1.443,-1.460,-1.476,-1.493,-1.490,-1.498,-1.514,
  -1.306,-1.366,-1.413,-1.433,-1.453,-1.471,-1.489,-1.486,-1.495,-1.512,
  -1.171,-1.260,-1.329,-1.363,-1.394,-1.428,-1.454,-1.458,-1.470,-1.495,
      NA,    NA,-1.313,-1.351,-1.384,-1.421,-1.451,-1.454,-1.467,-1.494,
      NA,    NA,    NA,-1.289,-1.331,-1.380,-1.418,-1.427,-1.444,-1.476,
      NA,    NA,    NA,-1.273,-1.319,-1.371,-1.411,-1.423,-1.441,-1.474,
      NA,    NA,    NA,-1.212,-1.266,-1.329,-1.377,-1.393,-1.415,-1.456
)
# x2: variances without time trend from table 3 in IPS (2003)
adj.ips.wtbar.x2 <- c(
  1.069,0.923,0.851,0.809,0.789,0.770,0.760,0.749,0.736,0.735,
  1.255,1.011,0.915,0.861,0.831,0.803,0.781,0.770,0.753,0.745,
  1.421,1.078,0.969,0.905,0.865,0.830,0.798,0.789,0.766,0.754,
  1.759,1.181,1.037,0.952,0.907,0.858,0.819,0.802,0.782,0.761,
  2.080,1.279,1.097,1.005,0.946,0.886,0.842,0.819,0.801,0.771,
     NA,   NA,1.171,1.055,0.980,0.912,0.863,0.839,0.814,0.781,
     NA,   NA,   NA,1.114,1.023,0.942,0.886,0.858,0.834,0.795,
     NA,   NA,   NA,1.164,1.062,0.968,0.910,0.875,0.851,0.806,
     NA,   NA,   NA,1.217,1.105,0.996,0.929,0.896,0.871,0.818
)

# x3: means with time trend from table 3 in IPS (2003)
adj.ips.wtbar.x3 <- c(
  -2.166,-2.167,-2.168,-2.167,-2.172,-2.173,-2.176,-2.174,-2.174,-2.177,
  -2.173,-2.169,-2.172,-2.172,-2.173,-2.177,-2.180,-2.178,-2.176,-2.179,
  -1.914,-1.999,-2.047,-2.074,-2.095,-2.120,-2.137,-2.143,-2.146,-2.158,
  -1.922,-1.977,-2.032,-2.065,-2.091,-2.117,-2.137,-2.142,-2.146,-2.158,
  -1.750,-1.823,-1.911,-1.968,-2.009,-2.057,-2.091,-2.103,-2.114,-2.135,
      NA,    NA,-1.888,-1.955,-1.998,-2.051,-2.087,-2.101,-2.111,-2.135,
      NA,    NA,    NA,-1.868,-1.923,-1.995,-2.042,-2.065,-2.081,-2.113,
      NA,    NA,    NA,-1.851,-1.912,-1.986,-2.036,-2.063,-2.079,-2.112,
      NA,    NA,    NA,-1.761,-1.835,-1.925,-1.987,-2.024,-2.046,-2.088
)

# x4: variances with time trend from table 3 in IPS (2003)
adj.ips.wtbar.x4 <- c(
  1.132,0.869,0.763,0.713,0.690,0.655,0.633,0.621,0.610,0.597,
  1.453,0.975,0.845,0.769,0.734,0.687,0.654,0.641,0.627,0.605,
  1.627,1.036,0.882,0.796,0.756,0.702,0.661,0.653,0.634,0.613,
  2.482,1.214,0.983,0.861,0.808,0.735,0.688,0.674,0.650,0.625,
  3.947,1.332,1.052,0.913,0.845,0.759,0.705,0.685,0.662,0.629,
     NA,   NA,1.165,0.991,0.899,0.792,0.730,0.705,0.673,0.638,
     NA,   NA,   NA,1.055,0.945,0.828,0.753,0.725,0.689,0.650,
     NA,   NA,   NA,1.145,1.009,0.872,0.786,0.747,0.713,0.661,
     NA,   NA,   NA,1.208,1.063,0.902,0.808,0.766,0.728,0.670
)

adj.ips.wtbar <- c(adj.ips.wtbar.x1, adj.ips.wtbar.x2,
                   adj.ips.wtbar.x3, adj.ips.wtbar.x4)

adj.ips.wtbar <- array(adj.ips.wtbar, dim = c(10, 9, 2, 2),
                       dimnames = list(
                         c(10, 15, 20, 25, 30, 40, 50, 60, 70, 100),
                         0:8,
                         c("mean", "var"),
                         c("intercept", "trend"))
)

adj.ips.wtbar <- aperm(adj.ips.wtbar, c(2, 1, 3, 4))



###############
## IPS (2003), table 2 (obvious typos (missing minus signs) corrected)

# intercept 1% critical values
critval.ips.tbar.int1 <- c(
  -3.79, -2.66, -2.54, -2.50, -2.46, -2.44, -2.43, -2.42, -2.42, -2.40, -2.40,
  -3.45, -2.47, -2.38, -2.33, -2.32, -2.31, -2.29, -2.28, -2.28, -2.28, -2.27,
  -3.06, -2.32, -2.24, -2.21, -2.19, -2.18, -2.16, -2.16, -2.16, -2.16, -2.15,
  -2.79, -2.14, -2.10, -2.08, -2.07, -2.05, -2.04, -2.05, -2.04, -2.04, -2.04,
  -2.61, -2.06, -2.02, -2.00, -1.99, -1.99, -1.98, -1.98, -1.98, -1.97, -1.97,
  -2.51, -2.01, -1.97, -1.95, -1.94, -1.94, -1.93, -1.93, -1.93, -1.93, -1.92,
  -2.20, -1.85, -1.83, -1.82, -1.82, -1.82, -1.81, -1.81, -1.81, -1.81, -1.81,
  -2.00, -1.75, -1.74, -1.73, -1.73, -1.73, -1.73, -1.73, -1.73, -1.73, -1.73)
# intercept 5% critical values
critval.ips.tbar.int5 <- c(
  -2.76, -2.28, -2.21, -2.19, -2.18, -2.16, -2.16, -2.15, -2.16, -2.15,-2.15,
  -2.57, -2.17, -2.11, -2.09, -2.08, -2.07, -2.07, -2.06, -2.06, -2.06,-2.05,
  -2.42, -2.06, -2.02, -1.99, -1.99, -1.99, -1.98, -1.98, -1.97, -1.98,-1.97,
  -2.28, -1.95, -1.92, -1.91, -1.90, -1.90, -1.90, -1.89, -1.89, -1.89,-1.89,
  -2.18, -1.89, -1.87, -1.86, -1.85, -1.85, -1.85, -1.85, -1.84, -1.84,-1.84,
  -2.11, -1.85, -1.83, -1.82, -1.82, -1.82, -1.81, -1.81, -1.81, -1.81,-1.81,
  -1.95, -1.75, -1.74, -1.73, -1.73, -1.73, -1.73, -1.73, -1.73, -1.73,-1.73,
  -1.84, -1.68, -1.67, -1.67, -1.67, -1.67, -1.67, -1.67, -1.67, -1.67,-1.67)
# intercept 10% critical values	
critval.ips.tbar.int10 <- c(
  -2.38, -2.10, -2.06, -2.04, -2.04, -2.02, -2.02, -2.02, -2.02, -2.02, -2.01,
  -2.27, -2.01, -1.98, -1.96, -1.95, -1.95, -1.95, -1.95, -1.94, -1.95, -1.94,
  -2.17, -1.93, -1.90, -1.89, -1.88, -1.88, -1.88, -1.88, -1.88, -1.88, -1.88,
  -2.06, -1.85, -1.83, -1.82, -1.82, -1.82, -1.81, -1.81, -1.81, -1.81, -1.81,
  -2.00, -1.80, -1.79, -1.78, -1.78, -1.78, -1.78, -1.78, -1.78, -1.77, -1.77,
  -1.96, -1.77, -1.76, -1.75, -1.75, -1.75, -1.75, -1.75, -1.75, -1.75, -1.75,
  -1.85, -1.70, -1.69, -1.69, -1.69, -1.69, -1.68, -1.68, -1.68, -1.68, -1.69,
  -1.77, -1.64, -1.64, -1.64, -1.64, -1.64, -1.64, -1.64, -1.64, -1.64, -1.64)
# trend 1% critical values
critval.ips.tbar.trend1 <- c(
  -8.12, -3.42, -3.21, -3.13, -3.09, -3.05, -3.03, -3.02, -3.00, -3.00, -2.99,
  -7.36, -3.20, -3.03, -2.97, -2.94, -2.93, -2.90, -2.88, -2.88, -2.87, -2.86,
  -6.44, -3.03, -2.88, -2.84, -2.82, -2.79, -2.78, -2.77, -2.76, -2.75, -2.75,
  -5.72, -2.86, -2.74, -2.71, -2.69, -2.68, -2.67, -2.65, -2.66, -2.65, -2.64,
  -5.54, -2.75, -2.67, -2.63, -2.62, -2.61, -2.59, -2.60, -2.59, -2.58, -2.58,
  -5.16, -2.69, -2.61, -2.58, -2.58, -2.56, -2.55, -2.55, -2.55, -2.54, -2.54,
  -4.50, -2.53, -2.48, -2.46, -2.45, -2.45, -2.44, -2.44, -2.44, -2.44, -2.43,
  -4.00, -2.42, -2.39, -2.38, -2.37, -2.37, -2.36, -2.36, -2.36, -2.36, -2.36)
# trend 5% critical values
critval.ips.tbar.trend5 <- c(
  -4.66, -2.98, -2.87, -2.82, -2.80, -2.79, -2.77, -2.76, -2.75, -2.75, -2.75,
  -4.38, -2.85, -2.76, -2.72, -2.70, -2.69, -2.68, -2.67, -2.67, -2.66, -2.66,
  -4.11, -2.74, -2.66, -2.63, -2.62, -2.60, -2.60, -2.59, -2.59, -2.58, -2.58,
  -3.88, -2.63, -2.57, -2.55, -2.53, -2.53, -2.52, -2.52, -2.52, -2.51, -2.51,
  -3.73, -2.56, -2.52, -2.49, -2.48, -2.48, -2.48, -2.47, -2.47, -2.46, -2.46,
  -3.62, -2.52, -2.48, -2.46, -2.45, -2.45, -2.44, -2.44, -2.44, -2.44, -2.43,
  -3.35, -2.42, -2.38, -2.38, -2.37, -2.37, -2.36, -2.36, -2.36, -2.36, -2.36,
  -3.13, -2.34, -2.32, -2.32, -2.31, -2.31, -2.31, -2.31, -2.31, -2.31, -2.31)
# trend 10% critical values
critval.ips.tbar.trend10 <- c(
  -3.73, -2.77, -2.70, -2.67, -2.65, -2.64, -2.63, -2.62, -2.63, -2.62, -2.62,
  -3.60, -2.68, -2.62, -2.59, -2.58, -2.57, -2.57, -2.56, -2.56, -2.55, -2.55,
  -3.45, -2.59, -2.54, -2.52, -2.51, -2.51, -2.50, -2.50, -2.50, -2.49, -2.49,
  -3.33, -2.52, -2.47, -2.46, -2.45, -2.45, -2.44, -2.44, -2.44, -2.44, -2.44,
  -3.26, -2.47, -2.44, -2.42, -2.41, -2.41, -2.41, -2.40, -2.40, -2.40, -2.40,
  -3.18, -2.44, -2.40, -2.39, -2.39, -2.38, -2.38, -2.38, -2.38, -2.38, -2.38,
  -3.02, -2.36, -2.33, -2.33, -2.33, -2.32, -2.32, -2.32, -2.32, -2.32, -2.32,
  -2.90, -2.30, -2.29, -2.28, -2.28, -2.28, -2.28, -2.28, -2.28, -2.28, -2.28)

critval.ips.tbar <- c(critval.ips.tbar.int1,
                      critval.ips.tbar.int5,
                      critval.ips.tbar.int10,
                      critval.ips.tbar.trend1,
                      critval.ips.tbar.trend5,
                      critval.ips.tbar.trend10)

critval.ips.tbar <- array(critval.ips.tbar, dim = c(11, 8, 3, 2),
                          dimnames = list(
                            c(5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 100),
                            c(5, 7, 10, 15, 20, 25, 50, 100),
                            c("1%", "5%", "10%"),
                            c("intercept", "trend"))
)

critval.ips.tbar <- aperm(critval.ips.tbar, c(2, 1, 3, 4))


###############

## IPS (2003), table 1
# right hand pane of table 1 for Ztbar statistic
adj.ips.zbar.time  <- c(6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 100, 500, 1000, 2000)
adj.ips.zbar.means <- c(-1.520, -1.514, -1.501, -1.501, -1.504, -1.514, -1.522, -1.520, -1.526, -1.523, -1.527, -1.532, -1.531, -1.529, -1.533)
adj.ips.zbar.vars  <- c(1.745, 1.414, 1.228, 1.132, 1.069, 0.923, 0.851, 0.809, 0.789, 0.770, 0.760, 0.735, 0.715, 0.707, 0.706) 
names(adj.ips.zbar.time) <- names(adj.ips.zbar.means) <- names(adj.ips.zbar.vars) <- adj.ips.zbar.time

# left pane of table 1 [not used]
adj.ips.zbarL.means <- c(-1.125, -1.178, -1.214, -1.244, -1.274, -1.349, -1.395, -1.423, -1.439, -1.463, -1.477, -1.504, -1.526, -1.526, -1.533)
adj.ips.zbarL.vars  <- c(0.497, 0.506, 0.506, 0.527, 0.521, 0.565, 0.592, 0.609, 0.623, 0.639, 0.656, 0.683, 0.704, 0.702, 0.706)

################

# table 2 in LLC (2002): mean and standard deviation adjustments
Tn <- c(  25,  30,  35,  40,  45,  50,  60,   70,   80,   90,  100,  250,   500)

v <- c(c( 0.004,  0.003,  0.002,  0.002,  0.001,  0.001,  0.001,  0.000,  0.000,  0.000,  0.000,  0.000,  0.000),
       c( 1.049,  1.035,  1.027,  1.021,  1.017,  1.014,  1.011,  1.008,  1.007,  1.006,  1.005,  1.001,  1.000),
       c(-0.554, -0.546, -0.541, -0.537, -0.533, -0.531, -0.527, -0.524, -0.521, -0.520, -0.518, -0.509, -0.500),
       c( 0.919,  0.889,  0.867,  0.850,  0.837,  0.826,  0.810,  0.798,  0.789,  0.782,  0.776,  0.742,  0.707),
       c(-0.703, -0.674, -0.653, -0.637, -0.624, -0.614, -0.598, -0.587, -0.578, -0.571, -0.566, -0.533, -0.500),
       c( 1.003,  0.949,  0.906,  0.871,  0.842,  0.818,  0.780,  0.751,  0.728,  0.710,  0.695,  0.603,  0.500)
)

adj.levinlin <- array(v, dim = c(13, 2, 3),
                      dimnames = list(Tn,
                                      c("mu", "sigma"),
                                      c("none", "intercept", "trend")))

purtest.names.exo <- c(none      = "None",
                       intercept = "Individual Intercepts",
                       trend     = "Individual Intercepts and Trend")

purtest.names.test <- c(levinlin  = "Levin-Lin-Chu Unit-Root Test",
                        ips       = "Im-Pesaran-Shin Unit-Root Test",
                        madwu     = "Maddala-Wu Unit-Root Test",
                        Pm        = "Choi's modified P Unit-Root Test",
                        invnormal = "Choi's Inverse Normal Unit-Root Test",
                        logit     = "Choi's Logit Unit-Root Test",
                        hadri     = "Hadri Test")


## General functions to transform series:

YClags <- function(object,  k = 3){
  n <- length(object)
  if(k > n) stop("lag value larger than length of series to lag")
  if(k > 0) {
    res <- sapply(seq_len(k), function(x) c(rep(NA, x), object[seq_len(n - x)]))
    if(is.null(dim(res))) res <- as.matrix(res) # guarantee to return a matrix
  } else res <-  NULL
  res
}

YCdiff <- function(object) {
  # NB/TODO: no sanity check here: for input of length(object) == 1, a result of 
  # length 3 is returned: c(NA, NA, 0)
  c(NA, object[seq_along(object)[-1L]] - object[seq_len(length(object)-1)])
}

selectT <- function(x, Ts){
  ## This function selects the length of the series as it is tabulated
  if (x %in% Ts) return(x)
  if (x < Ts[1L]){
    warning("the time series is short")
    return(Ts[1L])
  }
  if (x > Ts[length(Ts)]){
    warning("the time series is long")
    return(Ts[length(Ts)])
  }
  pos <- which((Ts - x) > 0)[1L]
  return(Ts[c(pos - 1, pos)])
}

lagsel <- function(object, exo = c("intercept", "none", "trend"),
                   method = c("Hall", "AIC", "SIC"), pmax = 10, 
                   dfcor = FALSE, fixedT = TRUE, ...){
  # select the optimal number of lags using Hall method, AIC, or SIC
  method <- match.arg(method)
  y <- object
  Dy <- YCdiff(object)
  Ly <- c(NA, object[seq_len(length(object)-1)])
  if (exo == "none")      m <- NULL
  if (exo == "intercept") m <- rep(1, length(object))
  if (exo == "trend")     m <- cbind(1, seq_along(object))
  LDy <- YClags(Dy, k = pmax)
  
  decreasei <- TRUE
  i <- 0L
  narow <- seq_len(pmax+1)
  if (method == "Hall"){
    while(decreasei){
      lags <- pmax - i
      if (!fixedT) narow <- seq_len(lags + 1L)
      X <- cbind(Ly, LDy[ , 0:lags], m)[-narow, , drop = FALSE]
      y <- Dy[-narow]
      sres <- my.lm.fit(X, y, dfcor = dfcor)
      tml <- sres$coef[lags + 1L]/sres$se[lags + 1L]
      if (abs(tml) < 1.96 && lags > 0L)
        i <- i + 1L
      else
        decreasei <- FALSE
    }
  }
  else{
    l <- c()
    while(i <= pmax){
      lags <- pmax - i
      if (!fixedT) narow <- seq_len(lags + 1L)
      X <- cbind(Ly, LDy[ , 0:lags], m)[-narow, , drop = FALSE]
      y <- Dy[-narow]
      sres <- my.lm.fit(X, y, dfcor = dfcor)
      AIC <- if (method == "AIC") {
        log(sres$rss / sres$n) + 2 * sres$K / sres$n # AIC
      } else {
        log(sres$rss / sres$n) + sres$K * log(sres$n) / sres$n # SIC
      }
      l <- c(l, AIC)
      i <- i + 1L
    }
    lags <- pmax + 1 - which.min(l)
  }
  lags
} ## END lagsel


adj.levinlin.value <- function(l, exo = c("intercept", "none", "trend")){
  ## extract the adjustment values for Levin-Lin-Chu test
  theTs <- as.numeric(dimnames(adj.levinlin)[[1L]])
  Ts <- selectT(l, theTs)
  res <- if (length(Ts) == 1L) {
    adj.levinlin[as.character(Ts), , exo]
  } else{
    low  <- adj.levinlin[as.character(Ts[1L]), , exo]
    high <- adj.levinlin[as.character(Ts[2L]), , exo]
    low + (l - Ts[1L]) / (Ts[2L] - Ts[1L]) * (high - low)
  }
  res
} ## END adj.levinlin.value

adj.ips.wtbar.value <- function(l = 30, lags = 2, exo = c("intercept", "trend")){
  ## extract the adjustment values for Im-Pesaran-Shin test for Wtbar statistic (table 3 in IPS (2003))
  if (!lags %in% 0:8) warning("lags should be an integer between 0 and 8")
  lags <- min(lags, 8)
  theTs <- as.numeric(dimnames(adj.ips.wtbar)[[2L]])
  Ts <- selectT(l, theTs)
  res <- if (length(Ts) == 1L) {
    # take value as in table
    adj.ips.wtbar[as.character(lags), as.character(Ts), , exo]
  }
  else{
    # interpolate value from table
    lags.char <- as.character(lags)
    low  <- adj.ips.wtbar[lags.char, as.character(Ts[1L]), , exo]
    high <- adj.ips.wtbar[lags.char, as.character(Ts[2L]), , exo]
    low + (l - Ts[1L]) / (Ts[2L] - Ts[1L]) * (high - low)
  }
  res
} ## END adj.ips.wtbar.value

adj.ips.ztbar.value <- function(l = 30L, time, means, vars){
  ## extract the adjustment values for Im-Pesaran-Shin test's Ztbar statistic
  ## from table 1, right hand pane in IPS (2003) fed by arguments means and vars
  Ts <- selectT(l, time)
  res <- if (length(Ts) == 1L){
    # take value as in table
    c("mean" = means[as.character(Ts)], "var" = vars[as.character(Ts)])
  }
  else{
    # interpolate value from table
    low  <- c("mean" = means[as.character(Ts[1L])], "var" = vars[as.character(Ts[1L])])
    high <- c("mean" = means[as.character(Ts[2L])], "var" = vars[as.character(Ts[2L])])
    low + (l - Ts[1L])/(Ts[2L] - Ts[1L]) * (high - low)
  }
  res
} ## END adj.ips.ztbar.value

critval.ips.tbar.value <- function(ind = 10L, time = 19L, critvals, exo = c("intercept", "trend")){
  ## extract and interpolate 1%, 5%, 10% critical values for Im-Pesaran-Shin test's
  ## tbar statistic (table 2 in IPS (2003))
  ##
  ## Interpolation is based on inverse distance weighting (IDW) of
  ## L1 distance (1d case) and L2 distance (euclidean distance) (2d case)
  ## (optical inspections shows this method is a good approximation)
  
  theInds <- as.numeric(dimnames(critvals)[[1L]])
  theTs <- as.numeric(dimnames(critvals)[[2L]])
  Inds <- selectT(ind, theInds)
  Ts <- selectT(time, theTs)
  
  exo <- match.arg(exo)
  
  ## check cases and early exit:
  if(length(Inds) == 1L && length(Ts) == 1L) {
    # exact hit for individual AND time: take value as in table
    return(critvals[as.character(Inds), as.character(Ts), , exo])
  }
  else{
    if(length(Inds) == 1L || length(Ts) == 1L) {
      # exact hit for individual (X)OR time: interpolate other dimension
      if(length(Inds) == 1L) {
        low  <- critvals[as.character(Inds), as.character(Ts[1L]), , exo]
        high <- critvals[as.character(Inds), as.character(Ts[2L]), , exo]
        # L1 distances and inverse weighting for time dimension
        dist1 <- abs(time - Ts[1L])
        dist2 <- abs(time - Ts[2L])
        weight1 <- 1/dist1
        weight2 <- 1/dist2
        return ((weight1 * low + weight2 * high ) / (weight1 + weight2))
      }
      if(length(Ts) == 1L) {
        # L1 distances and inverse weighting for individual dimension
        low  <- critvals[as.character(Inds[1L]), as.character(Ts), , exo]
        high <- critvals[as.character(Inds[2L]), as.character(Ts), , exo]
        dist1 <- abs(ind - Inds[1L])
        dist2 <- abs(ind - Inds[2L])
        weight1 <- 1/dist1
        weight2 <- 1/dist2
        return ((weight1 * low + weight2 * high ) / (weight1 + weight2))
      }
    } else {
      # only get to this part when both dimensions are not an exact hit:
      # 2d interpolate
      
      # extract the 4 critical values as basis of interpolation interpolate ("corners of box")
      crit4 <- critvals[as.character(Inds), as.character(Ts), , exo]
      dot <- c(ind, time) # point of interest
      m <- as.matrix(expand.grid(Inds, Ts))
      colnames(m) <- c("ind", "time")
      dist <- lapply(1:4, function(x) m[x, ] - dot)
      dist <- vapply(dist, function(x) sqrt(as.numeric(crossprod(x))), 0.0, USE.NAMES = FALSE)
      weight <- 1/dist
      
      res <- (
          crit4[as.character(Inds[1L]), as.character(Ts[1L]), ] * weight[1L] +
          crit4[as.character(Inds[2L]), as.character(Ts[1L]), ] * weight[2L] +
          crit4[as.character(Inds[1L]), as.character(Ts[2L]), ] * weight[3L] +
          crit4[as.character(Inds[2L]), as.character(Ts[2L]), ] * weight[4L]) / sum(weight)
      return(res)
    }
  }
} ## END critval.ips.tbar.value

tsadf <- function(object, exo = c("intercept", "none", "trend"),
                  lags = NULL, dfcor = FALSE, comp.aux.reg = FALSE, ...){
  # compute some ADF regressions for each time series
  y <- object
  L <- length(y)
  Dy <- YCdiff(object)
  Ly <- c(NA, object[seq_len(length(object)-1)])
  if(exo == "none")      m <- NULL
  if(exo == "intercept") m <- rep(1, length(object))
  if(exo == "trend")     m <- cbind(1, seq_along(object))
  narow <- seq_len(lags+1)
  LDy <- YClags(Dy, k = lags)
  X <- cbind(Ly, LDy, m)[-narow, , drop = FALSE]
  if(dim(X)[[1]] == 0L) stop("after lagging, no non-NA case left in a series")
  y <- Dy[- narow]
  result <- my.lm.fit(X, y, dfcor = dfcor)
  sigma <- result$sigma
  rho <- result$coef[1L]
  sdrho <- result$se[1L]
  trho <- rho/sdrho
  p.trho <- padf(trho, exo = exo, ...)
  result <- list(rho    = rho,
                 sdrho  = sdrho,
                 trho   = trho,
                 sigma  = sigma,
                 T      = L,
                 lags   = lags,
                 p.trho = p.trho)
  
  if(comp.aux.reg){
    # for Levin-Lin-Chu test only, compute the residuals of the auxiliary
    # regressions
    X <- cbind(LDy[ , 0:lags], m)[-narow, , drop = FALSE]
    if(lags == 0 && exo == "none"){
      resid.diff  <- Dy[-narow]/sigma
      resid.level <- Ly[-narow]/sigma
    }
    else{
      y <- Dy[-narow]
      resid.diff <- lm.fit(X, y)$residuals/sigma
      y <- Ly[-narow]
      resid.level <- lm.fit(X, y)$residuals/sigma
    }
    result$resid <- data.frame(resid.diff  = resid.diff,
                               resid.level = resid.level)
  }
  result
}


longrunvar <- function(x, exo = c("intercept", "none", "trend"), q = NULL){
  # compute the long run variance of the dependent variable
  
  # q: lag truncation parameter: default (q == NULL) as in LLC, p. 14
  # it can be seen from LLC, table 2, that round() was used to get an
  # integer from that formula (not, e.g., trunc)
  T <- length(x)
  if (is.null(q)) q <- round(3.21 * T^(1/3))
  dx <- x[2:T] - x[seq_len(T-1)]
  if(exo == "intercept") dx <- dx - mean(dx)
  if(exo == "trend")     dx <- lm.fit(cbind(1, seq_along(dx)), dx)$residuals
  dx <- c(NA, dx)
  res <- 1/(T-1)*sum(dx[-1]^2)+
    2*sum(
      sapply(seq_len(q),
             function(L){
               sum(dx[2:(T-L)] * dx[(L+2):T]) / (T-1) *
                 (1 - L / (q+1))
             }
      )
    )
  return(res)
}


hadritest <- function(object, exo, Hcons, dfcor, method,
                      cl, args, data.name, ...) {
  ## used by purtest(<.>, test = "hadri"); non-exported function
  ## Hadri's test is applicable to balanced data only
  ## input 'object' is a list with observations per individual
  if(!is.list(object)) stop("argument 'object' in hadritest is supposed to be a list")
  if(exo == "none") stop("exo = \"none\" (\"~0\" in the formula interface) is not a valid option for Hadri's test")
  # determine L (= time periods), unique for balanced panel and number of individuals (n)
  if(length(L <- unique(lengths(object, use.names = FALSE))) > 1L)
    stop("Hadri test is not applicable to unbalanced panels")
  n <- length(object)
  
  if(exo == "intercept"){
    # can use lm.fit here as NAs are dropped in beginning of 'purtest'
    resid <- lapply(object, function(x) lm.fit(matrix(1, nrow = length(x)), x)$residuals)
    adj <- c(1/6, 1/45) # xi, zeta^2 in eq. (17) in Hadri (2000)
  }
  if (exo == "trend"){
    resid <- lapply(object, function(x) {
                              lx <- length(x)
                              dmat <- matrix(c(rep(1, lx), seq_len(lx)), nrow = lx)
                              # can use lm.fit here as NAs are dropped in beginning of 'purtest'
                              lm.fit(dmat, x)$residuals
                              })
    adj <- c(1/15, 11/6300) # xi, zeta^2 in eq. (25) in Hadri (2000)
  }

  cumres2 <- lapply(resid, function(x) cumsum(x)^2)
  
  if (!dfcor) {
    sigma2  <- mean(unlist(resid, use.names = FALSE)^2)
    sigma2i <- vapply(resid, function(x) mean(x^2), FUN.VALUE = 0.0, USE.NAMES = FALSE)
  } else {
    # df correction as suggested in Hadri (2000), p. 157
    dfcorval <- switch(exo, "intercept" = (L-1), "trend" = (L-2))
    # -> apply to full length residuals over all individuals -> n*(L-1) or n*(L-2)
    sigma2 <- as.numeric(crossprod(unlist(resid, use.names = FALSE))) / (n * dfcorval)
    # -> apply to individual residuals' length, so just L -> L-1 or L-2
    sigma2i <- vapply(resid, function(x) crossprod(x)/dfcorval, FUN.VALUE = 0.0, USE.NAMES = FALSE)
  }
  
  Si2 <- vapply(cumres2, function(x) sum(x), FUN.VALUE = 0.0, USE.NAMES = FALSE)
  numerator <- 1/n * sum(1/(L^2) * Si2)
  LMi <- 1/(L^2) * Si2 / sigma2i # individual LM statistics
  
  LM <- if(!Hcons) {
                    numerator / sigma2 # non-het consistent case
                  } else {
                    method <- paste0(method, " (Heterosked. Consistent)")
                    mean(LMi) # het. consistent case
                  }
  
  stat <- c(z = sqrt(n) * (LM - adj[1L])  / sqrt(adj[2L])) # eq. (14), (22) in Hadri (2000)
  pvalue <- pnorm(stat, lower.tail = FALSE) # is one-sided!
  
  htest <- structure(list(statistic   = stat,
                          parameter   = NULL,
                          alternative = "at least one series has a unit root", # correct alternative (at least one unit root)
                          data.name   = data.name,
                          method      = method,
                          p.value     = pvalue),
                     class = "htest")
  
  idres <- mapply(list, LMi, sigma2i, SIMPLIFY = FALSE)
  idres <- lapply(idres, setNames, c("LM", "sigma2"))
  
  result <- list(statistic = htest,
                 call      = cl,
                 args      = args,
                 idres     = idres)
  
  class(result) <- "purtest"
  return(result)
} # END hadritest


#' Unit root tests for panel data
#' 
#' `purtest` implements several testing procedures that have been proposed
#' to test unit root hypotheses with panel data.
#' 
#' 
#' All these tests except `"hadri"` are based on the estimation of
#' augmented Dickey-Fuller (ADF) regressions for each time series. A
#' statistic is then computed using the t-statistics associated with
#' the lagged variable. The Hadri residual-based LM statistic is the
#' cross-sectional average of the individual KPSS statistics
#' \insertCite{KWIA:PHIL:SCHM:SHIN:92;textual}{plm}, standardized by their
#' asymptotic mean and standard deviation.
#' 
#' Several Fisher-type tests that combine p-values from tests based on
#' ADF regressions per individual are available:
#'
#' - `"madwu"` is the inverse chi-squared test
#' \insertCite{MADDA:WU:99;textual}{plm}, also called P test by
#' \insertCite{CHOI:01;textual}{plm}.
#'
#' - `"Pm"` is the modified P test proposed by
#' \insertCite{CHOI:01;textual}{plm} for large N,
#'
#' - `"invnormal"` is the inverse normal test by \insertCite{CHOI:01;textual}{plm}, and
#' 
#' - `"logit"` is the logit test by \insertCite{CHOI:01;textual}{plm}.
#'
#' The individual p-values for the Fisher-type tests are approximated
#' as described in \insertCite{MACK:96;textual}{plm} if the package \CRANpkg{urca}
#' (\insertCite{PFAFF:08;textual}{plm}) is available, otherwise as described in
#' \insertCite{MACK:94;textual}{plm}.
#' 
#' For the test statistic tbar of the test of Im/Pesaran/Shin (2003)
#' (`ips.stat = "tbar"`), no p-value is given but 1%, 5%, and 10% critical
#' values are interpolated from paper's tabulated values via inverse distance
#' weighting (printed and contained in the returned value's element
#' `statistic$ips.tbar.crit`).
#'
#' Hadri's test, the test of Levin/Lin/Chu, and the tbar statistic of
#' Im/Pesaran/Shin are not applicable to unbalanced panels; the tbar statistic
#' is not applicable when `lags > 0` is given.
#' 
#' The exogenous instruments of the tests (where applicable) can be specified
#' in several ways, depending on how the data is handed over to the function:
#' 
#' - For the `formula`/`data` interface (if `data` is a `data.frame`,
#' an additional `index` argument should be specified); the formula
#' should be of the form: `y ~ 0`, `y ~ 1`, or `y ~ trend` for a test
#' with no exogenous variables, with an intercept, or with individual
#' intercepts and time trend, respectively. The `exo` argument is
#' ignored in this case.
#' 
#' - For the `data.frame`, `matrix`, and `pseries` interfaces: in
#' these cases, the exogenous variables are specified using the `exo`
#' argument.
#' 
#' With the associated `summary` and `print` methods, additional
#' information can be extracted/displayed (see also Value).
#' 
#' @aliases purtest
#' @param object,x Either a `"data.frame"` or a matrix containing the
#'     time series (individuals as columns), a `"pseries"` object, a formula;
#'     a `"purtest"` object for the print and summary methods,
#' @param data a `"data.frame"` or a `"pdata.frame"` object (required for
#'     formula interface, see Details and Examples),
#' @param index the indexes,
#' @param test the test to be computed: one of `"levinlin"` for
#'     \insertCite{LEVIN:LIN:CHU:02;textual}{plm}, `"ips"` for
#'     \insertCite{IM:PESAR:SHIN:03;textual}{plm}, `"madwu"` for
#'     \insertCite{MADDA:WU:99;textual}{plm}, `"Pm"` , `"invnormal"`,
#'     or `"logit"` for various tests as in
#'     \insertCite{CHOI:01;textual}{plm}, or `"hadri"` for
#'     \insertCite{HADR:00;textual}{plm}, see Details,
#' @param exo the exogenous variables to introduce in the augmented
#'     Dickey--Fuller (ADF) regressions, one of: no exogenous
#'     variables (`"none"`), individual intercepts (`"intercept"`), or
#'     individual intercepts and trends (`"trend"`), but see Details,
#' @param lags the number of lags to be used for the augmented
#'     Dickey-Fuller regressions: either a single value integer (the number of
#'     lags for all time series), a vector of integers (one for each
#'     time series), or a character string for an automatic
#'     computation of the number of lags, based on the AIC
#'     (`"AIC"`), the SIC (`"SIC"`), or on the method by
#'     \insertCite{HALL:94;textual}{plm} (`"Hall"`); argument is irrelevant
#'     for `test = "hadri"`,
#' @param pmax maximum number of lags (irrelevant for `test = "hadri"`),
#' @param Hcons logical, only relevant for `test = "hadri"`,
#'     indicating whether the heteroskedasticity-consistent test of
#'     \insertCite{HADR:00;textual}{plm} should be computed,
#' @param q the bandwidth for the estimation of the long-run variance 
#'     (only relevant for `test = "levinlin"`, the default (`q = NULL`)
#'     gives the value as suggested by the authors as round(3.21 * T^(1/3))),
#' @param dfcor logical, indicating whether the standard deviation of
#'     the regressions is to be computed using a degrees-of-freedom
#'     correction,
#' @param fixedT logical, indicating whether the individual ADF
#'     regressions are to be computed using the same number of
#'     observations (irrelevant for `test = "hadri"`),
#' @param ips.stat `NULL` or character of length 1 to request a specific
#'     IPS statistic, one of `"Wtbar"` (also default if `ips.stat = NULL`),
#'     `"Ztbar"`, `"tbar"`,
#' @param \dots further arguments (can set argument `p.approx` to be passed on
#'  to non-exported function `padf` to either `"MacKinnon1994"` or `"MacKinnon1996"`
#'  to force a specific method for p-value approximation, the latter only being 
#'  possible if package 'urca' is installed).
#' @return For purtest: An object of class `"purtest"`: a list with the elements
#'   named:
#' - `"statistic"` (a `"htest"` object),
#' - `"call"`,
#' - `"args"`,
#' - `"idres"` (containing results from the individual regressions),
#' - `"adjval"` (containing the simulated means and variances needed to compute 
#'      the statistic, for `test = "levinlin"` and `"ips"`, otherwise `NULL`),
#' - `"sigma2"` (short-run and long-run variance for `test = "levinlin"`, 
#'       otherwise `NULL`).
#' @export
#' @importFrom stats setNames
#' @author Yves Croissant and for "Pm", "invnormal", and "logit" Kevin Tappe
#' @seealso [cipstest()], [phansitest()]

#' @references
#' \insertAllCited{}
#'  
#' @keywords htest
#
# TODO: add more examples / interfaces
#' @examples
#' 
#' data("Grunfeld", package = "plm")
#' y <- data.frame(split(Grunfeld$inv, Grunfeld$firm)) # individuals in columns
#' 
#' purtest(y, pmax = 4, exo = "intercept", test = "madwu")
#' 
#' ## same via pseries interface
#' pGrunfeld <- pdata.frame(Grunfeld, index = c("firm", "year"))
#' purtest(pGrunfeld$inv, pmax = 4, exo = "intercept", test = "madwu")
#' 
#' ## same via formula interface
#' purtest(inv ~ 1, data = Grunfeld, index = c("firm", "year"), pmax = 4, test = "madwu")
#' 
purtest <- function(object, data = NULL, index = NULL,
                    test = c("levinlin", "ips", "madwu", "Pm" , "invnormal", "logit", "hadri"),
                    exo = c("none", "intercept", "trend"),
                    lags = c("SIC", "AIC", "Hall"),
                    pmax = 10, Hcons = TRUE, q = NULL, dfcor = FALSE, 
                    fixedT = TRUE, ips.stat = NULL, ...) {
  
  data.name <- paste(deparse(substitute(object)))

  id <- NULL
  if (inherits(object, "formula")){
    # exo is derived from specified formula:
    terms <- terms(object)
    lab <- labels(terms)
    if(length(lab) == 0L){
      exo <- if(attr(terms, "intercept")) "intercept" else "none"
    }
    else{
      if(length(lab) > 1L || lab != "trend") stop("incorrect formula")
      exo <- "trend"
    }
    object <- paste(deparse(object[[2L]]))
    if(exists(object) && is.vector(get(object))){
      # is.vector because, eg, inv exists as a function
      object <- get(object)
    }
    else{
      if(is.null(data)) stop("unknown response")
      else{
        if(!inherits(data, "data.frame")) stop("'data' does not specify a data.frame/pdata.frame")
        if(object %in% names(data)){
          object <- data[[object]]
          if(!inherits(data, "pdata.frame")){
            if(is.null(index)) stop("the index attribute is required")
            else data <- pdata.frame(data, index)
          }
          id <- unclass(attr(data, "index"))[[1L]]
        }
        else{
          stop(paste0("unknown response (\"", object, "\" not in data)"))
        }
      }
    }
  } # END object is a formula
  else{
    exo <- match.arg(exo)
    if(is.null(dim(object))){
      if(inherits(object, "pseries")){
        id <- unclass(attr(object, "index"))[[1L]]
      }
      else stop("the individual dimension is undefined") # cannot derive individual dimension from a vector if not pseries
    }
    if(is.matrix(object) || is.data.frame(object)) {
      if(!is.null(data)) stop("object is data.frame or matrix but argument 'data' is not NULL")
      if(is.matrix(object)) object <- as.data.frame(object)
    }
  }
  
  # by now, object is either a pseries or a data.frame
  object <- na.omit(object)
  if(!is.null(attr(object, "na.action")))
    warning("NA value(s) encountered and dropped, results may not be reliable")
  
  if(!inherits(object, "data.frame")){
    if(is.null(id)) stop("the individual dimension is undefined")
    # adjust 'id' to correspond data in 'object' after NA dropping:
    if(!is.null(attr(object, "na.action"))) id <- id[-attr(object, "na.action")]
    object <- split(object, id)
  } else {
    if(!ncol(object) > 1L) warning("data.frame or matrix specified in argument object does not contain more than one individual (individuals are supposed to be in columns)")
    object <- as.list(object)
  }
  # by now, object is a list
  
  cl <- match.call()
  test <- match.arg(test)
  ips.stat <- if (is.null(ips.stat)) "Wtbar" else ips.stat # set default for IPS test
  if (is.character(lags)) lags <- match.arg(lags) # if character, match from list of possible values
  args <- list(test = test, exo = exo, pmax = pmax, lags = lags,
               dfcor = dfcor, fixedT = fixedT, ips.stat = ips.stat)
  n <- length(object) # number of individuals, assumes object is a list
  sigma2 <- NULL
  pvalues.trho <- NULL
  ips.tbar.crit <- NULL
  alternative <- "stationarity"
  method <- paste0(purtest.names.test[test], " (ex. var.: ",
                   purtest.names.exo[exo],")")
  
  # If Hadri test, call function and exit early
  if(test == "hadri") return(hadritest(object, exo, Hcons, dfcor,
                                        method, cl, args, data.name, ...)) 
  
  # compute the lags for each time series if necessary
  if(is.numeric(lags)){
    if(length(lags) == 1L) lags <- rep(lags, n)
    else{
      if(length(lags) != n) stop("lags should be of length 1 or n")
      else lags <- as.list(lags)
    }
  }
  else{ # one of the lag selection procedures SIC, AIC, or Hall
    lag.method <- match.arg(lags)
    lags <- sapply(object, function(x)
      lagsel(x, exo = exo, method = lag.method,
             pmax = pmax, dfcor = dfcor, fixedT = fixedT))
  }
  
  # compute the augmented Dickey-Fuller regressions for each time series
  comp.aux.reg <- (test == "levinlin")
  idres <- mapply(function(x, y)
                  tsadf(x, exo = exo, lags = y, dfcor = dfcor, comp.aux.reg = comp.aux.reg, ...),
                  object, as.list(lags), SIMPLIFY = FALSE)
  
  
  if(test == "levinlin"){
    if(length(T.levinlin <- unique(lengths(object, use.names = FALSE))) > 1L)
      stop("test = \"levinlin\" is not applicable to unbalanced panels")
    
    # get the adjustment parameters for the mean and the variance
    adjval <- adj.levinlin.value(T.levinlin, exo = exo)
    mymu  <- adjval[1L]
    mysig <- adjval[2L]
    # calculate the ratio of LT/ST variance
    sigmaST <- sapply(idres, function(x) x[["sigma"]])
    sigmaLT <- sqrt(sapply(object, longrunvar, exo = exo, q = q))
    si <- sigmaLT/sigmaST # LLC (2002), formula 6
    sbar <- mean(si) 
    
    # stack the residuals of each time series and perform the pooled
    # regression
    res.level <- unlist(lapply(idres, function(x) x$resid[["resid.level"]]), use.names = FALSE)
    res.diff  <- unlist(lapply(idres, function(x) x$resid[["resid.diff"]]), use.names = FALSE)
    z <- my.lm.fit(as.matrix(res.level), res.diff, dfcor = dfcor)
    # compute the Levin-Lin-Chu statistic
    tildeT <- T.levinlin - mean(lags) - 1
    sigmaeps2 <- z$rss / (n * tildeT)
    rho   <- z$coef
    sdrho <- z$se
    trho  <- rho/sdrho
    stat <- (trho - n * tildeT * sbar / sigmaeps2 * sdrho * mymu)/mysig # LLC (2002), formula 12
    names(stat) <- "z" # avoids a concatenated name like z.x1
    pvalue <- pnorm(stat, lower.tail = TRUE) # need lower.tail = TRUE (like ADF one-sided to the left)
    parameter <- NULL
    sigma2 <- cbind(sigmaST^2, sigmaLT^2)
    colnames(sigma2) <- c("sigma2ST", "sigma2LT")
    pvalues.trho <- vapply(idres, function(x) x[["p.trho"]], FUN.VALUE = 0.0)
  }
  
  if(test == "ips"){
    if(exo == "none") stop("exo = \"none\" (\"~0\" in the formula interface) is not a valid option for the Im-Pesaran-Shin test")
    if(!is.null(ips.stat) && !any(ips.stat %in% c("Wtbar", "Ztbar", "tbar"))) stop("argument 'ips.stat' must be one of \"Wtbar\", \"Ztbar\", \"tbar\"")
    lags  <- vapply(idres, function(x) x[["lags"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    L.ips <- vapply(idres, function(x) x[["T"]],    FUN.VALUE = 0.0, USE.NAMES = FALSE) - lags - 1
    trho  <- vapply(idres, function(x) x[["trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    pvalues.trho <- vapply(idres, function(x) x[["p.trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    tbar <- mean(trho)
    parameter <- NULL
    adjval <- NULL
    
    
    if(is.null(ips.stat) || ips.stat == "Wtbar") {
      # calc Wtbar - default
      adjval <- mapply(function(x, y) adj.ips.wtbar.value(x, y, exo = exo),
                       as.list(L.ips), as.list(lags))
      Etbar <- mean(adjval[1L, ])
      Vtbar <- mean(adjval[2L, ])
      stat <- c("Wtbar" = sqrt(n) * (tbar - Etbar) / sqrt(Vtbar)) # (3.13) = (4.10) in IPS (2003) [same generic formula for Ztbar and Wtbar]
      pvalue <- pnorm(stat, lower.tail = TRUE) # need lower.tail = TRUE (like ADF one-sided to the left)
    }
    
    if(!is.null(ips.stat) && ips.stat == "Ztbar") {
      # calc Ztbar
      adjval <- adjval.ztbar <- sapply(L.ips, adj.ips.ztbar.value, 
                                       adj.ips.zbar.time, adj.ips.zbar.means, adj.ips.zbar.vars)
      rownames(adjval) <- rownames(adjval.ztbar) <- c("mean", "var")
      Etbar.ztbar <- mean(adjval.ztbar[1L, ])
      Vtbar.ztbar <- mean(adjval.ztbar[2L, ])
      stat <- stat.ztbar <- c("Ztbar" = sqrt(n) * (tbar - Etbar.ztbar) / sqrt(Vtbar.ztbar)) # (3.13) = (4.10) in IPS (2003) [same generic formula for Ztbar and Wtbar]
      pvalue <- pvalue.ztbar <- pnorm(stat.ztbar, lower.tail = TRUE)
    }
    
    if(!is.null(ips.stat) && ips.stat == "tbar") {
      # give tbar
      T.tbar <- unique(lengths(object, use.names = FALSE))
      if(length(T.tbar) > 1L) stop("tbar statistic is not applicable to unbalanced panels")
      if(any(lags > 0L)) stop("tbar statistic is not applicable when 'lags' > 0 is specified")
      L.tbar <- T.tbar - 1
      stat <- tbar
      names(stat) <- "tbar"
      pvalue <- NA
      ips.tbar.crit <- critval.ips.tbar.value(ind = n, time = L.tbar, critval.ips.tbar, exo = exo)
      adjval <- NULL
    }
  }
  
  if(test == "madwu"){
    # Maddala/Wu (1999), pp. 636-637; Choi (2001), p. 253; Baltagi (2013), pp. 283-285
    ## does not require a balanced panel
    trho <- vapply(idres, function(x) x[["trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    pvalues.trho <- vapply(idres, function(x) x[["p.trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    stat <- c(chisq = - 2 * sum(log(pvalues.trho)))
    n.madwu <- length(trho)
    parameter <- c(df = 2 * n.madwu)
    pvalue <- pchisq(stat, df = parameter, lower.tail = FALSE)
    adjval <- NULL
  }
  
  if(test == "Pm"){
    ## Choi Pm (modified P) [proposed for large N]
    trho <- vapply(idres, function(x) x[["trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    pvalues.trho <- vapply(idres, function(x) x[["p.trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    n.Pm <- length(trho)
    # formula (18) in Choi (2001), p. 255:
    stat <- c( "Pm" = 1/(2 * sqrt(n.Pm)) * sum(-2 * log(pvalues.trho) - 2) ) # == -1/sqrt(n.Pm) * sum(log(pvalues.trho) +1)
    pvalue <- pnorm(stat, lower.tail = FALSE) # one-sided
    parameter <- NULL
    adjval <- NULL
  }
  
  if(test == "invnormal"){
    # inverse normal test as in Choi (2001)
    trho <- vapply(idres, function(x) x[["trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    pvalues.trho <- vapply(idres, function(x) x[["p.trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    n.invnormal <- length(trho)
    stat <- c("z" = sum(qnorm(pvalues.trho)) / sqrt(n.invnormal)) # formula (9), Choi (2001), p. 253
    pvalue <- pnorm(stat, lower.tail = TRUE) # formula (12), Choi, p. 254
    parameter <- NULL
    adjval <- NULL
  }
  
  if(test == "logit"){
    # logit test as in Choi (2001)
    trho <- vapply(idres, function(x) x[["trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    pvalues.trho <- vapply(idres, function(x) x[["p.trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    n.logit <- length(trho)
    l_stat <-  c("L*" = sum(log(pvalues.trho / (1 - pvalues.trho)))) # formula (10), Choi (2001), p. 253
    k <- (3 * (5 * n.logit + 4)) / (pi^2 * n.logit * (5 * n.logit + 2))
    stat <- sqrt(k) * l_stat  # formula (13), Choi (2001), p. 254
    parameter <- c("df" = 5 * n.logit + 4)
    pvalue <- pt(stat, df = parameter, lower.tail = TRUE)
    adjval <- NULL
  }
  
  htest <- structure(list(statistic     = stat,
                          parameter     = parameter,
                          alternative   = alternative,
                          data.name     = data.name,
                          method        = method,
                          p.value       = pvalue,
                          ips.tbar.crit = ips.tbar.crit),
                     class = "htest")
  
  result <- list(statistic = htest,
                 call      = cl,
                 args      = args,
                 idres     = idres,
                 adjval    = adjval,
                 sigma2    = sigma2)
  class(result) <- "purtest"
  result
}


#' @rdname purtest
#' @export
print.purtest <- function(x, ...){
  print(x$statistic, ...)
  if (x$args$test == "ips" && x$args$ips.stat == "tbar"){
    cat("tbar critival values:\n")
    print(x$statistic$ips.tbar.crit, ...)
  }
  invisible(x)
}

#' @rdname purtest
#' @export
summary.purtest <- function(object, ...){
  if(!object$args$test == "hadri"){
    lags   <- vapply(object$idres, function(x) x[["lags"]],   FUN.VALUE = 0.0, USE.NAMES = FALSE)
    L      <- vapply(object$idres, function(x) x[["T"]],      FUN.VALUE = 0.0, USE.NAMES = FALSE)
    rho    <- vapply(object$idres, function(x) x[["rho"]],    FUN.VALUE = 0.0, USE.NAMES = FALSE)
    trho   <- vapply(object$idres, function(x) x[["trho"]],   FUN.VALUE = 0.0, USE.NAMES = FALSE)
    p.trho <- vapply(object$idres, function(x) x[["p.trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    sumidres <- cbind("lags"   = lags,
                      "obs"    = L - lags - 1,
                      "rho"    = rho,
                      "trho"   = trho,
                      "p.trho" = p.trho)
    
    if (object$args$test == "ips" && !object$args$ips.stat == "tbar") {
      sumidres <- cbind(sumidres, t(object$adjval))
    }
    if (object$args$test == "levinlin") {
      sumidres <- cbind(sumidres, object$sigma2)
    }
  } else {
    # hadri case
    LM     <- vapply(object$idres, function(x) x[["LM"]],     FUN.VALUE = 0.0, USE.NAMES = FALSE)
    sigma2 <- vapply(object$idres, function(x) x[["sigma2"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    sumidres <- cbind("LM" = LM, "sigma2" = sigma2)
  }
  
  nam <- names(object$idres)
  rownames(sumidres) <- nam
  object$sumidres <- sumidres
  class(object) <- c("summary.purtest", "purtest")
  object
}

#' @rdname purtest
#' @export
print.summary.purtest <- function(x, ...){
  cat(paste(purtest.names.test[x$args$test], "\n"))
  cat(paste("Exogenous variables:", purtest.names.exo[x$args$exo], "\n"))
  if (x$args$test != "hadri") {
    thelags <- vapply(x$idres, function(x) x[["lags"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    if (is.character(x$args$lags)){
      lagselectionmethod <- if (x$args$lags == "Hall") "Hall's method" else x$args$lags
      cat(paste0("Automatic selection of lags using ", lagselectionmethod, ": ",
                 min(thelags), " - ", max(thelags), " lags (max: ", x$args$pmax, ")\n"))
    }
    else{
      cat("User-provided lags\n")
    }
  }
  
  if (x$args$test == "ips") {
    cat(paste(paste0("statistic (", x$args$ips.stat,"):"), round(x$statistic$statistic, 3), "\n"))
  } else {
    cat(paste("statistic:", round(x$statistic$statistic, 3), "\n"))
  }
  cat(paste("p-value:", round(x$statistic$p.value, 3),   "\n"))
  if (x$args$test == "ips" && x$args$ips.stat == "tbar"){
    cat("tbar critival values:\n")
    print(x$statistic$ips.tbar.crit, ...)
  }
  cat("\n")
  print(x$sumidres, ...)
  invisible(x)
}





#' Simes Test for unit roots in panel data
#' 
#' Simes' test of intersection of individual hypothesis tests
#' (\insertCite{SIMES:86;textual}{plm}) applied to panel unit root tests as suggested by
#' \insertCite{HANCK:13;textual}{plm}.
#' 
#' Simes' approach to testing is combining p-values from single hypothesis tests
#' with a global (intersected) hypothesis. \insertCite{HANCK:13;textual}{plm}
#' mentions it can be applied to any panel unit root test which yield a p-value
#' for each individual series.
#' The test is robust versus general patterns of cross-sectional dependence.
#' 
#' Further, this approach allows to discriminate between individuals for which
#' the individual H0 (unit root present for individual series) is rejected/is
#' not rejected by Hommel's procedure (\insertCite{HOMM:88;textual}{plm}) for
#' family-wise error rate control (FWER) at pre-specified significance level
#' alpha via argument `alpha` (defaulting to `0.05`), i.e., it controls for the
#' multiplicity in testing.
#' 
#' The function `phansitest` takes as main input `object` either a plain numeric
#' containing p-values of individual tests or a `purtest` object which holds
#' a suitable pre-computed panel unit root test (one that produces p-values per
#' individual series).
#' 
#' The function's return value (see section Value) is a list with detailed
#' evaluation of the applied Simes test.
#' 
#' The associated `print` method prints a verbal evaluation.
#' 
#' @aliases phansitest
#' @param object either a numeric containing p-values of individual unit root 
#' test results (does not need to be sorted) or a suitable `purtest` object
#' (as produced by `purtest()` for a test which gives p-values of the individuals
#' (Hadri's test in `purtest` is not suitable)),
#' @param alpha numeric, the pre-specified significance level (defaults to `0.05`),
#' @param x an object of class `c("phansitest", "list")` as produced by 
#'          `phansitest` to be printed,
#' @param cutoff integer, cutoff value for printing of enumeration of individuals with
#' rejected individual H0, for print method only,
#' @param \dots further arguments (currently not used).
#' 
#' @return For `phansitest`, an object of class `c("phansitest", "list")` which i
#' s a list with the elements:
#' - `id`: integer, the identifier of the individual (integer sequence referring to
#' position in input),
#' - `name`: character, name of the input's individual (if it has a name,
#' otherwise "1", "2", "3", ...),
#' - `p`: numeric, p-values as input (either the numeric or extracted from
#' the purtest object),
#' - `p.hommel`: numeric, p-values after Hommel's transformation,
#' - `rejected`: logical, indicating for which individual the individual null
#' hypothesis is rejected (`TRUE`)/non-rejected (`FALSE`) (after controlling
#' for multiplicity),
#' - `rejected.no`: integer, giving the total number of rejected individual series,
#' - `alpha`: numeric, the input `alpha`.
#' 
#' @export
#' @importFrom stats p.adjust
#' 
#' @author Kevin Tappe
#' @seealso [purtest()], [cipstest()]
#' 
#' @references
#' \insertAllCited{}
#'  
#' @keywords htest
#
#' @examples
#' 
#' ### input is numeric (p-values)
#' #### example from Hanck (2013), Table 11 (left side)
#' pvals <- c(0.0001,0.0001,0.0001,0.0001,0.0001,0.0001,0.0050,0.0050,0.0050,
#'            0.0050,0.0175,0.0175,0.0200,0.0250,0.0400,0.0500,0.0575,0.2375,0.2475)
#'
#' countries <- c("Argentina","Sweden","Norway","Mexico","Italy","Finland","France",
#'               "Germany","Belgium","U.K.","Brazil","Australia","Netherlands",
#'               "Portugal","Canada", "Spain","Denmark","Switzerland","Japan")
#' names(pvals) <- countries
#' 
#' h <- phansitest(pvals)
#' print(h)              # (explicitly) prints test's evaluation
#' print(h, cutoff = 3L) # print only first 3 rejected ids 
#' h$rejected # logical indicating the individuals with rejected individual H0
#' 
#' 
#' ### input is a (suitable) purtest object
#' data("Grunfeld", package = "plm")
#' y <- data.frame(split(Grunfeld$inv, Grunfeld$firm))
#' obj <- purtest(y, pmax = 4, exo = "intercept", test = "madwu")
#' 
#' phansitest(obj)
#' 
phansitest <- function(object, alpha = 0.05) {
  
  is.purtest <- if(inherits(object, "purtest")) TRUE else FALSE
  if(!is.purtest) {
    if(is.numeric(object)) {
      if(anyNA(object)) stop("input p-values in 'object' contain at least one NA/NaN value")
      n <- length(object)
      p <- object
    } else {
      stop("argument 'object' needs to specify either a 'purtest' object or a numeric")
    }
  } else {
    # purtest object
    if(object$args$test == "hadri") stop("phansitest() [Hanck/Simes' test] not possible for purtest objects based on Hadri's test")
    p <- vapply(object$idres, function(x) x[["p.trho"]], FUN.VALUE = 0.0, USE.NAMES = FALSE)
    n <- length(p)
  }
  
  id <- seq_len(n)
  names(id) <- if(!is.null(names(p))) names(p) else id
  
  p.hommel <- p.adjust(p, method = "hommel")
  rejected.ind <- p.hommel <= alpha    # is TRUE for individual-H0-rejected individuals
  rejected.ind.no <- sum(rejected.ind) # number of rejected individuals
  
  res <- structure(list(id           = id,
                        name         = names(id),
                        p            = p,
                        p.hommel     = p.hommel,
                        rejected     = rejected.ind,
                        rejected.no  = rejected.ind.no,
                        alpha        = alpha),
                   class = c("phansitest", "list"))
  return(res)
}

phansi <- function(object, alpha = 0.05) {
  .Deprecated(new = "phansitest", msg = "function 'phansi' renamed to 'phansitest'. Change your code to use 'phansitest'.",
              old = "phansi")
  phansitest(object, alpha = alpha)
}


#' @rdname phansitest
#' @export
print.phansitest <- function(x, cutoff = 10L, ...) {
  if(round(cutoff) != cutoff) stop("Argument 'cutoff' has to be an integer")
  id         <- x$id
  alpha      <- x$alpha
  rej.ind    <- x$rejected
  rej.ind.no <- x$rejected.no
  n <- length(rej.ind)
  H0.txt <- "H0: All individual series have a unit root\n"
  HA.txt <- "HA: Stationarity for at least some individuals\n"
  H0.rej.txt     <- "H0 rejected (globally)"
  H0.not.rej.txt <- "H0 not rejected (globally)"
  test.txt <- "    Simes Test as Panel Unit Root Test (Hanck (2013))"
  
  cat("\n")
  cat(paste0("    ", test.txt, "\n"))
  cat("\n")
  cat(H0.txt)
  cat(HA.txt)
  cat("\n")
  cat(paste0("Alpha: ", alpha, "\n"))
  cat(paste0("Number of individuals: ", n, "\n"))
  
  cat("\n")
  cat("Evaluation:\n")
  if(rej.ind.no > 0L) {
    cat(paste0(" ", H0.rej.txt, "\n"))
    cat("\n")
    
    if(rej.ind.no <= cutoff && cutoff >= 0L) {
      ind.cutoff <- paste0(paste0(id[rej.ind], collapse = ", "))
      ind.txt <- paste0("Individual H0 rejected for ", rej.ind.no, " individual(s) (integer id(s)):\n")
      cat(paste0(" ", ind.txt))
      cat(paste0("  ", ind.cutoff, "\n"))
    }
    else { # cut off enumeration of individuals if more than specified in cutoff
      if(cutoff > 0L) {
        ind.cutoff <- paste0(paste0(id[rej.ind][seq_len(cutoff)], collapse = ", "), ", ...")
        ind.txt <- paste0("Individual H0 rejected for ", rej.ind.no ," individuals, only first ", cutoff, " printed (integer id(s)):\n")
        cat(paste0(" ", ind.txt))
        cat(paste0("  ", ind.cutoff, "\n"))
      } else cat(paste0(" Individual H0 rejected for ", rej.ind.no ," individuals. None printed as 'cutoff' set to ", cutoff, ".\n"))
    }
  } else {
    cat(paste0(" ", H0.rej.txt, "\n"))
  }
  invisible(x)
}