1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
# panelmodel and plm methods :
## panelmodel methods :
# - terms
# - vcov
# - fitted
# - residuals
# - df.residual
# - coef
# - print
# - update
# - deviance
# - nobs
## plm methods :
# - summary
# - print.summary
# - predict
# - formula
# - plot
# - residuals
# - fitted
#' @rdname plm
#' @export
terms.panelmodel <- function(x, ...){
terms(formula(x))
}
#' @rdname plm
#' @export
vcov.panelmodel <- function(object, ...){
object$vcov
}
#' @rdname plm
#' @export
fitted.panelmodel <- function(object, ...){
object$fitted.values
}
#' @rdname plm
#' @export
residuals.panelmodel <- function(object, ...){
object$residuals
}
#' @rdname plm
#' @export
df.residual.panelmodel <- function(object, ...){
object$df.residual
}
#' @rdname plm
#' @export
coef.panelmodel <- function(object, ...){
object$coefficients
}
#' @rdname plm
#' @export
print.panelmodel <- function(x, digits = max(3, getOption("digits") - 2),
width = getOption("width"), ...){
cat("\nModel Formula: ")
print(formula(x))
cat("\nCoefficients:\n")
print(coef(x), digits = digits)
cat("\n")
invisible(x)
}
#' Extract Total Number of Observations Used in Estimated Panelmodel
#'
#' This function extracts the total number of 'observations' from a
#' fitted panel model.
#'
#' The number of observations is usually the length of the residuals
#' vector. Thus, `nobs` gives the number of observations actually
#' used by the estimation procedure. It is not necessarily the number
#' of observations of the model frame (number of rows in the model
#' frame), because sometimes the model frame is further reduced by the
#' estimation procedure. This is, e.g., the case for first--difference
#' models estimated by `plm(..., model = "fd")` where the model
#' frame does not yet contain the differences (see also
#' **Examples**).
#'
#' @name nobs.plm
#' @aliases nobs
#' @importFrom stats nobs
#' @export nobs
#' @param object a `panelmodel` object for which the number of
#' total observations is to be extracted,
#' @param \dots further arguments.
#' @return A single number, normally an integer.
#' @seealso [pdim()]
#' @keywords attribute
#' @examples
#'
#' # estimate a panelmodel
#' data("Produc", package = "plm")
#' z <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp,data=Produc,
#' model="random", subset = gsp > 5000)
#'
#' nobs(z) # total observations used in estimation
#' pdim(z)$nT$N # same information
#' pdim(z) # more information about the dimensions (no. of individuals and time periods)
#'
#' # illustrate difference between nobs and pdim for first-difference model
#' data("Grunfeld", package = "plm")
#' fdmod <- plm(inv ~ value + capital, data = Grunfeld, model = "fd")
#' nobs(fdmod) # 190
#' pdim(fdmod)$nT$N # 200
#'
NULL
# nobs() function to extract total number of observations used for estimating the panelmodel
# like stats::nobs for lm objects
# NB: here, use object$residuals rather than residuals(object)
# [b/c the latter could do NA padding once NA padding works for plm objects.
# NA padded residuals would yield wrong result for nobs!]
#' @rdname nobs.plm
#' @export
nobs.panelmodel <- function(object, ...) {
if (inherits(object, "plm") || inherits(object, "panelmodel")) return(length(object$residuals))
else stop("Input 'object' needs to be of class 'plm' or 'panelmodel'")
}
# No of obs calculated as in print.summary.pgmm [code copied from there]
#' @rdname nobs.plm
#' @export
nobs.pgmm <- function(object, ...) {
if (inherits(object, "pgmm")) return(sum(unlist(object$residuals, use.names = FALSE) != 0))
else stop("Input 'object' needs to be of class 'pgmm', i. e., a GMM estimation with panel data estimated by pgmm()")
}
# Almost the same as the default method except that update.formula is
# replaced by update, so that the Formula method is used to update the
# formula
#' @rdname plm
#' @export
update.panelmodel <- function (object, formula., ..., evaluate = TRUE){
if (is.null(call <- object$call)) # was: getCall(object)))
stop("need an object with call component")
extras <- match.call(expand.dots = FALSE)$...
# update.Formula fails if latter rhs are . ; simplify the formula
# by removing the latter parts
if (! missing(formula.)){
newform <- Formula(formula.)
if (length(newform)[2L] == 2L && attr(newform, "rhs")[2L] == as.name("."))
newform <- formula(newform, rhs = 1)
call$formula <- update(formula(object), newform)
}
if (length(extras)) {
existing <- !is.na(match(names(extras), names(call)))
for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
if (any(!existing)) {
call <- c(as.list(call), extras[!existing])
call <- as.call(call)
}
}
if (evaluate)
eval(call, parent.frame())
else call
}
#' @rdname plm
#' @export
deviance.panelmodel <- function(object, model = NULL, ...){
if (is.null(model)) as.numeric(crossprod(resid(object)))
else as.numeric(crossprod(residuals(object, model = model)))
}
#' Summary for plm objects
#'
#' The summary method for plm objects generates some more information about
#' estimated plm models.
#'
#' The `summary` method for plm objects (`summary.plm`) creates an
#' object of class `c("summary.plm", "plm", "panelmodel")` that
#' extends the plm object it is run on with various information about
#' the estimated model like (inferential) statistics, see
#' **Value**. It has an associated print method
#' (`print.summary.plm`).
#'
#' @aliases summary.plm
#' @param object an object of class `"plm"`,
#' @param x an object of class `"summary.plm"`,
#' @param subset a character or numeric vector indicating a subset of
#' the table of coefficients to be printed for
#' `"print.summary.plm"`,
#' @param vcov a variance--covariance matrix furnished by the user or
#' a function to calculate one (see **Examples**),
#' @param digits number of digits for printed output,
#' @param width the maximum length of the lines in the printed output,
#' @param eq the selected equation for list objects
#' @param \dots further arguments.
#' @return An object of class `c("summary.plm", "plm",
#' "panelmodel")`. Some of its elements are carried over from the
#' associated plm object and described there
#' ([plm()]). The following elements are new or changed
#' relative to the elements of a plm object:
#'
#' \item{fstatistic}{'htest' object: joint test of significance of
#' coefficients (F or Chi-square test) (robust statistic in case of
#' supplied argument `vcov`, see [pwaldtest()] for details),}
#'
#' \item{coefficients}{a matrix with the estimated coefficients,
#' standard errors, t--values, and p--values, if argument `vcov` was
#' set to non-`NULL` the standard errors (and t-- and p--values) in
#' their respective robust variant,}
#'
#' \item{vcov}{the "regular" variance--covariance matrix of the coefficients (class "matrix"),}
#'
#' \item{rvcov}{only present if argument `vcov` was set to non-`NULL`:
#' the furnished variance--covariance matrix of the coefficients
#' (class "matrix"),}
#'
#' \item{r.squared}{a named numeric containing the R-squared ("rsq")
#' and the adjusted R-squared ("adjrsq") of the model,}
#'
#' \item{df}{an integer vector with 3 components, (p, n-p, p*), where
#' p is the number of estimated (non-aliased) coefficients of the
#' model, n-p are the residual degrees of freedom (n being number of
#' observations), and p* is the total number of coefficients
#' (incl. any aliased ones).}
#'
#' @export
#' @author Yves Croissant
#' @seealso [plm()] for estimation of various models; [vcovHC()] for
#' an example of a robust estimation of variance--covariance
#' matrix; [r.squared()] for the function to calculate R-squared;
#' [stats::print.power.htest()] for some information about class
#' "htest"; [fixef()] to compute the fixed effects for "within"
#' (=fixed effects) models and [within_intercept()] for an
#' "overall intercept" for such models; [pwaldtest()]
#' @keywords regression
#' @examples
#'
#' data("Produc", package = "plm")
#' zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
#' data = Produc, index = c("state","year"))
#' summary(zz)
#'
#' # summary with a furnished vcov, passed as matrix, as function, and
#' # as function with additional argument
#' data("Grunfeld", package = "plm")
#' wi <- plm(inv ~ value + capital,
#' data = Grunfeld, model="within", effect = "individual")
#' summary(wi, vcov = vcovHC(wi))
#' summary(wi, vcov = vcovHC)
#' summary(wi, vcov = function(x) vcovHC(x, method = "white2"))
#'
#' # extract F statistic
#' wi_summary <- summary(wi)
#' Fstat <- wi_summary[["fstatistic"]]
#'
#' # extract estimates and p-values
#' est <- wi_summary[["coefficients"]][ , "Estimate"]
#' pval <- wi_summary[["coefficients"]][ , "Pr(>|t|)"]
#'
#' # print summary only for coefficient "value"
#' print(wi_summary, subset = "value")
#'
summary.plm <- function(object, vcov = NULL, ...){
# summary.plm creates a specific summary.plm object that is derived
# from the associated plm object
vcov_arg <- vcov
model <- describe(object, "model")
# determine if intercept-only model (no other regressors)
coef_wo_int <- object$coefficients[!(names(coef(object)) %in% "(Intercept)")]
int.only <- !length(coef_wo_int)
# as cor() is not defined for intercept-only models, use different approach
# for R-squared ("rss" and "ess" are defined)
object$r.squared <- if(!int.only) {
c(rsq = r.squared(object),
adjrsq = r.squared(object, dfcor = TRUE))
} else {
c(rsq = r.squared(object, type = "rss"),
adjrsq = r.squared(object, type = "rss", dfcor = TRUE))
}
## determine if standard normal and Chisq test or t distribution and F test to be used
## (normal/chisq for all random models, all IV models, and HT via plm(., model="ht"))
use.norm.chisq <- if(model == "random" ||
length(formula(object))[2L] >= 2L ||
model == "ht") TRUE else FALSE
# perform Wald test of joint sign. of regressors only if there are
# other regressors besides the intercept
if(!int.only) {
object$fstatistic <- pwaldtest(object,
test = if(use.norm.chisq) "Chisq" else "F",
vcov = vcov_arg)
}
# construct the table of coefficients
if (!is.null(vcov_arg)) {
if (is.matrix(vcov_arg)) rvcov <- vcov_arg
if (is.function(vcov_arg)) rvcov <- vcov_arg(object)
std.err <- sqrt(diag(rvcov))
} else {
std.err <- sqrt(diag(stats::vcov(object)))
}
b <- coefficients(object)
z <- b / std.err
p <- if(use.norm.chisq) {
2 * pnorm(abs(z), lower.tail = FALSE)
} else {
2 * pt(abs(z), df = object$df.residual, lower.tail = FALSE)
}
# construct the object of class summary.plm
object$coefficients <- cbind(b, std.err, z, p)
colnames(object$coefficients) <- if(use.norm.chisq) {
c("Estimate", "Std. Error", "z-value", "Pr(>|z|)")
} else { c("Estimate", "Std. Error", "t-value", "Pr(>|t|)") }
## add some info to summary.plm object
# robust vcov (next to "normal" vcov)
if (!is.null(vcov_arg)) {
object$rvcov <- rvcov
rvcov.name <- paste0(deparse(substitute(vcov)))
attr(object$rvcov, which = "rvcov.name") <- rvcov.name
}
# mimics summary.lm's 'df' component
# 1st entry: no. coefs (w/o aliased coefs); 2nd: residual df; 3rd no. coefs /w aliased coefs
# NB: do not use length(object$coefficients) for 3rd entry!
object$df <- c(length(b), object$df.residual, length(object$aliased))
class(object) <- c("summary.plm", "plm", "panelmodel")
object
}
#' @rdname summary.plm
#' @export
print.summary.plm <- function(x, digits = max(3, getOption("digits") - 2),
width = getOption("width"), subset = NULL, ...){
formula <- formula(x)
has.instruments <- (length(formula)[2L] >= 2L)
effect <- describe(x, "effect")
model <- describe(x, "model")
if (model != "pooling") { cat(paste(effect.plm.list[effect], " ", sep = "")) }
cat(paste(model.plm.list[model], " Model", sep = ""))
if (model == "random"){
ercomp <- describe(x, "random.method")
cat(paste(" \n (", random.method.list[ercomp], "'s transformation)\n",
sep = ""))
}
else{
cat("\n")
}
if (has.instruments){
cat("Instrumental variable estimation\n")
if(model != "within") {
# don't print transformation method for FE models as there is only one
# such method for FE models but plenty for other model types
ivar <- describe(x, "inst.method")
cat(paste0(" (", inst.method.list[ivar], "'s transformation)\n"))
}
}
if (!is.null(x$rvcov)) {
cat("\nNote: Coefficient variance-covariance matrix supplied: ",
attr(x$rvcov, which = "rvcov.name"), "\n", sep = "")
}
cat("\nCall:\n")
print(x$call)
cat("\n")
pdim <- pdim(x)
print(pdim)
if (model %in% c("fd", "between")) {
# print this extra info, b/c model.frames of FD and between models
# have original (undifferenced/"un-between-ed") obs/rows of the data
cat(paste0("Observations used in estimation: ", nobs(x), "\n"))}
if (model == "random"){
cat("\nEffects:\n")
print(x$ercomp)
}
cat("\nResiduals:\n")
df <- x$df
rdf <- df[2L]
if (rdf > 5L) {
save.digits <- unlist(options(digits = digits))
on.exit(options(digits = save.digits))
print(sumres(x))
} else if (rdf > 0L) print(residuals(x), digits = digits)
if (rdf == 0L) { # estimation is a perfect fit
cat("ALL", x$df[1L], "residuals are 0: no residual degrees of freedom!")
cat("\n")
}
if (any(x$aliased, na.rm = TRUE)) {
# na.rm = TRUE because currently, RE tw unbalanced models might have NAs?
naliased <- sum(x$aliased, na.rm = TRUE)
cat("\nCoefficients: (", naliased, " dropped because of singularities)\n", sep = "")
} else cat("\nCoefficients:\n")
if (is.null(subset)) printCoefmat(coef(x), digits = digits)
else printCoefmat(coef(x)[subset, , drop = FALSE], digits = digits)
cat("\n")
cat(paste("Total Sum of Squares: ", signif(tss(x), digits), "\n", sep = ""))
cat(paste("Residual Sum of Squares: ", signif(deviance(x), digits), "\n", sep = ""))
cat(paste("R-Squared: ", signif(x$r.squared[1L], digits), "\n", sep = ""))
cat(paste("Adj. R-Squared: ", signif(x$r.squared[2L], digits), "\n", sep = ""))
# print Wald test of joint sign. of regressors only if there is a statistic
# in summary.plm object (not computed by summary.plm if there are no other
# regressors than the intercept
if(!is.null(fstat <- x$fstatistic)) {
if (names(fstat$statistic) == "F"){
cat(paste("F-statistic: ", signif(fstat$statistic),
" on ", fstat$parameter["df1"]," and ", fstat$parameter["df2"],
" DF, p-value: ", format.pval(fstat$p.value,digits=digits), "\n", sep=""))
}
else{
cat(paste("Chisq: ", signif(fstat$statistic),
" on ", fstat$parameter,
" DF, p-value: ", format.pval(fstat$p.value, digits = digits), "\n", sep=""))
}
}
invisible(x)
}
#' Model Prediction for plm Objects
#'
#' Predicted values of response based on plm models.
#'
#' `predict`calculates predicted values by evaluating the regression function of
#' a plm model for `newdata` or, if `newdata = NULL`, it returns the fitted values
#' the plm model.
#'
#' The fixed effects (within) model is somewhat special in prediction as it has
#' fixed effects estimated per individual, time period (one-way) or both (two-ways
#' model) which should to be respected when predicting values relating to these
#' fixed effects in the model: To do so, it is recommended to supply a pdata.frame
#' (and not a plain data.frame) in `newdata` as it describes the relationship
#' between the data supplied to the individual. and/or time periods. In case
#' the `newdata`ยด's pdata.frame has out-of-sample data (data contains individuals
#' and/or time periods not contained in the original model), it is not clear
#' how values are to be predicted and the result will contain `NA`
#' values for these out-of-sample data. Argument `na.fill` can be set to `TRUE`
#' to apply the original model's weighted mean of fixed effects for the
#' out-of-sample data to derive a prediction.
#'
#' If a plain data.frame is given in `newdata` for a fixed effects model, the
#' weighted mean is used for all fixed effects as `newdata` for prediction as a
#' plain data.frame cannot describe any relation to individuals/time periods
#' (`na.fill` is automatically set to `TRUE` and the function warns).
#'
#' See also **Examples**.
#'
#'
#' @param object An object of class `"plm"`,
#' @param newdata An optional pdata.frame in which to look for variables to be
#' used for prediction. If `NULL`, the fitted values are returned.
#' For fixed effects models, supplying a pdata.frame is recommended.
#' @param na.fill A logical, only relevant if `object` is a pdata.frame, indicating
#' whether for any supplied out-of-sample indexes (individual, time,
#' combination of both), the missing fixed effect estimate is filled
#' with the weighted mean of the model's present fixed effect estimates
#' or not.
#' @param \dots further arguments.
#' @return A numeric (or a pseries if `newdata` is a pdata.frame) carrying the
#' predicted values with length equal to the number of rows as the data
#' supplied in `newdata` and with names the row names of `newdata` or, if
#' `newdata = NULL`, the fitted values the original model given in `object`.
#' @keywords regression
#' @export
#' @rdname predict.plm
#' @examples
#' library(plm)
#' data("Grunfeld", package = "plm")
#'
#' # fit a fixed effect model
#' fit.fe <- plm(inv ~ value + capital, data = Grunfeld, model = "within")
#'
#' # generate 55 new observations of three firms used for prediction:
#' # * firm 1 with years 1935:1964 (has out-of-sample years 1955:1964),
#' # * firm 2 with years 1935:1949 (all in sample),
#' # * firm 11 with years 1935:1944 (firm 11 is out-of-sample)
#' set.seed(42L)
#'
#' new.value2 <- runif(55, min = min(Grunfeld$value), max = max(Grunfeld$value))
#' new.capital2 <- runif(55, min = min(Grunfeld$capital), max = max(Grunfeld$capital))
#'
#' newdata <- data.frame(firm = c(rep(1, 30), rep(2, 15), rep(11, 10)),
#' year = c(1935:(1935+29), 1935:(1935+14), 1935:(1935+9)),
#' value = new.value2, capital = new.capital2)
#' # make pdata.frame
#' newdata.p <- pdata.frame(newdata, index = c("firm", "year"))
#'
#' ## predict from fixed effect model with new data as pdata.frame
#' predict(fit.fe, newdata = newdata.p)
#'
#' ## set na.fill = TRUE to have the weighted mean used to for fixed effects -> no NA values
#' predict(fit.fe, newdata = newdata.p, na.fill = TRUE)
#'
#' ## predict with plain data.frame from fixed effect model: uses mean fixed effects
#' ## for prediction and, thus, yields different result with a warning
#' predict(fit.fe, newdata = newdata)
#'
predict.plm <- function(object, newdata = NULL, na.fill = !inherits(newdata, "pdata.frame"), ...) {
# NB (TODO?): for between and FD models: output is of different length for
# newdata = NULL (output is compressed data) and for
# newdata = original pdata.frame (output has original length)
tt <- terms(object)
if(is.null(newdata)){
# return fitted values of estimated model and exit
result <- fitted_exp.plm(object, ...) # fitted_exp.plm gives outer model's fitted values
}
else{
Terms <- delete.response(tt)
m <- model.frame(Terms, newdata)
X <- model.matrix(Terms, m)
beta <- coef(object)
model <- describe(object, "model")
is.pdf <- inherits(newdata, "pdata.frame")
if(model == "within") {
# remove intercept if contained in the formula/terms and, thus, in the
# model matrix
# (usually, users does not explicitly suppress the
# intercept in FE models (e.g., by response ~ 0 + depvars), but we need
# to cater for that suppressed-case as well by has.intercept(tt))
if(has.intercept(tt)) X <- X[ , -1L, drop = FALSE]
effect <- describe(object, "effect")
effs.orig <- fixef(object, effect = effect)
idx <- switch(effect, "individual" = 1L, "time" = 2L)
if(is.pdf) {
model.idx <- unclass(index(object)) # unclass for speed
newdata.idx <- unclass(index(newdata))
if(effect %in% c("individual", "time")) {
# one-way
model.idx.eff <- model.idx[[idx]]
newdata.idx.eff <- newdata.idx[[idx]]
effs <- effs.orig[levels(newdata.idx.eff)][newdata.idx.eff] # has length corresponding to newdata
if(na.fill & sum(out.of.sample <- !newdata.idx.eff %in% model.idx.eff) > 0L) {
pdim <- pdim(object)
effs[out.of.sample] <- weighted.mean(effs.orig, w = pdim$Tint[[idx]])
}
} else {
# two-ways
# two-ways case is a little special as the rows of id-time combinations
# need to be determined first (not as simple subsetting as in one-way case)
model.idx.id <- model.idx[[1L]]
model.idx.ti <- model.idx[[2L]]
newdata.idx.id <- newdata.idx[[1L]]
newdata.idx.ti <- newdata.idx[[2L]]
model.idx.tw <- paste(model.idx.id, model.idx.ti, sep = "_")
newdata.idx.tw <- paste(newdata.idx.id, newdata.idx.ti, sep = "_")
names(effs.orig) <- model.idx.tw
effs <- effs.orig[newdata.idx.tw] # has length corresponding to newdata
if(na.fill & sum(out.of.sample <- !newdata.idx.tw %in% model.idx.tw) > 0L) {
pdim <- pdim(object)
effs[out.of.sample] <- mean(effs.orig)
}
}
} else {
# newdata is not a pdata.frame: use (weighted) mean of fixed effects as best guess
# (argument na.fill is not evaluated here as for a data.frame all values would
# be NA, so rather weighted mean of fixed effects is always applied)
warning("Data supplied in argument 'newdata' is not a pdata.frame; weighted mean of fixed effects as in original model used for prediction, see ?predict.plm.")
pdim <- pdim(object)
effs <- if(na.fill) {
if(effect == "twoways") mean(effs.orig) else weighted.mean(effs.orig, w = pdim$Tint[[idx]])
} else NA
effs <- rep(effs, nrow(X))
}
} # end-if model == "within"
result <- as.numeric(tcrossprod(beta, X)) + if(model == "within") effs else 0
# if newdata is a pdata.frame output a pseries w/ index stripped down to what
# is left after NA-omitting (performed implicitly by model.frame)
if(is.pdf) {
result.index <- if(!is.null(rmrows <- unclass(attr(m, "na.action")))) index(newdata[-rmrows, ]) else index(newdata)
result <- add_pseries_features(result, result.index)
}
names(result) <- rownames(m)
}
result
}
#' @rdname plm
#' @export
formula.plm <- function(x, ...){
x$formula
}
#' @rdname plm
#' @export
plot.plm <- function(x, dx = 0.2, N = NULL, seed = 1,
within = TRUE, pooling = TRUE,
between = FALSE, random = FALSE, ...){
set.seed(seed)# 8 est bien pour beertax
subs <- ! is.null(N)
x <- update(x, model = "within")
mco <- update(x, model = "pooling")
if (random) re <- update(x, model = "random")
if (between) be <- update(x, model = "between")
pdim <- pdim(x)
n <- pdim$nT$n
if (! subs) N <- n
ids <- unique(index(x, "id"))
if (subs) ids <- ids[sample(seq_along(ids), N, replace = FALSE)]
sel <- index(x, "id") %in% ids
T. <- pdim$nT$T
cols <- rainbow(N)
pts <- sample(1:25, N, replace = TRUE)
thex <- as.numeric(model.matrix(x, model = "pooling")[sel, 2L])
they <- as.numeric(pmodel.response(x, model = "pooling")[sel])
plot(thex, they, col = rep(cols, each = T.),
pch = rep(pts, each = T.), ann = FALSE, las = 1)
idsel <- as.numeric(index(x, "id")[sel])
meanx <- tapply(thex, idsel, mean)
meany <- tapply(they, idsel, mean)
points(meanx, meany, pch = 19, col = cols, cex = 1.5)
if (within){
beta <- coef(x)
alphas <- meany - meanx * beta
dx <- dx * (max(thex) - min(thex))
for (i in seq_len(N)){
xmin <- meanx[i] - dx
xmax <- meanx[i] + dx
ymin <- alphas[i] + beta * xmin
ymax <- alphas[i] + beta * xmax
lines(c(xmin, xmax), c(ymin, ymax), col = cols[i])
}
}
if(random) abline(coef(re)[1L], coef(re)[2L], lty = "dotted")
if(pooling) abline(coef(mco), lty = "dashed")
if(between) abline(coef(be), lty = "dotdash")
# where to put the legends, depends on the sign of the OLS slope
modploted <- c(random, pooling, between, within)
if (sum(modploted)){
poslegend <- ifelse(beta > 0, "topleft", "topright")
ltylegend <- c("dotted", "dashed", "dotdash", "solid")[modploted]
leglegend <- c("random", "pooling", "between", "within")[modploted]
legend(poslegend, lty = ltylegend, legend = leglegend)
}
}
#' @rdname plm
#' @export
residuals.plm <- function(object, model = NULL, effect = NULL, ...){
if (is.null(model) && is.null(effect)){
model <- describe(object, "model")
res <- object$residuals
}
else{
cl <- match.call(expand.dots = FALSE)
# fitted -> call to the plm method, used to be fitted.plm
# which is not exported
# cl[[1L]] <- as.name("fitted.plm")
cl[[1L]] <- as.name("fitted")
bX <- eval(cl, parent.frame())
if (is.null(model)) model <- describe(object, "model")
if (is.null(effect)) effect <- describe(object, "effect")
y <- pmodel.response(object, model = model, effect = effect)
res <- y - bX
}
res <- if (model %in% c("between", "fd")) {
# these models "compress" the data, thus an index does not make sense here
# -> do not return pseries but plain numeric
res
} else {
structure(res, index = index(object), class = unique(c("pseries", class(res))))
}
return(res)
}
#' @rdname plm
#' @export
fitted.plm <- function(object, model = NULL, effect = NULL, ...){
fittedmodel <- describe(object, "model")
if (is.null(model)) model <- fittedmodel
if (is.null(effect)) effect <- describe(object, "effect")
if (fittedmodel == "random") theta <- ercomp(object)$theta else theta <- NULL
X <- model.matrix(object, model = "pooling")
y <- pmodel.response(object, model = "pooling", effect = effect)
beta <- coef(object)
comonpars <- intersect(names(beta), colnames(X))
bX <- as.numeric(crossprod(t(X[, comonpars, drop = FALSE]), beta[comonpars]))
bX <- structure(bX, index = index(object), class = unique(c("pseries", class(bX))))
if (fittedmodel == "within"){
intercept <- mean(y - bX)
bX <- bX + intercept
}
ptransform(bX, model = model, effect = effect, theta = theta)
}
|