File: tool_methods.R

package info (click to toggle)
r-cran-plm 2.6-2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,032 kB
  • sloc: sh: 13; makefile: 4
file content (721 lines) | stat: -rw-r--r-- 28,275 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
# panelmodel and plm methods :

## panelmodel methods :
# - terms
# - vcov
# - fitted
# - residuals
# - df.residual
# - coef
# - print
# - update
# - deviance
# - nobs

## plm methods :
# - summary
# - print.summary
# - predict
# - formula
# - plot
# - residuals
# - fitted


#' @rdname plm
#' @export
terms.panelmodel <- function(x, ...){
  terms(formula(x))
}

#' @rdname plm
#' @export
vcov.panelmodel <- function(object, ...){
  object$vcov
}

#' @rdname plm
#' @export
fitted.panelmodel <- function(object, ...){
  object$fitted.values 
}

#' @rdname plm
#' @export
residuals.panelmodel <- function(object, ...){
  object$residuals
}

#' @rdname plm
#' @export
df.residual.panelmodel <- function(object, ...){
  object$df.residual
}

#' @rdname plm
#' @export
coef.panelmodel <- function(object, ...){
  object$coefficients
}

#' @rdname plm
#' @export
print.panelmodel <- function(x, digits = max(3, getOption("digits") - 2),
                             width = getOption("width"), ...){
  cat("\nModel Formula: ")
  print(formula(x))
  cat("\nCoefficients:\n")
  print(coef(x), digits = digits)
  cat("\n")
  invisible(x)
}


#' Extract Total Number of Observations Used in Estimated Panelmodel
#' 
#' This function extracts the total number of 'observations' from a
#' fitted panel model.
#' 
#' The number of observations is usually the length of the residuals
#' vector. Thus, `nobs` gives the number of observations actually
#' used by the estimation procedure. It is not necessarily the number
#' of observations of the model frame (number of rows in the model
#' frame), because sometimes the model frame is further reduced by the
#' estimation procedure. This is, e.g., the case for first--difference
#' models estimated by `plm(..., model = "fd")` where the model
#' frame does not yet contain the differences (see also
#' **Examples**).
#'
#' @name nobs.plm
#' @aliases nobs
#' @importFrom stats nobs
#' @export nobs
#' @param object a `panelmodel` object for which the number of
#'     total observations is to be extracted,
#' @param \dots further arguments.
#' @return A single number, normally an integer.
#' @seealso [pdim()]
#' @keywords attribute
#' @examples
#' 
#' # estimate a panelmodel
#' data("Produc", package = "plm")
#' z <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp,data=Produc,
#'          model="random", subset = gsp > 5000)
#'          
#' nobs(z)       # total observations used in estimation
#' pdim(z)$nT$N  # same information
#' pdim(z)       # more information about the dimensions (no. of individuals and time periods)
#' 
#' # illustrate difference between nobs and pdim for first-difference model
#' data("Grunfeld", package = "plm")
#' fdmod <- plm(inv ~ value + capital, data = Grunfeld, model = "fd")
#' nobs(fdmod)      # 190
#' pdim(fdmod)$nT$N # 200
#' 
NULL

# nobs() function to extract total number of observations used for estimating the panelmodel
# like stats::nobs for lm objects
# NB: here, use object$residuals rather than residuals(object)
#     [b/c the latter could do NA padding once NA padding works for plm objects.
#      NA padded residuals would yield wrong result for nobs!]

#' @rdname nobs.plm
#' @export
nobs.panelmodel <- function(object, ...) {
  if (inherits(object, "plm") || inherits(object, "panelmodel")) return(length(object$residuals))
    else stop("Input 'object' needs to be of class 'plm' or 'panelmodel'")
}

# No of obs calculated as in print.summary.pgmm [code copied from there]
#' @rdname nobs.plm
#' @export
nobs.pgmm <- function(object, ...) {
  if (inherits(object, "pgmm")) return(sum(unlist(object$residuals, use.names = FALSE) != 0))
    else stop("Input 'object' needs to be of class 'pgmm', i. e., a GMM estimation with panel data estimated by pgmm()")
}




# Almost the same as the default method except that update.formula is
# replaced by update, so that the Formula method is used to update the
# formula

#' @rdname plm
#' @export
update.panelmodel <- function (object, formula., ..., evaluate = TRUE){
    if (is.null(call <- object$call)) # was: getCall(object))) 
        stop("need an object with call component")
    extras <- match.call(expand.dots = FALSE)$...
    # update.Formula fails if latter rhs are . ; simplify the formula
    # by removing the latter parts

    if (! missing(formula.)){
        newform <- Formula(formula.)
        if (length(newform)[2L] == 2L && attr(newform, "rhs")[2L] == as.name("."))
            newform <- formula(newform, rhs = 1)
        call$formula <- update(formula(object), newform)
    }
    if (length(extras)) {
        existing <- !is.na(match(names(extras), names(call)))
        for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
        if (any(!existing)) {
            call <- c(as.list(call), extras[!existing])
            call <- as.call(call)
        }
    }
    if (evaluate) 
        eval(call, parent.frame())
    else call
}

#' @rdname plm
#' @export
deviance.panelmodel <- function(object, model = NULL, ...){
  if (is.null(model)) as.numeric(crossprod(resid(object)))
  else as.numeric(crossprod(residuals(object, model = model)))
}





#' Summary for plm objects
#' 
#' The summary method for plm objects generates some more information about
#' estimated plm models.
#' 
#' The `summary` method for plm objects (`summary.plm`) creates an
#' object of class `c("summary.plm", "plm", "panelmodel")` that
#' extends the plm object it is run on with various information about
#' the estimated model like (inferential) statistics, see
#' **Value**. It has an associated print method
#' (`print.summary.plm`).
#' 
#' @aliases summary.plm
#' @param object an object of class `"plm"`,
#' @param x an object of class `"summary.plm"`,
#' @param subset a character or numeric vector indicating a subset of
#'     the table of coefficients to be printed for
#'     `"print.summary.plm"`,
#' @param vcov a variance--covariance matrix furnished by the user or
#'     a function to calculate one (see **Examples**),
#' @param digits number of digits for printed output,
#' @param width the maximum length of the lines in the printed output,
#' @param eq the selected equation for list objects
#' @param \dots further arguments.
#' @return An object of class `c("summary.plm", "plm",
#'     "panelmodel")`.  Some of its elements are carried over from the
#'     associated plm object and described there
#'     ([plm()]). The following elements are new or changed
#'     relative to the elements of a plm object:
#' 
#' \item{fstatistic}{'htest' object: joint test of significance of
#' coefficients (F or Chi-square test) (robust statistic in case of
#' supplied argument `vcov`, see [pwaldtest()] for details),}
#' 
#' \item{coefficients}{a matrix with the estimated coefficients,
#' standard errors, t--values, and p--values, if argument `vcov` was
#' set to non-`NULL` the standard errors (and t-- and p--values) in
#' their respective robust variant,}
#'
#' \item{vcov}{the "regular" variance--covariance matrix of the coefficients (class "matrix"),}
#'
#' \item{rvcov}{only present if argument `vcov` was set to non-`NULL`:
#' the furnished variance--covariance matrix of the coefficients
#' (class "matrix"),}
#'
#' \item{r.squared}{a named numeric containing the R-squared ("rsq")
#' and the adjusted R-squared ("adjrsq") of the model,}
#'
#' \item{df}{an integer vector with 3 components, (p, n-p, p*), where
#' p is the number of estimated (non-aliased) coefficients of the
#' model, n-p are the residual degrees of freedom (n being number of
#' observations), and p* is the total number of coefficients
#' (incl. any aliased ones).}
#'
#' @export
#' @author Yves Croissant
#' @seealso [plm()] for estimation of various models; [vcovHC()] for
#'     an example of a robust estimation of variance--covariance
#'     matrix; [r.squared()] for the function to calculate R-squared;
#'     [stats::print.power.htest()] for some information about class
#'     "htest"; [fixef()] to compute the fixed effects for "within"
#'     (=fixed effects) models and [within_intercept()] for an
#'     "overall intercept" for such models; [pwaldtest()]
#' @keywords regression
#' @examples
#' 
#' data("Produc", package = "plm")
#' zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
#'           data = Produc, index = c("state","year"))
#' summary(zz)
#' 
#' # summary with a furnished vcov, passed as matrix, as function, and
#' # as function with additional argument
#' data("Grunfeld", package = "plm")
#' wi <- plm(inv ~ value + capital,
#'           data = Grunfeld, model="within", effect = "individual")
#' summary(wi, vcov = vcovHC(wi))
#' summary(wi, vcov = vcovHC)
#' summary(wi, vcov = function(x) vcovHC(x, method = "white2"))
#' 
#' # extract F statistic
#' wi_summary <- summary(wi)
#' Fstat <- wi_summary[["fstatistic"]]
#' 
#' # extract estimates and p-values
#' est <- wi_summary[["coefficients"]][ , "Estimate"]
#' pval <- wi_summary[["coefficients"]][ , "Pr(>|t|)"]
#' 
#' # print summary only for coefficient "value"
#' print(wi_summary, subset = "value")
#' 
summary.plm <- function(object, vcov = NULL, ...){
  # summary.plm creates a specific summary.plm object that is derived
  # from the associated plm object
  
  vcov_arg <- vcov
  model <- describe(object, "model")
  
  # determine if intercept-only model (no other regressors)
  coef_wo_int <- object$coefficients[!(names(coef(object)) %in% "(Intercept)")]
  int.only <- !length(coef_wo_int)
  
  # as cor() is not defined for intercept-only models, use different approach
  # for R-squared ("rss" and "ess" are defined)
  object$r.squared <- if(!int.only) {
      c(rsq    = r.squared(object),
        adjrsq = r.squared(object, dfcor = TRUE))
    } else { 
      c(rsq    = r.squared(object, type = "rss"),
        adjrsq = r.squared(object, type = "rss", dfcor = TRUE))
    }
  
  ## determine if standard normal and Chisq test or t distribution and F test to be used
  ## (normal/chisq for all random models, all IV models, and HT via plm(., model="ht"))
  use.norm.chisq <- if(model == "random" || 
                       length(formula(object))[2L] >= 2L || 
                       model == "ht") TRUE else FALSE
  
  # perform Wald test of joint sign. of regressors only if there are
  # other regressors besides the intercept
  if(!int.only) {
    object$fstatistic <- pwaldtest(object,
                                   test = if(use.norm.chisq) "Chisq" else "F",
                                   vcov = vcov_arg)
  }
  
  
  # construct the table of coefficients
  if (!is.null(vcov_arg)) {
    if (is.matrix(vcov_arg))   rvcov <- vcov_arg
    if (is.function(vcov_arg)) rvcov <- vcov_arg(object)
    std.err <- sqrt(diag(rvcov))
  } else {
    std.err <- sqrt(diag(stats::vcov(object)))
  }
  b <- coefficients(object)
  z <- b / std.err
  p <- if(use.norm.chisq) {
    2 * pnorm(abs(z), lower.tail = FALSE)
  } else {
    2 * pt(abs(z), df = object$df.residual, lower.tail = FALSE)
  }
  
  # construct the object of class summary.plm
  object$coefficients <- cbind(b, std.err, z, p)
  colnames(object$coefficients) <- if(use.norm.chisq) {
    c("Estimate", "Std. Error", "z-value", "Pr(>|z|)")
  } else { c("Estimate", "Std. Error", "t-value", "Pr(>|t|)") }
  
  ## add some info to summary.plm object 
  # robust vcov (next to "normal" vcov)
  if (!is.null(vcov_arg)) {
    object$rvcov <- rvcov
    rvcov.name <- paste0(deparse(substitute(vcov)))
    attr(object$rvcov, which = "rvcov.name") <- rvcov.name 
  }
  
  # mimics summary.lm's 'df' component
  # 1st entry: no. coefs (w/o aliased coefs); 2nd: residual df; 3rd no. coefs /w aliased coefs
  # NB: do not use length(object$coefficients) for 3rd entry!
  object$df <- c(length(b), object$df.residual, length(object$aliased))
  
  class(object) <- c("summary.plm", "plm", "panelmodel")
  object
}

#' @rdname summary.plm
#' @export
print.summary.plm <- function(x, digits = max(3, getOption("digits") - 2),
                              width = getOption("width"), subset = NULL, ...){
  formula <- formula(x)
  has.instruments <- (length(formula)[2L] >= 2L)
  effect <- describe(x, "effect")
  model  <- describe(x, "model")
  if (model != "pooling") { cat(paste(effect.plm.list[effect], " ", sep = "")) }
  cat(paste(model.plm.list[model], " Model", sep = ""))
  
  if (model == "random"){
    ercomp <- describe(x, "random.method")
    cat(paste(" \n   (", random.method.list[ercomp], "'s transformation)\n",
              sep = ""))
  }
  else{
    cat("\n")
  }
  
  if (has.instruments){
    cat("Instrumental variable estimation\n")
    if(model != "within") {
      # don't print transformation method for FE models as there is only one
      # such method for FE models but plenty for other model types
      ivar <- describe(x, "inst.method")
      cat(paste0("   (", inst.method.list[ivar], "'s transformation)\n"))
    }
  }
  
  if (!is.null(x$rvcov)) {
    cat("\nNote: Coefficient variance-covariance matrix supplied: ", 
        attr(x$rvcov, which = "rvcov.name"), "\n", sep = "")
  }
  
  cat("\nCall:\n")
  print(x$call)
  cat("\n")
  pdim <- pdim(x)
  print(pdim)
  if (model %in% c("fd", "between")) {
    # print this extra info, b/c model.frames of FD and between models
    # have original (undifferenced/"un-between-ed") obs/rows of the data
    cat(paste0("Observations used in estimation: ", nobs(x), "\n"))}
  
  if (model == "random"){
    cat("\nEffects:\n")
    print(x$ercomp)
  }
  cat("\nResiduals:\n")
  df <- x$df
  rdf <- df[2L]
  if (rdf > 5L) {
    save.digits <- unlist(options(digits = digits))
    on.exit(options(digits = save.digits))
    print(sumres(x))
  } else if (rdf > 0L) print(residuals(x), digits = digits)
  if (rdf == 0L) { # estimation is a perfect fit
    cat("ALL", x$df[1L], "residuals are 0: no residual degrees of freedom!")
    cat("\n")
  }
  
  if (any(x$aliased, na.rm = TRUE)) {
    # na.rm = TRUE because currently, RE tw unbalanced models might have NAs?
    naliased <- sum(x$aliased, na.rm = TRUE)
    cat("\nCoefficients: (", naliased, " dropped because of singularities)\n", sep = "")
  } else cat("\nCoefficients:\n")
  
  if (is.null(subset)) printCoefmat(coef(x), digits = digits)
  else printCoefmat(coef(x)[subset, , drop = FALSE], digits = digits)
  cat("\n")
  cat(paste("Total Sum of Squares:    ", signif(tss(x),      digits), "\n", sep = ""))
  cat(paste("Residual Sum of Squares: ", signif(deviance(x), digits), "\n", sep = ""))
  cat(paste("R-Squared:      ", signif(x$r.squared[1L], digits),      "\n", sep = ""))
  cat(paste("Adj. R-Squared: ", signif(x$r.squared[2L], digits),      "\n", sep = ""))

  # print Wald test of joint sign. of regressors only if there is a statistic
  # in summary.plm object (not computed by summary.plm if there are no other
  # regressors than the intercept
  if(!is.null(fstat <- x$fstatistic)) {
    if (names(fstat$statistic) == "F"){
      cat(paste("F-statistic: ", signif(fstat$statistic),
                " on ", fstat$parameter["df1"]," and ", fstat$parameter["df2"],
                " DF, p-value: ", format.pval(fstat$p.value,digits=digits), "\n", sep=""))
    }
    else{
      cat(paste("Chisq: ", signif(fstat$statistic),
                " on ", fstat$parameter,
                " DF, p-value: ", format.pval(fstat$p.value, digits = digits), "\n", sep=""))
    }
  }
  invisible(x)
}

#' Model Prediction for plm Objects
#' 
#' Predicted values of response based on plm models.
#' 
#' `predict`calculates predicted values by evaluating the regression function of
#' a plm model for `newdata` or, if `newdata = NULL`, it returns the fitted values
#' the plm model. 
#' 
#' The fixed effects (within) model is somewhat special in prediction as it has
#' fixed effects estimated per individual, time period (one-way) or both (two-ways
#' model) which should to be respected when predicting values relating to these
#' fixed effects in the model: To do so, it is recommended to supply a pdata.frame 
#' (and not a plain data.frame) in `newdata` as it describes the relationship 
#' between the data supplied to the individual. and/or time periods. In case
#' the `newdata`ยด's pdata.frame has out-of-sample data (data contains individuals 
#' and/or time periods not contained in the original model), it is not clear
#' how values are to be predicted and the result will contain `NA` 
#' values for these out-of-sample data. Argument `na.fill` can be set to `TRUE`
#' to apply the original model's weighted mean of fixed effects for the 
#' out-of-sample data to derive a prediction.
#' 
#' If a plain data.frame is given in `newdata` for a fixed effects model, the 
#' weighted mean is used for all fixed effects as `newdata` for prediction as a 
#' plain data.frame cannot describe any relation to individuals/time periods 
#' (`na.fill` is automatically set to `TRUE` and the function warns).
#' 
#' See also **Examples**.
#' 
#' 
#' @param object An object of class `"plm"`,
#' @param newdata An optional pdata.frame in which to look for variables to be
#'                used for prediction. If `NULL`, the fitted values are returned.
#'                For fixed effects models, supplying a pdata.frame is recommended.
#' @param na.fill A logical, only relevant if `object` is a pdata.frame, indicating
#'                whether for any supplied out-of-sample indexes (individual, time,
#'                combination of both), the missing fixed effect estimate is filled 
#'                with the weighted mean of the model's present fixed effect estimates
#'                or not.
#' @param \dots further arguments.
#' @return A numeric (or a pseries if `newdata` is a pdata.frame) carrying the 
#'         predicted values with length equal to the number of rows as the data 
#'         supplied in `newdata` and with names the row names of `newdata` or, if 
#'         `newdata = NULL`, the fitted values the original model given in `object`.
#' @keywords regression
#' @export
#' @rdname predict.plm
#' @examples
#' library(plm)
#' data("Grunfeld", package = "plm")
#' 
#' # fit a fixed effect model
#' fit.fe <- plm(inv ~ value + capital, data = Grunfeld, model = "within")
#' 
#' # generate 55 new observations of three firms used for prediction:
#' #  * firm 1 with years 1935:1964 (has out-of-sample years 1955:1964), 
#' #  * firm 2 with years 1935:1949 (all in sample),
#' #  * firm 11 with years 1935:1944 (firm 11 is out-of-sample)
#' set.seed(42L)
#' 
#' new.value2   <- runif(55, min = min(Grunfeld$value),   max = max(Grunfeld$value))
#' new.capital2 <- runif(55, min = min(Grunfeld$capital), max = max(Grunfeld$capital))
#' 
#' newdata <- data.frame(firm = c(rep(1, 30), rep(2, 15), rep(11, 10)),
#'                       year = c(1935:(1935+29), 1935:(1935+14), 1935:(1935+9)),
#'                       value = new.value2, capital = new.capital2)
#' # make pdata.frame
#' newdata.p <- pdata.frame(newdata, index = c("firm", "year"))
#' 
#' ## predict from fixed effect model with new data as pdata.frame
#' predict(fit.fe, newdata = newdata.p)
#' 
#' ## set na.fill = TRUE to have the weighted mean used to for fixed effects -> no NA values
#' predict(fit.fe, newdata = newdata.p, na.fill = TRUE)
#' 
#' ## predict with plain data.frame from fixed effect model: uses mean fixed effects 
#' ## for prediction and, thus, yields different result with a warning
#' predict(fit.fe, newdata = newdata)
#' 
predict.plm <- function(object, newdata = NULL, na.fill = !inherits(newdata, "pdata.frame"), ...) {
  # NB (TODO?): for between and FD models: output is of different length for 
  #     newdata = NULL (output is compressed data) and for 
  #     newdata = original pdata.frame (output has original length)
  
  tt <- terms(object)
  if(is.null(newdata)){ 
    # return fitted values of estimated model and exit
    result <- fitted_exp.plm(object, ...) # fitted_exp.plm gives outer model's fitted values
  }
  else{
    Terms <- delete.response(tt)
    m <- model.frame(Terms, newdata)
    X <- model.matrix(Terms, m)
    beta <- coef(object)
    model <- describe(object, "model")
    is.pdf <- inherits(newdata, "pdata.frame")
    
    if(model == "within") {
      # remove intercept if contained in the formula/terms and, thus, in the 
      # model matrix
      #  (usually, users does not explicitly suppress the
      #  intercept in FE models (e.g., by response ~ 0 + depvars), but we need 
      #  to cater for that suppressed-case as well by has.intercept(tt))
      if(has.intercept(tt)) X <- X[ , -1L, drop = FALSE]
      effect <- describe(object, "effect")
      effs.orig <- fixef(object, effect = effect)
      
      idx <- switch(effect, "individual" = 1L, "time" = 2L)
      
      if(is.pdf) {
        model.idx   <- unclass(index(object)) # unclass for speed
        newdata.idx <- unclass(index(newdata))
        
        if(effect %in% c("individual", "time")) {
          # one-way
          
          model.idx.eff   <- model.idx[[idx]]
          newdata.idx.eff <- newdata.idx[[idx]]

          effs <- effs.orig[levels(newdata.idx.eff)][newdata.idx.eff] # has length corresponding to newdata
          
          if(na.fill & sum(out.of.sample <- !newdata.idx.eff %in% model.idx.eff) > 0L) {
            pdim <- pdim(object)
            effs[out.of.sample] <- weighted.mean(effs.orig, w = pdim$Tint[[idx]])
          }
        } else {
          # two-ways
          # two-ways case is a little special as the rows of id-time combinations
          # need to be determined first (not as simple subsetting as in one-way case)
          model.idx.id   <- model.idx[[1L]]
          model.idx.ti   <- model.idx[[2L]]
          
          newdata.idx.id <- newdata.idx[[1L]]
          newdata.idx.ti <- newdata.idx[[2L]]
          
          model.idx.tw   <- paste(model.idx.id,   model.idx.ti,   sep = "_")
          newdata.idx.tw <- paste(newdata.idx.id, newdata.idx.ti, sep = "_")
          
          names(effs.orig) <- model.idx.tw
          
          effs <- effs.orig[newdata.idx.tw] # has length corresponding to newdata
          
          if(na.fill & sum(out.of.sample <- !newdata.idx.tw %in% model.idx.tw) > 0L) {
            pdim <- pdim(object)
            effs[out.of.sample] <- mean(effs.orig)
          }
        }
      } else {
        # newdata is not a pdata.frame: use (weighted) mean of fixed effects as best guess
        # (argument na.fill is not evaluated here as for a data.frame all values would 
        # be NA, so rather weighted mean of fixed effects is always applied)
        warning("Data supplied in argument 'newdata' is not a pdata.frame; weighted mean of fixed effects as in original model used for prediction, see ?predict.plm.")
        pdim <- pdim(object)
        effs <- if(na.fill) {
                    if(effect == "twoways") mean(effs.orig) else weighted.mean(effs.orig, w = pdim$Tint[[idx]])
                  } else NA
        effs <- rep(effs, nrow(X))
      }
    } # end-if model == "within"
    result <- as.numeric(tcrossprod(beta, X)) + if(model == "within") effs else 0
    # if newdata is a pdata.frame output a pseries w/ index stripped down to what
    # is left after NA-omitting (performed implicitly by model.frame)
    if(is.pdf) {
      result.index <- if(!is.null(rmrows <- unclass(attr(m, "na.action")))) index(newdata[-rmrows, ]) else index(newdata)
      result <- add_pseries_features(result, result.index)
    }
    names(result) <- rownames(m)
  }
  result
}

#' @rdname plm
#' @export
formula.plm <- function(x, ...){
  x$formula
}

#' @rdname plm
#' @export
plot.plm <- function(x, dx = 0.2, N = NULL, seed = 1,
                     within = TRUE, pooling = TRUE,
                     between = FALSE, random = FALSE, ...){
    set.seed(seed)# 8 est bien pour beertax
    subs <- ! is.null(N)
    x <- update(x, model = "within")
    mco <- update(x, model = "pooling")
    if (random) re <- update(x, model = "random")
    if (between) be <- update(x, model = "between")
    pdim <- pdim(x)
    n <- pdim$nT$n
    if (! subs) N <- n
    ids <- unique(index(x, "id"))
    if (subs) ids <- ids[sample(seq_along(ids), N, replace = FALSE)]
    sel <- index(x, "id") %in% ids
    T. <- pdim$nT$T
    cols <- rainbow(N)
    pts <- sample(1:25, N, replace = TRUE)
    thex <- as.numeric(model.matrix(x, model = "pooling")[sel, 2L])
    they <- as.numeric(pmodel.response(x, model = "pooling")[sel])
    plot(thex, they, col = rep(cols, each = T.),
         pch = rep(pts, each = T.), ann = FALSE, las = 1)
    idsel <- as.numeric(index(x, "id")[sel])
    meanx <- tapply(thex, idsel, mean)
    meany <- tapply(they, idsel, mean)
    points(meanx, meany, pch = 19, col = cols, cex = 1.5)
    if (within){
        beta <- coef(x)
        alphas <- meany - meanx * beta
        dx <- dx * (max(thex) - min(thex))
        for (i in seq_len(N)){
            xmin <- meanx[i] - dx
            xmax <- meanx[i] + dx
            ymin <- alphas[i] + beta * xmin
            ymax <- alphas[i] + beta * xmax
            lines(c(xmin, xmax), c(ymin, ymax), col = cols[i])
        }
    }
    if(random) abline(coef(re)[1L], coef(re)[2L], lty = "dotted")
    if(pooling) abline(coef(mco), lty = "dashed")
    if(between) abline(coef(be), lty = "dotdash")
    # where to put the legends, depends on the sign of the OLS slope
    modploted <- c(random, pooling, between, within)
    if (sum(modploted)){
        poslegend <- ifelse(beta > 0, "topleft", "topright")
        ltylegend <- c("dotted", "dashed", "dotdash", "solid")[modploted]
        leglegend <- c("random", "pooling", "between", "within")[modploted]
        legend(poslegend, lty = ltylegend, legend = leglegend)
    }
}

#' @rdname plm
#' @export
residuals.plm <- function(object, model = NULL, effect = NULL,  ...){
    if (is.null(model) && is.null(effect)){
        model <- describe(object, "model")
        res <- object$residuals
    }
    else{
        cl <- match.call(expand.dots = FALSE)
        # fitted -> call to the plm method, used to be fitted.plm
        # which is not exported
#        cl[[1L]] <- as.name("fitted.plm")
        cl[[1L]] <- as.name("fitted")
        bX <- eval(cl, parent.frame())
        if (is.null(model))  model  <- describe(object, "model")
        if (is.null(effect)) effect <- describe(object, "effect")
        y <- pmodel.response(object, model = model, effect = effect)
        res <- y - bX
    }
    res <- if (model %in% c("between", "fd")) {
      # these models "compress" the data, thus an index does not make sense here
      # -> do not return pseries but plain numeric
      res
    } else {
      structure(res, index = index(object), class = unique(c("pseries", class(res))))
    }
    return(res)
}

#' @rdname plm
#' @export
fitted.plm <- function(object, model = NULL, effect = NULL, ...){
    fittedmodel <- describe(object, "model")
    if (is.null(model)) model <- fittedmodel
    if (is.null(effect)) effect <- describe(object, "effect")
    if (fittedmodel == "random") theta <- ercomp(object)$theta else theta <- NULL
    X <- model.matrix(object, model = "pooling")
    y <- pmodel.response(object, model = "pooling", effect = effect)
    beta <- coef(object)
    comonpars <- intersect(names(beta), colnames(X))
    bX <- as.numeric(crossprod(t(X[, comonpars, drop = FALSE]), beta[comonpars]))
    bX <- structure(bX, index = index(object), class = unique(c("pseries", class(bX))))
    if (fittedmodel == "within"){
        intercept <- mean(y - bX)
        bX <- bX + intercept
    }
    ptransform(bX, model = model, effect = effect, theta = theta)
}