1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
|
## pdata.frame and pseries are adaptations of respectively data.frame
## and vector for panel data. An index attribute is added to both,
## which is a data.frame containing the indexes. There is no pseries
## function, it is the class of series extracted from a
## pdata.frame. index and pdim functions are used to extract
## respectively the data.frame containing the index and the dimensions
## of the panel
## pdata.frame:
## - $<-
## - [
## - $
## - [[
## - print
## - as.list
## - as.data.frame
## - pseriesfy
## pseries:
## - [
## - print
## - as.matrix
## - plot
## - summary
## - plot.summary
## - print.summary
## - is.pseries
## pdim:
## - pdim.default
## - pdim.data.frame
## - pdim.pdata.frame
## - pdim.pseries
## - pdim.panelmodel
## - pdim.pgmm
## - print.pdim
## index:
## - index.pindex
## - index.pdata.frame
## - index.pseries
## - index.panelmodel
## - is.index (non-exported)
## - has.index (non-exported)
## - checkNA.index (non-exported)
## - pos.index (non-exported)
fancy.row.names <- function(index, sep = "-") {
## non-exported
# assumes index is a list of 2 or 3 factors [not class pindex]
if (length(index) == 2L) {result <- paste(index[[1L]], index[[2L]], sep = sep)}
# this in the order also used for sorting (group, id, time):
if (length(index) == 3L) {result <- paste(index[[3L]], index[[1L]], index[[2L]], sep = sep)}
return(result)
}
#' data.frame for panel data
#'
#' An object of class 'pdata.frame' is a data.frame with an index
#' attribute that describes its individual and time dimensions.
#'
#' The `index` argument indicates the dimensions of the panel. It can
#' be: \itemize{
#' \item a vector of two character strings which
#' contains the names of the individual and of the time indexes,
#' \item
#' a character string which is the name of the individual index
#' variable. In this case, the time index is created automatically and
#' a new variable called "time" is added, assuming consecutive and
#' ascending time periods in the order of the original data,
#' \item an integer, the number of individuals. In this case, the data
#' need to be a balanced panel and be organized as a stacked time series
#' (successive blocks of individuals, each block being a time series
#' for the respective individual) assuming consecutive and ascending
#' time periods in the order of the original data. Two new variables
#' are added: "id" and "time" which contain the individual and the
#' time indexes.
#' }
#'
#' The `"[["` and `"$"` extract a series from the `pdata.frame`. The
#' `"index"` attribute is then added to the series and a class
#' attribute `"pseries"` is added. The `"["` method behaves as for
#' `data.frame`, except that the extraction is also applied to the
#' `index` attribute. A safe way to extract the index attribute is to
#' use the function [index()] for 'pdata.frames' (and other objects).
#'
#' `as.data.frame` removes the index attribute from the `pdata.frame`
#' and adds it to each column. For its argument `row.names` set to
#' `FALSE` row names are an integer series, `TRUE` gives "fancy" row
#' names; if a character (with length of the resulting data frame),
#' the row names will be the character's elements.
#'
#' `as.list` behaves by default identical to
#' [base::as.list.data.frame()] which means it drops the
#' attributes specific to a pdata.frame; if a list of pseries is
#' wanted, the attribute `keep.attributes` can to be set to
#' `TRUE`. This also makes `lapply` work as expected on a pdata.frame
#' (see also **Examples**).
#'
#' @param x a `data.frame` for the `pdata.frame` function and a
#' `pdata.frame` for the methods,
#' @param i see [Extract()],
#' @param j see [Extract()],
#' @param y one of the columns of the `data.frame`,
#' @param index this argument indicates the individual and time
#' indexes. See **Details**,
#' @param drop see [Extract()],
#' @param drop.index logical, indicates whether the indexes are to be
#' excluded from the resulting pdata.frame,
#' @param optional see [as.data.frame()],
#' @param row.names `NULL` or logical, indicates whether "fancy" row
#' names (combination of individual index and time index) are to
#' be added to the returned (p)data.frame (`NULL` and `FALSE` have
#' the same meaning for `pdata.frame`; for
#' `as.data.frame.pdata.frame` see Details),
#' @param stringsAsFactors logical, indicating whether character
#' vectors are to be converted to factors,
#' @param replace.non.finite logical, indicating whether values for
#' which `is.finite()` yields `TRUE` are to be replaced by `NA`
#' values, except for character variables (defaults to `FALSE`),
#' @param drop.NA.series logical, indicating whether all-`NA` columns
#' are to be removed from the pdata.frame (defaults to `FALSE`),
#' @param drop.const.series logical, indicating whether constant
#' columns are to be removed from the pdata.frame (defaults to
#' `FALSE`),
#' @param drop.unused.levels logical, indicating whether unused levels
#' of factors are to be dropped (defaults to `FALSE`) (unused
#' levels are always dropped from variables serving to construct
#' the index variables),
#' @param keep.attributes logical, only for as.list and as.data.frame
#' methods, indicating whether the elements of the returned
#' list/columns of the data.frame should have the pdata.frame's
#' attributes added (default: FALSE for as.list, TRUE for
#' as.data.frame),
#' @param name the name of the `data.frame`,
#' @param value the name of the variable to include,
#' @param \dots further arguments.
#' @return a `pdata.frame` object: this is a `data.frame` with an
#' `index` attribute which is a `data.frame` with two variables,
#' the individual and the time indexes, both being factors. The
#' resulting pdata.frame is sorted by the individual index, then
#' by the time index.
#' @export
#' @author Yves Croissant
#' @seealso [index()] to extract the index variables from a
#' 'pdata.frame' (and other objects), [pdim()] to check the
#' dimensions of a 'pdata.frame' (and other objects), [pvar()] to
#' check for each variable if it varies cross-sectionally and over
#' time. To check if the time periods are consecutive per
#' individual, see [is.pconsecutive()].
#' @keywords classes
#' @examples
#'
#' # Gasoline contains two variables which are individual and time
#' # indexes
#' data("Gasoline", package = "plm")
#' Gas <- pdata.frame(Gasoline, index = c("country", "year"), drop.index = TRUE)
#'
#' # Hedonic is an unbalanced panel, townid is the individual index
#' data("Hedonic", package = "plm")
#' Hed <- pdata.frame(Hedonic, index = "townid", row.names = FALSE)
#'
#' # In case of balanced panel, it is sufficient to give number of
#' # individuals data set 'Wages' is organized as a stacked time
#' # series
#' data("Wages", package = "plm")
#' Wag <- pdata.frame(Wages, 595)
#'
#' # lapply on a pdata.frame by making it a list of pseries first
#' lapply(as.list(Wag[ , c("ed", "lwage")], keep.attributes = TRUE), lag)
#'
#'
pdata.frame <- function(x, index = NULL, drop.index = FALSE, row.names = TRUE,
stringsAsFactors = FALSE,
replace.non.finite = FALSE,
drop.NA.series = FALSE, drop.const.series = FALSE,
drop.unused.levels = FALSE) {
if (inherits(x, "pdata.frame")) stop("already a pdata.frame")
if (length(index) > 3L){
stop("'index' can be of length 3 at the most (one index variable for individual, time, group)")
}
# prune input: x is supposed to be a plain data.frame. Other classes building
# on top of R's data frame can inject attributes etc. that confuse functions
# in pkg plm.
x <- data.frame(x)
# if requested: coerce character vectors to factors
if (stringsAsFactors) {
x.char <- names(x)[vapply(x, is.character, FUN.VALUE = TRUE, USE.NAMES = FALSE)]
for (i in x.char){
x[[i]] <- factor(x[[i]])
}
}
# if requested: replace Inf, -Inf, NaN (everything for which is.finite is FALSE) by NA
# (for all but any character columns [relevant if stringAsFactors == FALSE])
if (replace.non.finite) {
for (i in names(x)) {
if (!inherits(x[[i]], "character")) {
x[[i]][!is.finite(x[[i]])] <- NA
}
}
}
# if requested: check and remove complete NA series
if (drop.NA.series) {
na.check <- vapply(x, function(x) sum(!is.na(x)) == 0L, FUN.VALUE = TRUE, USE.NAMES = FALSE)
na.serie <- names(x)[na.check]
if (length(na.serie) > 0L){
if (length(na.serie) == 1L)
cat(paste0("This series is NA and has been removed: ", na.serie, "\n"))
else
cat(paste0("These series are NA and have been removed: ", paste(na.serie, collapse = ", "), "\n"))
}
x <- x[ , !na.check]
}
# if requested: check for constant series and remove
if (drop.const.series) {
# -> var() and sd() on factors is deprecated as of R 3.2.3 -> use duplicated()
cst.check <- vapply(x, function(x) {
if (is.factor(x) || is.character(x)) {
all(duplicated(x[!is.na(x)])[-1L])
} else {
x[! is.finite(x)] <- NA # infinite elements set to NA only for this check
var(as.numeric(x), na.rm = TRUE) == 0
}
}, FUN.VALUE = TRUE, USE.NAMES = FALSE)
# following line: bug fixed thanks to Marciej Szelfer
cst.check <- cst.check | is.na(cst.check)
cst.serie <- names(x)[cst.check]
if (length(cst.serie) > 0L){
if (length(cst.serie) == 1L){
cat(paste0("This series is constant and has been removed: ", cst.serie, "\n"))
}
else{
cat(paste0("These series are constants and have been removed: ",
paste(cst.serie, collapse = ", "), "\n"))
}
}
x <- x[ , !cst.check]
}
# sanity check for 'index' argument. First, check the presence of a
# grouping variable, this should be the third element of the index
# vector or any "group" named element of this vector
group.name <- NULL
if (! is.null(names(index)) || length(index == 3L)){
if (! is.null(names(index))){
grouppos <- match("group", names(index))
if (! is.na(grouppos)){
group.name <- index[grouppos]
index <- index[- grouppos]
}
}
if (length(index) == 3L){
group.name <- index[3L]
index <- index[-3L]
}
}
if (length(index) == 0L) index <- NULL
# if index is NULL, both id and time are NULL
if (is.null(index)){
id <- NULL
time <- NULL
}
# if the length of index is 1, id = index and time is NULL
if (length(index) == 1L){
id <- index
time <- NULL
}
# if the length of index is 2, the first element is id, the second
# is time
if (length(index) == 2L){
id <- index[1L]
time <- index[2L]
}
# if both id and time are NULL, the names of the index are the first
# two names of x
if (is.null(id) && is.null(time)){
id.name <- names(x)[1L]
time.name <- names(x)[2L]
}
else{
id.name <- id
time.name <- time
}
# if index is numeric, this indicates a balanced panel with no. of
# individuals equal to id.name
if(is.numeric(id.name)){
if(!is.null(time.name))
warning("The time index (second element of 'index' argument) will be ignored\n")
N <- nrow(x)
if( (N %% id.name) != 0){
stop(paste0("unbalanced panel, in this case the individual index may not be indicated by an integer\n",
"but by specifying a column of the data.frame in the first element of the 'index' argument\n"))
}
else{
T <- N %/% id.name
n <- N %/% T
time <- rep((1:T), n)
id <- rep((1:n), rep(T, n))
id.name <- "id"
time.name <- "time"
if (id.name %in% names(x)) warning(paste0("column '", id.name, "' overwritten by id index"))
if (time.name %in% names(x)) warning(paste0("column '", time.name, "' overwritten by time index"))
x[[id.name]] <- id <- as.factor(id)
x[[time.name]] <- time <- as.factor(time)
}
}
else{
# id.name is not numeric, i.e., individual index is supplied
if (!id.name %in% names(x)) stop(paste("variable '", id.name, "' does not exist (individual index)", sep=""))
if (is.factor(x[[id.name]])){
id <- x[[id.name]] <- x[[id.name]][drop = TRUE] # drops unused levels of factor
}
else{
id <- x[[id.name]] <- as.factor(x[[id.name]])
}
if (is.null(time.name)){
# if no time index is supplied, add time variable
# automatically order data by individual index, necessary
# for the automatic addition of time index to be
# successful if no time index was supplied
x <- x[order(x[[id.name]]), ]
Ti <- collapse::qtable(x[[id.name]])
n <- length(Ti)
time <- c()
for (i in seq_len(n)){
time <- c(time, 1:Ti[i])
}
time.name <- "time"
if (time.name %in% names(x))
warning(paste0("column '", time.name, "' overwritten by time index"))
time <- x[[time.name]] <- as.factor(time)
}
else{
# use supplied time index
if (!time.name %in% names(x))
stop(paste0("variable '", time.name, "' does not exist (time index)"))
if (is.factor(x[[time.name]])){
time <- x[[time.name]] <- x[[time.name]][drop = TRUE]
}
else{
time <- x[[time.name]] <- as.factor(x[[time.name]])
}
}
}
# if present, make group variable a factor (just like for id and
# time variables)
if (!is.null(group.name)) {
if (is.factor(x[[group.name]])){
group <- x[[group.name]] <- x[[group.name]][drop = TRUE]
}
else{
group <- x[[group.name]] <- as.factor(x[[group.name]])
}
}
# sort by group (if given), then by id, then by time
if (! is.null(group.name)) x <- x[order(x[[group.name]], x[[id.name]], x[[time.name]]), ]
else x <- x[order(x[[id.name]], x[[time.name]]), ]
# if requested: drop unused levels from factor variables (spare
# those serving for the index as their unused levels are dropped
# already (at least in the attribute "index" they need to be
# dropped b/c much code relies on it))
if (drop.unused.levels) {
var.names <- setdiff(names(x), c(id.name, time.name, group.name))
for (i in var.names){
if (is.factor(x[[i]])){
x[[i]] <- droplevels(x[[i]])
}
}
}
posindex <- match(c(id.name, time.name, group.name), names(x))
index <- unclass(x[ , posindex]) # unclass to list for speed in subsetting, make it data.frame again later
if (drop.index) {
x <- x[ , -posindex, drop = FALSE]
if (ncol(x) == 0L) warning("after dropping of index variables, the pdata.frame contains 0 columns")
}
### warn if duplicate couples
test_doub <- collapse::qtable(index[[1L]], index[[2L]], na.exclude = FALSE) # == base R's table(x, y) # == table(index[[1L]], index[[2L]], useNA = "ifany")
if (any(as.vector(test_doub[!is.na(rownames(test_doub)), !is.na(colnames(test_doub))]) > 1L))
warning(paste("duplicate couples (id-time) in resulting pdata.frame\n to find out which,",
"use, e.g., table(index(your_pdataframe), useNA = \"ifany\")"))
### warn if NAs in index as likely not sane [not using check.NA because that outputs a line for each dimension -> not needed here]
if (anyNA(index[[1L]]) || anyNA(index[[2L]]) || (if(length(index) == 3L) anyNA(index[[3L]]) else FALSE))
warning(paste0("at least one NA in at least one index dimension ",
"in resulting pdata.frame\n to find out which, use, e.g., ",
"table(index(your_pdataframe), useNA = \"ifany\")\n"))
### Could also remove rows with NA in any index' dimension
# drop.rows <- is.na(index[[1L]]) | is.na(index[[2L]])
# if(ncol(index) == 3L) drop.rows <- drop.rows | is.na(index[[3L]])
# if((no.drop.rows <- sum(drop.rows)) > 0L) {
# x <- x[!drop.rows, ]
# index <- index[!drop.rows, ]
# txt.drop.rows <- paste0(no.drop.rows, " row(s) dropped in resulting pdata.frame due to NA(s) in at least one index dimension")
# warning(txt.drop.rows)
# }
if (row.names) {
attr(x, "row.names") <- fancy.row.names(index)
# NB: attr(x, "row.names") allows for duplicate rownames (as
# opposed to row.names(x) <- something)
# NB: no fancy row.names for index attribute (!?):
# maybe because so it is possible to restore original row.names?
}
class(index) <- c("pindex", "data.frame")
attr(x, "index") <- index
class(x) <- c("pdata.frame", "data.frame")
return(x)
}
#' @rdname pdata.frame
#' @export
"$<-.pdata.frame" <- function(x, name, value) {
if (inherits(value, "pseries")){
# remove pseries features before adding value as a column to pdata.frame
if (length(class(value)) == 1L) value <- unclass(value)
else attr(value, "class") <- setdiff(class(value), "pseries")
attr(value, "index") <- NULL
}
"$<-.data.frame"(x, name, value)
}
# NB: We don't have methods for [<-.pdata.frame and [[<-.pdata.frame, so these functions
# dispatch to the respective data.frame methods which assign whatever is
# handed over to the methods. Especially, if a pseries is handed over, this
# results in really assigning a pseries to the pdata.frame in case of usage of
# [<- and [[<-. This is inconsistent because the columns of a pdata.frame do not
# have the 'pseries' features.
# This can be seen by lapply(some_pdata.frame, class) after
# assigning with the respective .data.frame methods
# Extracting/subsetting method for class pseries, [.pseries, retaining the
# pseries features. est cases are in tests/test_pdata.frame_subsetting.R.
#
# We do not provide a [[.pseries method in addition (note the double "["). Thus,
# the base R method is used and behaviour for pseries is what one would expect
# and is in line with base R, see ?Extract for [[ with atomic vectors:
# "The usual form of indexing is [. [[ can be used to select a single element
# dropping names, whereas [ keeps them, e.g., in c(abc = 123)[1]."
# In addition, it also drops other attributes in base R, so applying [[ from
# base R results in dropping names and index which is in line with what one
# would expect for pseries. Example for base R behaviour:
# a <- 1:10
# names(a) <- letters[1:10]
# attr(a, "index") <- "some_index_attribute"
# a[[3]] # drops names and attribute (a[3] keeps names and drops other attributes)
##### [.pseries is commented because it leads to headache when dplyr is loaded
### boiled down to pkg vctrs https://github.com/r-lib/vctrs/issues/1446
### R.utils::detachPackage("dplyr")
### test_pure <- pcdtest(diff(log(price)) ~ diff(lag(log(price))) + diff(lag(log(price), 2)), data = php)
###
### library(dplyr) # first one will error with [.pseries, for plm 2.4-1 it gives a wrong result (lag is hijacked -> known case)
### test_dplyr <- pcdtest(diff(price) ~ diff(lag(price)), data = php)
### test_dplyr_plmlag <- pcdtest(diff(log(price)) ~ diff(plm::lag(log(price))) + diff(plm::lag(log(price), 2)), data = php) # save way
##
##
## @rdname pdata.frame
## @export
# "[.pseries" <- function(x, ...) {
#
# ## use '...' instead of only one specific argument, because subsetting for
# ## factors can have argument 'drop', e.g., x[i, drop=TRUE] see ?Extract.factor
# index <- attr(x, "index")
#
# ## two sanity checks as [.pseries-subsetting was introduced in Q3/2021 and some packages
# ## produced illegal pseries (these pkg errors were fixed by new CRAN releases but maybe
# ## other code outhere produces illegal pseries, so leave these sanity checks in here for
# ## a while, then remove (for speed)
# if(is.null(index)) warning("pseries object with is.null(index(pseries)) == TRUE encountered")
# if(!is.null(index) && !is.index(index)) warning(paste0("pseries object has illegal index with class(index) == ", paste0(class(index), collapse = ", ")))
#
# names_orig <- names(x)
# keep_rownr <- seq_along(x) # full length row numbers original pseries
# names(keep_rownr) <- names_orig
#
# if(is.null(names_orig)) {
# names(x) <- keep_rownr # if no names are present, set names as integer sequence to identify rows to keep later
# names(keep_rownr) <- keep_rownr
# }
# x <- remove_pseries_features(x)
# result <- x[...] # actual subsetting
#
# # identify rows to keep in the index:
# keep_rownr <- keep_rownr[names(result)] # row numbers to keep after subsetting
# names(result) <- if(!is.null(names_orig)) names_orig[keep_rownr] else NULL # restore and subset original names if any
#
# # Subset index accordingly:
# # Check if index is null is a workaround for R's data frame subsetting not
# # stripping class pseries but its attributes for factor (for other data types, pseries class is dropped)
# # see https://bugs.r-project.org/bugzilla/show_bug.cgi?id=18140
# if (!is.null(index)) {
# index <- index[keep_rownr, ]
# index <- droplevels(index) # drop unused levels (like in subsetting of pdata.frames)
# }
#
# result <- add_pseries_features(result, index)
# return(result)
# }
## Non-exported internal function for subsetting of pseries. Can be used
## internally.
## While there is now a "proper" subsetting function for pseries, leave this
## subset_pseries for a while just to be safe (currently used in pcdtest())
subset_pseries <- function(x, ...) {
## use '...' instead of only one specific argument, because subsetting for
## factors can have argument 'drop', e.g., x[i, drop=TRUE] see ?Extract.factor
index <- attr(x, "index")
if(is.null(index)) warning("pseries object with is.null(index(pseries)) == TRUE encountered")
if(!is.null(index) && !is.index(index)) warning(paste0("pseries object has illegal index with class(index) == ", paste0(class(index), collapse = ", ")))
names_orig <- names(x)
keep_rownr <- seq_along(x) # full length row numbers original pseries
names(keep_rownr) <- names_orig
if(is.null(names_orig)) {
names(x) <- keep_rownr # if no names are present, set names as integer sequence to identify rows to keep later
names(keep_rownr) <- keep_rownr
}
x <- remove_pseries_features(x)
result <- x[...] # actual subsetting
# identify rows to keep in the index:
keep_rownr <- keep_rownr[names(result)] # row numbers to keep after subsetting
names(result) <- if(!is.null(names_orig)) names_orig[keep_rownr] else NULL # restore and subset original names if any
# Subset index accordingly:
# Check if index is null is a workaround for R's data frame subsetting not
# stripping class pseries but its attributes for factor (for other data types, pseries class is dropped)
# see https://bugs.r-project.org/bugzilla/show_bug.cgi?id=18140
if(!is.null(index)) {
index <- index[keep_rownr, ]
index <- droplevels(index) # drop unused levels (like in subsetting of pdata.frames)
}
result <- add_pseries_features(result, index)
return(result)
}
#' @rdname pdata.frame
#' @export
"[.pdata.frame" <- function(x, i, j, drop) {
# signature of [.data.frame here
missing.i <- missing(i) # missing is only guaranteed to yield correct results,
missing.j <- missing(j) # if its argument was not modified before accessing it
missing.drop <- missing(drop) # -> save information about missingness
sc <- sys.call()
# Nargs_mod to distinguish if called by [] (Nargs_mod == 2L); [,] (Nargs_mod == 3L); [,,] (Nargs_mod == 4L)
Nargs_mod <- nargs() - (!missing.drop)
### subset index (and row names) appropriately:
# subsetting data.frame by only j (x[ , j]) or missing j (x[i]) yields full-row
# column(s) of data.frame, thus do not subset the index because it needs full rows (original index)
#
# subset index if:
# * [i,j] (supplied i AND supplied j) (in this case: Nargs_mod == 3L (or 4L depending on present/missing drop))
# * [i, ] (supplied i AND missing j) (in this case: Nargs_mod == 3L (or 4L depending on present/missing drop))
#
# do not subset index in all other cases (here are the values of Nargs_mod)
# * [ ,j] (missing i AND j supplied) (Nargs_mod == 3L (or 4L depending on present/missing drop))
# * [i] (supplied i AND missing j) (Nargs_mod == 2L) [Nargs_mod distinguishes this case from the one where subsetting is needed!]
# * [i, drop = TRUE/FALSE] (supplied i AND missing j) (Nargs_mod == 2L)
#
# => subset index (and row names) if: supplied i && Nargs_mod >= 3L
index <- attr(x, "index")
x.rownames <- row.names(x)
if (!missing.i && Nargs_mod >= 3L) {
iindex <- i
if (is.character(iindex)) {
# Kevin Tappe 2016-01-04 : in case of indexing (subsetting) a
# pdata.frame by a character, the subsetting vector should be
# converted to numeric by matching to the row names so that the
# index can be correctly subset (by this numeric value).
# Motivation:
# Row names of the pdata.frame and row names of the pdata.frame's
# index are not guaranteed to be the same!
iindex <- match(iindex, rownames(x))
}
# subset index and row names
index <- "[.data.frame"(index, iindex, )
x.rownames <- x.rownames[iindex]
# remove empty levels in index (if any)
# NB: really do dropping of unused levels? Standard R behaviour is to leave the levels and not drop unused levels
# Maybe the dropping is needed for functions like lag.pseries/lagt.pseries to work correctly?
index <- droplevels(index)
# NB: use droplevels() rather than x[drop = TRUE] as x[drop = TRUE] can also coerce mode!
# old (up to rev. 251): index <- data.frame(lapply(index, function(x) x[drop = TRUE]))
}
### end of subsetting index
# delete attribute with old index first:
# this preserves the order of the attributes because
# order of non-standard attributes is scrambled by R's data.frame subsetting with `[.`
# (need to add new index later anyway)
attr(x, "index") <- NULL
# Set class to "data.frame" first to avoid coercing which enlarges the (p)data.frame
# (probably by as.data.frame.pdata.frame).
# Coercing is the built-in behaviour for extraction from data.frames by "[." (see ?`[.data.frame`)
# and it seems this cannot be avoided; thus we need to make sure, not to have any coercing going on
# which adds extra data (such as as.matrix.pseries, as.data.frame.pdata.frame) by setting the class
# to "data.frame" first
class(x) <- "data.frame"
# call [.data.frame exactly as [.pdata.frame was called but arg is now 'x'
# this is necessary because there could be several missing arguments
# use sys.call (and not match.call) because arguments other than drop may not be named
# need to evaluate i, j, drop, if supplied, before passing on (do not pass on as the sys.call caught originally)
sc_mod <- sc
sc_mod[[1L]] <- quote(`[.data.frame`)
sc_mod[[2L]] <- quote(x)
if (!missing.i) sc_mod[[3L]] <- i # if present, i is always in pos 3
if (!missing.j) sc_mod[[4L]] <- j # if present, j is always in pos 4
if (!missing.drop) sc_mod[[length(sc)]] <- drop # if present, drop is always in last position (4 or 5,
# depending on the call structure and whether missing j or not)
mydata <- eval(sc_mod)
if (is.null(dim(mydata))) {
# if dim is NULL, subsetting did not return a data frame but a vector or a
# factor or NULL (nothing more is left)
if (is.null(mydata)) {
# since R 3.4.0, NULL cannot have attributes, so special case it
res <- NULL
} else {
# vector or factor -> make it a pseries
res <- structure(mydata,
names = x.rownames,
index = index,
class = unique(c("pseries", class(mydata))))
}
} else {
# subsetting returned a data.frame -> add attributes to make it a pdata.frame again
res <- structure(mydata,
index = index,
class = c("pdata.frame", "data.frame"))
}
return(res)
}
#' @rdname pdata.frame
#' @export
"[[.pdata.frame" <- function(x, y) {
index <- attr(x, "index")
attr(x, "index") <- NULL
class(x) <- "data.frame"
result <- "[[.data.frame"(x, y)
if (!is.null(result)){
# make extracted column a pseries
# use this order for attributes to preserve original order of attributes for a pseries
result <- structure(result,
names = row.names(x),
class = unique(c("pseries", class(result))),
index = index
)
}
result
}
#' @rdname pdata.frame
#' @export
"$.pdata.frame" <- function(x, y) {
"[[.pdata.frame"(x, paste(as.name(y)))
}
#' @rdname pdata.frame
#' @export
print.pdata.frame <- function(x, ...) {
attr(x, "index") <- NULL
class(x) <- "data.frame"
# This is a workaround: print.data.frame cannot handle
# duplicated row names which are currently possible for pdata frames
if (anyDuplicated(rownames(x))) {
print("Note: pdata.frame contains duplicated row names, thus original row names are not printed")
rownames(x) <- NULL
}
print(x, ...)
}
# pseriesfy() takes a pdata.frame and makes each column a pseries
# names of the pdata.frame are not added to the columns as base R's data.frames
# do not allow for names in columns (but, e.g., a tibble does so since 3.0.0,
# see https://github.com/tidyverse/tibble/issues/837)
#' Turn all columns of a pdata.frame into class pseries.
#'
#' This function takes a pdata.frame and turns all of its columns into
#' objects of class pseries.
#'
#' Background: Initially created pdata.frames have as columns the pure/basic
#' class (e.g., numeric, factor, character). When extracting a column from such
#' a pdata.frame, the extracted column is turned into a pseries.
#'
#' At times, it can be convenient to apply data transformation operations on
#' such a `pseriesfy`-ed pdata.frame, see Examples.
#'
#' @name pseriesfy
#' @param x an object of class `"pdata.frame"`,
#' @param \dots further arguments (currently not used).
#' @return A pdata.frame like the input pdata.frame but with all columns
#' turned into pseries.
#' @seealso [pdata.frame()], [plm::as.list()]
#' @keywords attribute
#' @export
#' @examples
#' library("plm")
#' data("Grunfeld", package = "plm")
#' pGrun <- pdata.frame(Grunfeld[ , 1:4], drop.index = TRUE)
#' pGrun2 <- pseriesfy(pGrun) # pseriesfy-ed pdata.frame
#'
#' # compare classes of columns
#' lapply(pGrun, class)
#' lapply(pGrun2, class)
#'
#' # When using with()
#' with(pGrun, lag(value)) # dispatches to base R's lag()
#' with(pGrun2, lag(value)) # dispatches to plm's lag() respect. panel structure
#'
#' # When lapply()-ing
#' lapply(pGrun, lag) # dispatches to base R's lag()
#' lapply(pGrun2, lag) # dispatches to plm's lag() respect. panel structure
#'
#' # as.list(., keep.attributes = TRUE) on a non-pseriesfy-ed
#' # pdata.frame is similar and dispatches to plm's lag
#' lapply(as.list(pGrun, keep.attributes = TRUE), lag)
#'
pseriesfy <- function(x, ...) {
if(!inherits(x, "pdata.frame")) stop("input 'x' needs to be a pdata.frame")
ix <- attr(x, "index")
nam <- attr(x, "row.names")
pdf <- as.data.frame(lapply(x, function(col) add_pseries_features(col, ix)))
class(pdf) <- c("pdata.frame", class(pdf))
attr(pdf, "index") <- ix
rownames(pdf) <- nam
return(pdf)
}
pseriesfy.collapse <- function(x, ...) {
if(!inherits(x, "pdata.frame")) stop("input 'x' needs to be a pdata.frame")
ix <- attr(x, "index")
return(collapse::dapply(x, function(col) add_pseries_features(col, ix)))
}
# as.list.pdata.frame:
# The default is to behave identical to as.list.data.frame.
# This default is necessary, because some code relies on this
# behaviour! Do not change this!
#
# as.list.data.frame does:
# * unclass
# * strips all classes but "list"
# * strips row.names
#
# By setting argument keep.attributes = TRUE, the attributes of the pdata.frame
# are preserved by as.list.pdata.frame: a list of pseries is returned
# and lapply can be used as usual, now working on a list of pseries, e.g.,
# lapply(as.list(pdata.frame[ , your_cols], keep.attributes = TRUE), lag)
# works as expected.
#' @rdname pdata.frame
#' @export
as.list.pdata.frame <- function(x, keep.attributes = FALSE, ...) {
if (!keep.attributes) {
x <- as.list.data.frame(x)
} else {
# make list of pseries objects
x_names <- names(x)
x <- lapply(x_names,
FUN = function(element, pdataframe){
"[[.pdata.frame"(x = pdataframe, y = element)
},
pdataframe = x)
names(x) <- x_names
# note: this function is slower than the corresponding
# as.list.data.frame function,
# because we cannot simply use unclass() on the pdata.frame:
# need to add index etc to all columns to get proper pseries
# back => thus the extraction function "[[.pdata.frame" is used
}
return(x)
}
#' @rdname pdata.frame
#' @export
as.data.frame.pdata.frame <- function(x, row.names = NULL, optional = FALSE, keep.attributes = TRUE, ...) {
index <- attr(x, "index")
if(!keep.attributes) {
attr(x, "index") <- NULL
class(x) <- "data.frame"
rownames(x) <- NULL
} else {
# make each column a pseries (w/o names)
x <- lapply(x,
function(z){
# names(z) <- row.names(x) # it is not possible to keep the names in the 'pseries'/
# in columns because the call to data.frame later deletes
# the names attribute of columns (definition of data frame)
attr(z, "index") <- index
class(z) <- unique(c("pseries", class(z)))
return(z)
})
}
if(is.null(row.names)) {
# do as base::as.data.frame does for NULL
x <- as.data.frame(x, row.names = NULL)
} else {
if(is.logical(row.names) && row.names == FALSE) {
# set row names to integer sequence 1, 2, 3, ...
x <- as.data.frame(x)
row.names(x) <- NULL
}
if(is.logical(row.names) && row.names == TRUE) {
# set fancy row names
x <- as.data.frame(x)
row.names(x) <- fancy.row.names(index)
}
if(is.character(row.names)) {
x <- as.data.frame(x)
row.names(x) <- row.names
}
if(!(isTRUE(row.names) || isFALSE(row.names) || is.character(row.names)))
stop("argument 'row.names' is none of NULL, FALSE, TRUE, and not a character")
# using row.names(x) <- "something" is safer (does not allow
# duplicate row.names) than # attr(x,"row.names") <- "something"
}
return(x)
}
#' Check if an object is a pseries
#'
#' This function checks if an object qualifies as a pseries
#'
#' A `"pseries"` is a wrapper around a "basic class" (numeric, factor,
#' logical, character, or complex).
#'
#' To qualify as a pseries, an object needs to have the following
#' features:
#'
#' - class contains `"pseries"` and there are at least two classes
#' (`"pseries"` and the basic class),
#'
#' - have an appropriate index attribute (defines the panel
#' structure),
#'
#' - any of `is.numeric`, `is.factor`, `is.logical`, `is.character`,
#' `is.complex` is `TRUE`.
#'
#' @param object object to be checked for pseries features
#'
#' @export
#' @return A logical indicating whether the object is a pseries (`TRUE`)
#' or not (`FALSE`).
#' @seealso [pseries()] for some computations on pseries and some
#' further links.
#' @keywords attribute
#' @examples
#'
#' # Create a pdata.frame and extract a series, which becomes a pseries
#' data("EmplUK", package = "plm")
#' Em <- pdata.frame(EmplUK)
#' z <- Em$output
#'
#' class(z) # pseries as indicated by class
#' is.pseries(z) # and confirmed by check
#'
#' # destroy index of pseries and re-check
#' attr(z, "index") <- NA
#' is.pseries(z) # now FALSE
#'
is.pseries <- function(object) {
# checks if an object has the necessary features to qualify as a 'pseries'
res <- TRUE
if (!inherits(object, "pseries")) res <- FALSE
# class 'pseries' is always on top of basic class: min 2 classes needed, if 2 classes "pseries" needs to be first entry
if (!length(class(object)) >= 2L) res <- FALSE
if (length(class(object)) == 2L && class(object)[1L] != "pseries") res <- FALSE
if (!has.index(object)) res <- FALSE
if (!any(c(is.numeric(object), is.factor(object), is.logical(object),
is.character(object), is.complex(object)))) {
res <- FALSE
}
return(res)
}
#' Check for the Dimensions of the Panel
#'
#' This function checks the number of individuals and time observations in the
#' panel and whether it is balanced or not.
#'
#' `pdim` is called by the estimation functions and can be also used
#' stand-alone.
#'
#' @name pdim
#' @aliases pdim
#' @param x a `data.frame`, a `pdata.frame`, a `pseries`, a
#' `panelmodel`, or a `pgmm` object,
#' @param y a vector,
#' @param index see [pdata.frame()],
#' @param \dots further arguments.
#' @return An object of class `pdim` containing the following
#' elements:
#'
#' \item{nT}{a list containing `n`, the number of individuals, `T`,
#' the number of time observations, `N` the total number of
#' observations,}
#'
#' \item{Tint}{a list containing two vectors (of type integer): `Ti`
#' gives the number of observations for each individual and `nt` gives
#' the number of individuals observed for each period,}
#'
#' \item{balanced}{a logical value: `TRUE` for a balanced panel,
#' `FALSE` for an unbalanced panel,}
#'
#' \item{panel.names}{a list of character vectors: `id.names` contains
#' the names of each individual and `time.names` contains the names of
#' each period.}
#'
#' @note Calling `pdim` on an estimated `panelmodel` object
#' and on the corresponding `(p)data.frame` used for this
#' estimation does not necessarily yield the same result. When
#' called on an estimated `panelmodel`, the number of
#' observations (individual, time) actually used for model
#' estimation are taken into account. When called on a
#' `(p)data.frame`, the rows in the `(p)data.frame` are
#' considered, disregarding any `NA`values in the dependent or
#' independent variable(s) which would be dropped during model
#' estimation.
#' @export
#' @author Yves Croissant
#' @seealso [is.pbalanced()] to just determine balancedness
#' of data (slightly faster than `pdim`),\cr
#' [punbalancedness()] for measures of
#' unbalancedness,\cr [nobs()],
#' [pdata.frame()],\cr [pvar()] to check for
#' each variable if it varies cross-sectionally and over time.
#' @keywords attribute
#' @examples
#'
#' # There are 595 individuals
#' data("Wages", package = "plm")
#' pdim(Wages, 595)
#'
#' # Gasoline contains two variables which are individual and time
#' # indexes and are the first two variables
#' data("Gasoline", package="plm")
#' pdim(Gasoline)
#'
#' # Hedonic is an unbalanced panel, townid is the individual index
#' data("Hedonic", package = "plm")
#' pdim(Hedonic, "townid")
#'
#' # An example of the panelmodel method
#' data("Produc", package = "plm")
#' z <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp,data=Produc,
#' model="random", subset = gsp > 5000)
#' pdim(z)
#'
pdim <- function(x, ...) {
UseMethod("pdim")
}
#' @rdname pdim
#' @export
pdim.default <- function(x, y, ...) {
if (length(x) != length(y)) stop("The length of the two inputs differs\n")
x <- x[drop = TRUE] # drop unused factor levels so that table()
y <- y[drop = TRUE] # gives only needed combinations
z <- collapse::qtable(x, y) ## == base R's table(x, y)
Ti <- rowSums(z) # faster than: apply(z, 1, sum)
nt <- colSums(z) # apply(z, 2, sum)
n <- nrow(z)
T <- ncol(z)
N <- length(x)
nT <- list(n = n, T = T, N = N)
id.names <- rownames(z)
time.names <- colnames(z)
panel.names <- list(id.names = id.names, time.names = time.names)
balanced <- if(any(z <- as.vector(z) == 0)) FALSE else TRUE
if(any(z > 1)) stop("duplicate couples (id-time)\n")
Tint <- list(Ti = Ti, nt = nt)
z <- list(nT = nT, Tint = Tint, balanced = balanced, panel.names = panel.names)
class(z) <- "pdim"
z
}
#' @rdname pdim
#' @export
pdim.data.frame <- function(x, index = NULL, ...) {
x <- pdata.frame(x, index)
index <- unclass(attr(x, "index"))
pdim(index[[1L]], index[[2L]])
}
#' @rdname pdim
#' @export
pdim.pdata.frame <- function(x,...) {
index <- unclass(attr(x, "index"))
pdim(index[[1L]], index[[2L]])
}
#' @rdname pdim
#' @export
pdim.pseries <- function(x,...) {
index <- unclass(attr(x, "index"))
pdim(index[[1L]], index[[2L]])
}
#' @rdname pdim
#' @export
pdim.pggls <- function(x, ...) {
## pggls is also class panelmodel, but take advantage of the pdim attribute in it
attr(x, "pdim")
}
#' @rdname pdim
#' @export
pdim.pcce <- function(x, ...) {
## pcce is also class panelmodel, but take advantage of the pdim attribute in it
attr(x, "pdim")
}
#' @rdname pdim
#' @export
pdim.pmg <- function(x, ...) {
## pmg is also class panelmodel, but take advantage of the pdim attribute in it
attr(x, "pdim")
}
#' @rdname pdim
#' @export
pdim.pgmm <- function(x, ...) {
## pgmm is also class panelmodel, but take advantage of the pdim attribute in it
attr(x, "pdim")
}
#' @rdname pdim
#' @export
pdim.panelmodel <- function(x, ...) {
x <- model.frame(x)
pdim(x)
}
#' @rdname pdim
#' @export
print.pdim <- function(x, ...) {
if (x$balanced){
cat("Balanced Panel: ")
cat(paste("n = ", x$nT$n, ", ", sep=""))
cat(paste("T = ", x$nT$T, ", ", sep=""))
cat(paste("N = ", x$nT$N, "\n", sep=""))
}
else{
cat("Unbalanced Panel: ")
cat(paste("n = ", x$nT$n,", ", sep=""))
cat(paste("T = ", min(x$Tint$Ti), "-", max(x$Tint$Ti), ", ", sep=""))
cat(paste("N = ", x$nT$N, "\n", sep=""))
}
invisible(pdim)
}
########### is.pbalanced ##############
### for convenience and to be faster than pdim() for the purpose
### of the determination of balancedness only, because it avoids
### pdim()'s calculations which are unnecessary for balancedness.
###
### copied (and adapted) methods and code from pdim.*
### (only relevant parts to determine balancedness)
#' Check if data are balanced
#'
#' This function checks if the data are balanced, i.e., if each individual has
#' the same time periods
#'
#' Balanced data are data for which each individual has the same time periods.
#' The returned values of the `is.pbalanced(object)` methods are identical
#' to `pdim(object)$balanced`. `is.pbalanced` is provided as a short
#' cut and is faster than `pdim(object)$balanced` because it avoids those
#' computations performed by `pdim` which are unnecessary to determine the
#' balancedness of the data.
#'
#' @aliases is.pbalanced
#' @param x an object of class `pdata.frame`, `data.frame`,
#' `pseries`, `panelmodel`, or `pgmm`,
#' @param y (only in default method) the time index variable (2nd index
#' variable),
#' @param index only relevant for `data.frame` interface; if
#' `NULL`, the first two columns of the data.frame are
#' assumed to be the index variables; if not `NULL`, both
#' dimensions ('individual', 'time') need to be specified by
#' `index` as character of length 2 for data frames, for
#' further details see [pdata.frame()],
#' @param \dots further arguments.
#' @return A logical indicating whether the data associated with
#' object `x` are balanced (`TRUE`) or not
#' (`FALSE`).
#' @seealso [punbalancedness()] for two measures of
#' unbalancedness, [make.pbalanced()] to make data
#' balanced; [is.pconsecutive()] to check if data are
#' consecutive; [make.pconsecutive()] to make data
#' consecutive (and, optionally, also balanced).\cr
#' [pdim()] to check the dimensions of a 'pdata.frame'
#' (and other objects), [pvar()] to check for individual
#' and time variation of a 'pdata.frame' (and other objects),
#' [pseries()], [data.frame()],
#' [pdata.frame()].
#' @export
#' @keywords attribute
#' @examples
#'
#' # take balanced data and make it unbalanced
#' # by deletion of 2nd row (2nd time period for first individual)
#' data("Grunfeld", package = "plm")
#' Grunfeld_missing_period <- Grunfeld[-2, ]
#' is.pbalanced(Grunfeld_missing_period) # check if balanced: FALSE
#' pdim(Grunfeld_missing_period)$balanced # same
#'
#' # pdata.frame interface
#' pGrunfeld_missing_period <- pdata.frame(Grunfeld_missing_period)
#' is.pbalanced(Grunfeld_missing_period)
#'
#' # pseries interface
#' is.pbalanced(pGrunfeld_missing_period$inv)
#'
is.pbalanced <- function(x, ...) {
UseMethod("is.pbalanced")
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.default <- function(x, y, ...) {
if (length(x) != length(y)) stop("The length of the two inputs differs\n")
x <- x[drop = TRUE] # drop unused factor levels so that table
y <- y[drop = TRUE] # gives only needed combinations
z <- collapse::qtable(x, y) # == base R's table(x, y)
balanced <- if(any(v <- as.vector(z) == 0L)) FALSE else TRUE
if (any(v > 1L)) warning("duplicate couples (id-time)\n")
balanced
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.data.frame <- function(x, index = NULL, ...) {
x <- pdata.frame(x, index)
index <- unclass(attr(x, "index")) # unclass for speed
is.pbalanced(index[[1L]], index[[2L]])
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pdata.frame <- function(x, ...) {
index <- unclass(attr(x, "index")) # unclass for speed
is.pbalanced(index[[1L]], index[[2L]])
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pseries <- function(x, ...) {
index <- unclass(attr(x, "index")) # unclass for speed
is.pbalanced(index[[1L]], index[[2L]])
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pggls <- function(x, ...) {
# pggls is also class panelmodel, but take advantage of its pdim attribute
attr(x, "pdim")$balanced
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pcce <- function(x, ...) {
# pcce is also class panelmodel, but take advantage of its pdim attribute
attr(x, "pdim")$balanced
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pmg <- function(x, ...) {
# pmg is also class panelmodel, but take advantage of its pdim attribute
attr(x, "pdim")$balanced
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pgmm <- function(x, ...) {
# pgmm is also class panelmodel, but take advantage of its pdim attribute
attr(x, "pdim")$balanced
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.panelmodel <- function(x, ...) {
x <- model.frame(x)
is.pbalanced(x)
}
#' Extract the indexes of panel data
#'
#' This function extracts the information about the structure of the
#' individual and time dimensions of panel data. Grouping information
#' can also be extracted if the panel data were created with a
#' grouping variable.
#'
#' Panel data are stored in a `"pdata.frame"` which has an `"index"`
#' attribute. Fitted models in `"plm"` have a `"model"` element which
#' is also a `"pdata.frame"` and therefore also has an `"index"`
#' attribute. Finally, each series, once extracted from a
#' `"pdata.frame"`, becomes of class `"pseries"`, which also has this
#' `"index"` attribute. `"index"` methods are available for all these
#' objects. The argument `"which"` indicates which index should be
#' extracted. If `which = NULL`, all indexes are extracted. `"which"`
#' can also be a vector of length 1, 2, or 3 (3 only if the pdata
#' frame was constructed with an additional group index) containing
#' either characters (the names of the individual variable and/or of
#' the time variable and/or the group variable or `"id"` and `"time"`)
#' and `"group"` or integers (1 for the individual index, 2 for the
#' time index, and 3 for the group index (the latter only if the pdata
#' frame was constructed with such).)
#'
#' @name index.plm
#' @aliases index
#' @importFrom zoo index
#' @export index
#' @param x an object of class `"pindex"`, `"pdata.frame"`,
#' `"pseries"` or `"panelmodel"`,
#' @param which the index(es) to be extracted (see details),
#' @param \dots further arguments.
#' @return A vector or an object of class `c("pindex","data.frame")`
#' containing either one index, individual and time index, or (any
#' combination of) individual, time and group indexes.
#' @author Yves Croissant
#' @seealso [pdata.frame()], [plm()]
#' @keywords attribute
#' @examples
#'
#' data("Grunfeld", package = "plm")
#' Gr <- pdata.frame(Grunfeld, index = c("firm", "year"))
#' m <- plm(inv ~ value + capital, data = Gr)
#' index(Gr, "firm")
#' index(Gr, "time")
#' index(Gr$inv, c(2, 1))
#' index(m, "id")
#'
#' # with additional group index
#' data("Produc", package = "plm")
#' pProduc <- pdata.frame(Produc, index = c("state", "year", "region"))
#' index(pProduc, 3)
#' index(pProduc, "region")
#' index(pProduc, "group")
#'
NULL
#' @rdname index.plm
#' @export
index.pindex <- function(x, which = NULL, ...) {
if (is.null(which)) {
# if no specific index is requested, select all index variables
which <- names(x)
}
else{
# catch case when someone enters "individual" albeit proper value is
# "id" to extract individual index
posindividual <- match("individual", which)
if (! is.na(posindividual)) which[posindividual] <- "id"
}
if (length(which) > 3L) stop("the length of argument 'which' should be at most 3")
if (is.numeric(which)){
if (! all(which %in% 1:3))
stop("if integer, argument 'which' should contain only 1, 2 and/or 3")
if (ncol(x) == 2L && 3 %in% which) stop("no grouping variable, only 2 indexes")
which <- names(x)[which]
}
nindex <- names(x)
gindex <- c("id", "time")
if (ncol(x) == 3L) gindex <- c(gindex, "group")
if (any(! which %in% c(nindex, gindex))) stop("unknown variable")
if ("id" %in% which) {
which[which == "id"] <- names(x)[1L]
if("id" %in% names(x)[-1L]) warning("an index variable not being the invidiual index is called 'id'. Likely, any results are distorted.")
}
if ("time" %in% which) {
which[which == "time"] <- names(x)[2L]
if("time" %in% names(x)[-2L]) warning("an index variable not being the time index is called 'time'. Likely, any results are distorted.")
}
if (ncol(x) == 3L) if ("group" %in% which) {
which[which == "group"] <- names(x)[3L]
if("group" %in% names(x)[-3L]) warning("an index variable not being the group index is called 'group'. Likely, any results are distorted.")
}
result <- x[ , which]
result
}
#' @rdname index.plm
#' @export
index.pdata.frame <- function(x, which = NULL, ...) {
anindex <- attr(x, "index")
index(x = anindex, which = which)
}
#' @rdname index.plm
#' @export
index.pseries <- function(x, which = NULL, ...) {
anindex <- attr(x, "index")
index(x = anindex, which = which)
}
#' @rdname index.plm
#' @export
index.panelmodel <- function(x, which = NULL, ...) {
anindex <- attr(x$model, "index")
index(x = anindex, which = which)
}
is.index <- function(index) {
# not exported, helper function
# checks if the index is an index in the sense of package plm
if(all(class(index) == c("pindex", "data.frame"))) TRUE else FALSE
}
has.index <- function(object) {
# not exported, helper function
# checks if an object has an index in sense of package plm
# (esp. to distinguish from zoo::index() which always returns an index)
index <- attr(object, "index")
return(is.index(index))
}
checkNA.index <- function(index, which = "all", error = TRUE) {
# not exported, helper function
#
# check if any NA in indexes (all or specific dimension)
#
# index can be of class pindex (proper index attribute of pdata.frame/pseries
# or a list of factors, thus can call checkNA.index(unclass(proper_index)))
# which gives a speed up as the faster list-subetting is used (instead of the
# relatively slower data.frame-subsetting)
feedback <- if(error) stop else warning
if(which == "all") {
if(anyNA(index[[1L]])) feedback("NA in the individual index variable")
if(anyNA(index[[2L]])) feedback("NA in the time index variable")
n.index <- if(inherits(index, "pindex")) ncol(index) else length(index) # else-branche is list (for speed)
if(n.index == 3L) { if(anyNA(index[[3L]])) feedback("NA in the group index variable") }
}
if(which == 1L) {
if(anyNA(index[[1L]])) feedback("NA in the individual index variable")
}
if(which == 2L) {
if(anyNA(index[[2L]])) feedback("NA in the time index variable")
}
if(which == 3L) {
if(anyNA(index[[3L]])) feedback("NA in the group index variable")
}
}
# pos.index:
# not exported, helper function
#
# determines column numbers of the index variables in a pdata.frame
# returns named numeric of length 2 or 3 with column numbers of the index variables
# (1: individual index, 2: time index, if available 3: group index),
# names are the names of the index variables
#
# returns c(NA, NA) / c(NA, NA, NA) if the index variables are not a column in the pdata.frame
# (e.g., for pdata.frames created with drop.index = TRUE).
# Cannot detect index variables if their columns names were changed after creation of the pdata.frame
pos.index <- function(x, ...) {
index <- attr(x, "index")
index_names <- names(index)
index_pos <- match(index_names, names(x))
names(index_pos) <- index_names
return(index_pos)
}
|