1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
|
#' Driscoll and Kraay (1998) Robust Covariance Matrix Estimator
#'
#' Nonparametric robust covariance matrix estimators *a la
#' Driscoll and Kraay* for panel models with cross-sectional
#' *and* serial correlation.
#'
#' `vcovSCC` is a function for estimating a robust covariance matrix
#' of parameters for a panel model according to the
#' \insertCite{DRIS:KRAA:98;textual}{plm} method, which is consistent
#' with cross--sectional and serial correlation in a T-asymptotic
#' setting and irrespective of the N dimension. The use with random
#' effects models is undocumented.
#'
#' Weighting schemes specified by `type` are analogous to those in
#' [sandwich::vcovHC()] in package \CRANpkg{sandwich} and are
#' justified theoretically (although in the context of the standard
#' linear model) by \insertCite{MACK:WHIT:85;textual}{plm} and
#' \insertCite{CRIB:04;textual}{plm} \insertCite{@see @ZEIL:04}{plm}).
#'
#' The main use of `vcovSCC` (and the other variance-covariance estimators
#' provided in the package `vcovHC`, `vcovBK`, `vcovNW`, `vcovDC`) is to pass
#' it to plm's own functions like `summary`, `pwaldtest`, and `phtest` or
#' together with testing functions from the `lmtest` and `car` packages. All of
#' these typically allow passing the `vcov` or `vcov.` parameter either as a
#' matrix or as a function, e.g., for Wald--type testing: argument `vcov.` to
#' `coeftest()`, argument `vcov` to `waldtest()` and other methods in the
#' \CRANpkg{lmtest} package; and argument `vcov.` to
#' `linearHypothesis()` in the \CRANpkg{car} package (see the
#' examples), \insertCite{@see also @ZEIL:04}{plm}, 4.1-2, and examples below.
#'
#' @aliases vcovSCC
#' @param x an object of class `"plm"` or `"pcce"`
#' @param type the weighting scheme used, one of `"HC0"`, `"sss"`,
#' `"HC1"`, `"HC2"`, `"HC3"`, `"HC4"`, see Details,
#' @param cluster switch for vcovG; set at `"time"` here,
#' @param maxlag either `NULL` or a positive integer specifying the
#' maximum lag order before truncation
#' @param inner the function to be applied to the residuals inside the
#' sandwich: `"cluster"` for SCC, `"white"` for Newey-West,
#' (`"diagavg"` for compatibility reasons)
#' @param wj weighting function to be applied to lagged terms,
#' @param \dots further arguments
#' @return An object of class `"matrix"` containing the estimate of
#' the covariance matrix of coefficients.
#' @export
#' @author Giovanni Millo, partially ported from Daniel Hoechle's
#' (2007) Stata code
#' @seealso [sandwich::vcovHC()] from the \CRANpkg{sandwich}
#' package for weighting schemes (`type` argument).
#' @references
#'
#' \insertRef{CRIB:04}{plm}
#'
#' \insertRef{DRIS:KRAA:98}{plm}
#'
#' \insertRef{HOEC:07}{plm}
#'
#' \insertRef{MACK:WHIT:85}{plm}
#'
#' \insertRef{ZEIL:04}{plm}
#'
#' @keywords regression
#' @examples
#'
#' data("Produc", package="plm")
#' zz <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp, data=Produc, model="pooling")
#' ## as function input to plm's summary method (with and without additional arguments):
#' summary(zz, vcov = vcovSCC)
#' summary(zz, vcov = function(x) vcovSCC(x, method="arellano", type="HC1"))
#' ## standard coefficient significance test
#' library(lmtest)
#' coeftest(zz)
#' ## SCC robust significance test, default
#' coeftest(zz, vcov.=vcovSCC)
#' ## idem with parameters, pass vcov as a function argument
#' coeftest(zz, vcov.=function(x) vcovSCC(x, type="HC1", maxlag=4))
#' ## joint restriction test
#' waldtest(zz, update(zz, .~.-log(emp)-unemp), vcov=vcovSCC)
#' \dontrun{
#' ## test of hyp.: 2*log(pc)=log(emp)
#' library(car)
#' linearHypothesis(zz, "2*log(pc)=log(emp)", vcov.=vcovSCC)
#' }
vcovSCC <- function(x, ...){
UseMethod("vcovSCC")
}
#' Newey and West (1987) Robust Covariance Matrix Estimator
#'
#' Nonparametric robust covariance matrix estimators *a la Newey
#' and West* for panel models with serial correlation.
#'
#' `vcovNW` is a function for estimating a robust covariance matrix of
#' parameters for a panel model according to the
#' \insertCite{NEWE:WEST:87;textual}{plm} method. The function works
#' as a restriction of the \insertCite{DRIS:KRAA:98;textual}{plm} covariance (see
#' [vcovSCC()]) to no cross--sectional correlation.
#'
#' Weighting schemes specified by `type` are analogous to those in
#' [sandwich::vcovHC()] in package \CRANpkg{sandwich} and are
#' justified theoretically (although in the context of the standard
#' linear model) by \insertCite{MACK:WHIT:85;textual}{plm} and
#' \insertCite{CRIB:04;textual}{plm} \insertCite{@see @ZEIL:04}{plm}.
#'
#' The main use of `vcovNW` (and the other variance-covariance estimators
#' provided in the package `vcovHC`, `vcovBK`, `vcovDC`, `vcovSCC`) is to pass
#' it to plm's own functions like `summary`, `pwaldtest`, and `phtest` or
#' together with testing functions from the `lmtest` and `car` packages. All of
#' these typically allow passing the `vcov` or `vcov.` parameter either as a
#' matrix or as a function, e.g., for Wald--type testing: argument `vcov.` to
#' `coeftest()`, argument `vcov` to `waldtest()` and other methods in the
#' \CRANpkg{lmtest} package; and argument `vcov.` to
#' `linearHypothesis()` in the \CRANpkg{car} package (see the
#' examples), see \insertCite{@see also @ZEIL:04}{plm}, 4.1-2, and examples below.
#'
#' @aliases vcovNW
#' @param x an object of class `"plm"` or `"pcce"`
#' @param type the weighting scheme used, one of `"HC0"`, `"sss"`,
#' `"HC1"`, `"HC2"`, `"HC3"`, `"HC4"`, see Details,
#' @param maxlag either `NULL` or a positive integer specifying the
#' maximum lag order before truncation
#' @param wj weighting function to be applied to lagged terms,
#' @param \dots further arguments
#' @return An object of class `"matrix"` containing the estimate of
#' the covariance matrix of coefficients.
#' @export
#' @author Giovanni Millo
#' @seealso [sandwich::vcovHC()] from the \CRANpkg{sandwich} package
#' for weighting schemes (`type` argument).
#' @references
#'
#' \insertRef{CRIB:04}{plm}
#'
#' \insertRef{DRIS:KRAA:98}{plm}
#'
#' \insertRef{MACK:WHIT:85}{plm}
#'
#' \insertRef{NEWE:WEST:87}{plm}
#'
#' \insertRef{ZEIL:04}{plm}
#'
#' @keywords regression
#' @examples
#'
#' data("Produc", package="plm")
#' zz <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp, data=Produc, model="pooling")
#' ## as function input to plm's summary method (with and without additional arguments):
#' summary(zz, vcov = vcovNW)
#' summary(zz, vcov = function(x) vcovNW(x, method="arellano", type="HC1"))
#' ## standard coefficient significance test
#' library(lmtest)
#' coeftest(zz)
#' ## NW robust significance test, default
#' coeftest(zz, vcov.=vcovNW)
#' ## idem with parameters, pass vcov as a function argument
#' coeftest(zz, vcov.=function(x) vcovNW(x, type="HC1", maxlag=4))
#' ## joint restriction test
#' waldtest(zz, update(zz, .~.-log(emp)-unemp), vcov=vcovNW)
#' \dontrun{
#' ## test of hyp.: 2*log(pc)=log(emp)
#' library(car)
#' linearHypothesis(zz, "2*log(pc)=log(emp)", vcov.=vcovNW)
#' }
vcovNW <- function(x, ...){
UseMethod("vcovNW")
}
#' Double-Clustering Robust Covariance Matrix Estimator
#'
#' High-level convenience wrapper for double-clustering robust
#' covariance matrix estimators *a la*
#' \insertCite{THOM:11;textual}{plm} and
#' \insertCite{CAME:GELB:MILL:11;textual}{plm} for panel models.
#'
#' `vcovDC` is a function for estimating a robust covariance matrix of
#' parameters for a panel model with errors clustering along both dimensions.
#' The function is a convenience wrapper simply summing a group- and a
#' time-clustered covariance matrix and subtracting a diagonal one *a la*
#' White.
#'
#' Weighting schemes specified by `type` are analogous to those in
#' [sandwich::vcovHC()] in package \CRANpkg{sandwich} and are
#' justified theoretically (although in the context of the standard
#' linear model) by \insertCite{MACK:WHIT:85;textual}{plm} and
#' \insertCite{CRIB:04;textual}{plm} \insertCite{@see @ZEIL:04}{plm}.
#'
#' The main use of `vcovDC` (and the other variance-covariance estimators
#' provided in the package `vcovHC`, `vcovBK`, `vcovNW`, `vcovSCC`) is to pass
#' it to plm's own functions like `summary`, `pwaldtest`, and `phtest` or
#' together with testing functions from the `lmtest` and `car` packages. All of
#' these typically allow passing the `vcov` or `vcov.` parameter either as a
#' matrix or as a function, e.g., for Wald--type testing: argument `vcov.` to
#' `coeftest()`, argument `vcov` to `waldtest()` and other methods in the
#' \CRANpkg{lmtest} package; and argument `vcov.` to
#' `linearHypothesis()` in the \CRANpkg{car} package (see the
#' examples), see \insertCite{@see also @ZEIL:04}{plm}, 4.1-2, and examples below.
#'
#' @aliases vcovDC
#' @param x an object of class `"plm"` or `"pcce"`
#' @param type the weighting scheme used, one of `"HC0"`, `"sss"`,
#' `"HC1"`, `"HC2"`, `"HC3"`, `"HC4"`, see Details,
#' @param \dots further arguments
#' @return An object of class `"matrix"` containing the estimate of
#' the covariance matrix of coefficients.
#' @export
#' @author Giovanni Millo
#' @seealso [sandwich::vcovHC()] from the \CRANpkg{sandwich}
#' package for weighting schemes (`type` argument).
#' @references
#'
#' \insertRef{CAME:GELB:MILL:11}{plm}
#'
#' \insertRef{CRIB:04}{plm}
#'
#' \insertRef{MACK:WHIT:85}{plm}
#'
#' \insertRef{THOM:11}{plm}
#'
#' \insertRef{ZEIL:04}{plm}
#'
#' @keywords regression
#' @examples
#'
#' data("Produc", package="plm")
#' zz <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp, data=Produc, model="pooling")
#' ## as function input to plm's summary method (with and without additional arguments):
#' summary(zz, vcov = vcovDC)
#' summary(zz, vcov = function(x) vcovDC(x, type="HC1", maxlag=4))
#' ## standard coefficient significance test
#' library(lmtest)
#' coeftest(zz)
#' ## DC robust significance test, default
#' coeftest(zz, vcov.=vcovDC)
#' ## idem with parameters, pass vcov as a function argument
#' coeftest(zz, vcov.=function(x) vcovDC(x, type="HC1", maxlag=4))
#' ## joint restriction test
#' waldtest(zz, update(zz, .~.-log(emp)-unemp), vcov=vcovDC)
#' \dontrun{
#' ## test of hyp.: 2*log(pc)=log(emp)
#' library(car)
#' linearHypothesis(zz, "2*log(pc)=log(emp)", vcov.=vcovDC)
#' }
vcovDC <- function(x, ...){
UseMethod("vcovDC")
}
#' Generic Lego building block for Robust Covariance Matrix Estimators
#'
#' Generic Lego building block for robust covariance matrix estimators
#' of the vcovXX kind for panel models.
#'
#' `vcovG` is the generic building block for use by higher--level
#' wrappers [vcovHC()], [vcovSCC()], [vcovDC()], and [vcovNW()]. The
#' main use of `vcovG` is to be used internally by the former, but it
#' is made available in the user space for use in non--standard
#' combinations. For more documentation, see see wrapper functions
#' mentioned.
#'
#' @aliases vcovG
#' @param x an object of class `"plm"` or `"pcce"`
#' @param type the weighting scheme used, one of `"HC0"`,
#' `"sss"`, `"HC1"`, `"HC2"`, `"HC3"`,
#' `"HC4"`,
#' @param cluster one of `"group"`, `"time"`,
#' @param l lagging order, defaulting to zero
#' @param inner the function to be applied to the residuals inside the
#' sandwich: one of `"cluster"` or `"white"` or
#' `"diagavg"`,
#' @param \dots further arguments
#' @return An object of class `"matrix"` containing the estimate
#' of the covariance matrix of coefficients.
#' @export
#' @author Giovanni Millo
#' @seealso [vcovHC()], [vcovSCC()],
#' [vcovDC()], [vcovNW()], and
#' [vcovBK()] albeit the latter does not make use of
#' vcovG.
#' @references
#'
#' \insertRef{mil17b}{plm}
#'
#' @keywords regression
#' @examples
#'
#' data("Produc", package="plm")
#' zz <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp, data=Produc,
#' model="pooling")
#' ## reproduce Arellano's covariance matrix
#' vcovG(zz, cluster="group", inner="cluster", l=0)
#' ## define custom covariance function
#' ## (in this example, same as vcovHC)
#' myvcov <- function(x) vcovG(x, cluster="group", inner="cluster", l=0)
#' summary(zz, vcov = myvcov)
#' ## use in coefficient significance test
#' library(lmtest)
#' ## robust significance test
#' coeftest(zz, vcov. = myvcov)
#'
vcovG <- function(x, ...) {
UseMethod("vcovG")
}
#' @rdname vcovG
#' @export
vcovG.plm <- function(x, type = c("HC0", "sss", "HC1", "HC2", "HC3", "HC4"),
cluster = c("group", "time"),
l = 0,
inner = c("cluster", "white", "diagavg"),
...) {
## general building block for vcov
## for panel models (pooling, random, within or fd type plm obj.)
##
## * (7/11/2016): compliant with IV models
# stopping control for weighted regressions
if (!is.null(x$weights)) stop("vcovXX functions not implemented for weighted panel regressions")
type <- match.arg(type)
model <- describe(x, "model")
if (!model %in% c("random", "within", "pooling", "fd")) {
stop("Model has to be either \"random\", \"within\", \"pooling\", or \"fd\" model")
}
## extract demeaned data
demX <- model.matrix(x, model = model, rhs = 1, cstcovar.rm = "all")
## drop any linear dependent columns (corresponding to aliased coefficients)
## from model matrix X
## na.rm = TRUE because currently, RE tw unbalanced models set aliased simply to NA
if (!is.null(x$aliased) && any(x$aliased, na.rm = TRUE)) demX <- demX[ , !x$aliased, drop = FALSE]
## control: IV or not (two- or one-part formula)
if(length(formula(x))[2L] > 1L) {
demZ <- model.matrix(x, model = model, rhs = 2, cstcovar.rm = "all")
## substitute (transformed) X with projection of X on Z
## any linear dependence in Z (demZ) is appropriately taken care of by lm.fit()
nms <- colnames(demX)
demX <- lm.fit(demZ, demX)$fitted.values
# catches case with only one regressor -> need to convert numeric
# returned from lm.fit()$fitted.values to matrix:
if(!is.matrix(demX)) demX <- matrix(demX, dimnames = list(NULL, nms[1L]))
}
pdim <- pdim(x)
nT <- pdim$nT$N
Ti <- pdim$Tint$Ti
k <- dim(demX)[[2L]]
n0 <- pdim$nT$n
t0 <- pdim$nT$T
## extract residuals
uhat <- x$residuals
## define residuals weighting function omega(res)
## (code taken from meatHC and modified)
## (the weighting is defined "in sqrt" relative to the literature)
##
## (see the theoretical comments in pvcovHC)
## this is computationally heavy, do only if needed
diaghat <- switch(type, "HC0" = NULL,
"sss" = NULL,
"HC1" = NULL,
"HC2" = try(dhat(demX), silent = TRUE),
"HC3" = try(dhat(demX), silent = TRUE),
"HC4" = try(dhat(demX), silent = TRUE))
df <- nT - k
switch(type,
"HC0" = {
omega <- function(residuals, diaghat, df, g) residuals
}, "sss" = {
omega <- function(residuals, diaghat, df, g) residuals *
sqrt(g/(g-1)*((nT-1)/(nT-k)))
}, "HC1" = {
omega <- function(residuals, diaghat, df, g) residuals *
sqrt(length(residuals)/df)
}, "HC2" = {
omega <- function(residuals, diaghat, df, g) residuals /
sqrt(1 - diaghat)
}, "HC3" = {
omega <- function(residuals, diaghat, df, g) residuals /
(1 - diaghat)
}, "HC4" = {
omega <- function(residuals, diaghat, df, g) {
residuals/sqrt(1 - diaghat)^
pmin(4, length(residuals) *
diaghat/as.integer(round(sum(diaghat),
digits = 0)))
}
})
## Definition module for E(u,v)
if(is.function(inner)) {
E <- inner
} else {
## outer for clustering/arellano, diag(diag(inner)) for white
switch(match.arg(inner),
"cluster" = {
E <- function(u, v) outer(u, v)
},
"white" = {
E <- function(u, v) { # was simply: diag(diag(outer(u,v)))
# but unfortunately we have to manage unbalanced panels
# in the case l!=0 (the residual vectors are different)
# by producing a "pseudo-diagonal" with all those obs.
# common to both vectors
if(isTRUE(all.equal(names(u), names(v)))) {
## ..then keep it simple! (halves time on EmplUK ex.)
n <- length(u)
euv <- diag(u*v, n)
} else {
## calculate outer product
efull <- outer(u, v)
## make matrix of zeros with same dims and names
eres <- array(0, dim = dim(efull))
dimnames(eres) <- dimnames(efull)
## populate "pseudo-diagonal" with values from efull
for(i in seq_along(names(u))) {
for(j in seq_along(names(v))) {
if(names(u)[i] == names(v)[j]) {
eres[i, j] <- efull[i, j]
}
}
}
euv <- eres
}
return(euv)
}
},
"diagavg" = {
E <- function(u,v) {
## this is the averaged version for 'white2'
if(isTRUE(all.equal(names(u), names(v)))) {
## ..then keep it simple
n <- length(u)
euv <- diag(x = sum(u*v)/n, n)
} else {
## do just as for 'white' and then average nonzeros:
## calculate outer product
efull <- outer(u,v)
## make matrix of zeros with same dims and names
eres <- array(0, dim = dim(efull))
dimnames(eres) <- dimnames(efull)
## populate "pseudo-diagonal" with values from efull
for(i in seq_along(names(u))) {
for(j in seq_along(names(v))) {
if(names(u)[i] == names(v)[j]) {
eres[i, j] <- efull[i, j]
}
}
}
euv <- eres
## substitute nonzeros with average thereof
euv[euv != 0] <- mean(euv[euv != 0])
}
return(euv)
}
})
} ## END: Definition module for E(u,v)
## try passing: function (a or b) or matrix (unconditional) to vcovG
## robustifying against either serial or xs intragroup dependence:
## if 'group' then keep current indexing, if 'time' then swap i<->t
## so that residuals get 'clustered' by time period instead of by
## group (i.e., the vcov estimator is robust vs. xsectional dependence)
## extract indices
xindex <- unclass(attr(x$model, "index")) # unclass for speed
groupind <- as.numeric(xindex[[1L]])
timeind <- as.numeric(xindex[[2L]])
## adjust for 'fd' model (losing first time period)
if(model == "fd") {
groupi <- as.numeric(groupind)
## make vector =1 on first obs in each group, 0 elsewhere
selector <- groupi - c(0, groupi[-length(groupi)])
selector[1L] <- 1 # the first must always be 1
## eliminate first obs in time for each group
groupind <- groupind[!selector]
timeind <- timeind[!selector]
nT <- nT - n0
Ti <- Ti - 1
t0 <- t0 - 1
}
## set grouping indexes
cluster <- match.arg(cluster)
switch(cluster,
"group" = {
n <- n0
t <- t0
relevant.ind <- groupind
lab <- timeind},
"time" = {
n <- t0
t <- n0
relevant.ind <- timeind
lab <- groupind})
tind <- split(seq_along(relevant.ind), relevant.ind)
tlab <- split(lab, relevant.ind)
## lab were the 'labels' (a numeric, actually) for the relevant index;
## in use again from the need to make pseudo-diagonals for
## calc. the lagged White terms on unbalanced panels
## transform residuals by weights (here because type='sss' needs to
## know who the grouping index 'g' is
## set number of clusters for Stata-like small sample correction
## (if clustering, i.e., inner="cluster", then G is the cardinality of
## the grouping index; if inner="white" it is simply the sample size)
## find some more elegant solution for this!
## (perhaps if white then sss -> HC1 but check...)
G <- if(match.arg(inner) == "cluster") n else nT
uhat <- omega(uhat, diaghat, df, G)
## compute basic block: X'_t u_t u'_(t-l) X_(t-l) foreach t,
## then calculate Sl_t and sum over t (here i in place of t)
## here the benchmark case is time-clustering, but beware
## that group-clustering is the default
## preallocate k x k x (T-l) array for 'pile' of kxk matrices
## holding the X' E(u,ul) X elements
Sl <- array(dim = c(k, k, n-l))
## (l=0 gives the special contemporaneous case where Xi=Xil, ui=uil
## for computing W, CX, CT)
for(i in (1+l):n) {
X <- demX[tind[[i]], , drop = FALSE]
Xl <- demX[tind[[i-l]], , drop = FALSE]
u <- uhat[tind[[i]]]
ul <- uhat[tind[[(i-l)]]]
names(u) <- tlab[[i]]
names(ul) <- tlab[[(i-l)]]
## calculate V_yy
Sl[ , , i-l] <- crossprod(X, E(u, ul)) %*% Xl
}
## in order to sum on available observations two things can be done:
## a) apply sum(..., na.rm=TRUE) over the third dim
## b) apply mean(..., na.rm=TRUE) idem and multiply by n-l
## In case a) averaging is then done dividing each covariance point
## by (n-l), regardless of whether there are NAs in the "vertical"
## vector Sl[p,q, ]
## In case b) each mean is calculated correctly on the right number
## of observations, excluding missing data. 'salame' has to be
## multiplied by (n-l)
## But notice, here there should be none left! Each Sl_i is k x k.
## Hence use sum().
## meat
## salame <- apply(Sl, 1:2, mean, na.rm=TRUE) * (n-l)
salame <- rowSums(Sl, dims = 2L) # == apply(Sl, 1:2, sum) but faster
## bread by standard method
pane <- solve(crossprod(demX))
## sandwich
mycov <- tcrossprod(crossprod(t(pane), salame), t(pane)) # == pane %*% salame %*% pane
# save information about cluster variable in matrix (needed for e.g.,
# robust F test)
attr(mycov, which = "cluster") <- match.arg(cluster)
return(mycov)
}
#' Robust Covariance Matrix Estimators
#'
#' Robust covariance matrix estimators *a la White* for panel
#' models.
#'
#' `vcovHC` is a function for estimating a robust covariance matrix of
#' parameters for a fixed effects or random effects panel model
#' according to the White method
#' \insertCite{WHIT:80,WHIT:84b,AREL:87}{plm}. Observations may be
#' clustered by `"group"` (`"time"`) to account for serial
#' (cross-sectional) correlation.
#'
#' All types assume no intragroup (serial) correlation between errors
#' and allow for heteroskedasticity across groups (time periods). As
#' for the error covariance matrix of every single group of
#' observations, `"white1"` allows for general heteroskedasticity but
#' no serial (cross--sectional) correlation; `"white2"` is `"white1"`
#' restricted to a common variance inside every group (time period)
#' \insertCite{@see @GREE:03, Sec. 13.7.1-2, @GREE:12, Sec. 11.6.1-2
#' and @WOOL:02, Sec. 10.7.2}{plm}; `"arellano"` \insertCite{@see
#' ibid. and the original ref. @AREL:87}{plm} allows a fully general
#' structure w.r.t. heteroskedasticity and serial (cross--sectional)
#' correlation.
#'
#' Weighting schemes specified by `type` are analogous to those in
#' [sandwich::vcovHC()] in package \CRANpkg{sandwich} and are
#' justified theoretically (although in the context of the standard
#' linear model) by \insertCite{MACK:WHIT:85;textual}{plm} and
#' \insertCite{CRIB:04;textual}{plm}
#' \insertCite{ZEIL:04}{plm}. `type = "sss"` employs the small sample
#' correction as used by Stata.
#'
# % TODO: give formula for "sss";
# elaborate why different result for FE models (intercept)
#'
#' The main use of `vcovHC` (and the other variance-covariance estimators
#' provided in the package `vcovBK`, `vcovNW`, `vcovDC`, `vcovSCC`) is to pass
#' it to plm's own functions like `summary`, `pwaldtest`, and `phtest` or
#' together with testing functions from the `lmtest` and `car` packages. All of
#' these typically allow passing the `vcov` or `vcov.` parameter either as a
#' matrix or as a function, e.g., for Wald--type testing: argument `vcov.` to
#' `coeftest()`, argument `vcov` to `waldtest()` and other methods in the
#' \CRANpkg{lmtest} package; and argument `vcov.` to
#' `linearHypothesis()` in the \CRANpkg{car} package (see the
#' examples), see \insertCite{@see also @ZEIL:04}{plm}, 4.1-2, and examples below.
#'
#' A special procedure for `pgmm` objects, proposed by
#' \insertCite{WIND:05;textual}{plm}, is also provided.
#'
#' @name vcovHC.plm
#' @aliases vcovHC
#' @importFrom sandwich vcovHC
#' @export vcovHC
#' @param x an object of class `"plm"` which should be the result of a
#' random effects or a within model or a model of class `"pgmm"`
#' or an object of class `"pcce"`,
#' @param method one of `"arellano"`, `"white1"`, `"white2"`,
#' @param type the weighting scheme used, one of `"HC0"`, `"sss"`,
#' `"HC1"`, `"HC2"`, `"HC3"`, `"HC4"`, see Details,
#' @param cluster one of `"group"`, `"time"`,
#' @param \dots further arguments.
#' @return An object of class `"matrix"` containing the estimate of
#' the asymptotic covariance matrix of coefficients.
#' @note The function `pvcovHC` is deprecated. Use `vcovHC` for the
#' same functionality.
#' @author Giovanni Millo & Yves Croissant
#' @seealso [sandwich::vcovHC()] from the \CRANpkg{sandwich}
#' package for weighting schemes (`type` argument).
#' @references
#'
#' \insertRef{AREL:87}{plm}
#'
#' \insertRef{CRIB:04}{plm}
#'
#' \insertRef{GREE:03}{plm}
#'
#' \insertRef{GREE:12}{plm}
#'
#' \insertRef{MACK:WHIT:85}{plm}
#'
#' \insertRef{WIND:05}{plm}
#'
#' \insertRef{WHIT:84b}{plm}
#' chap. 6
#'
#' \insertRef{WHIT:80}{plm}
#'
#' \insertRef{WOOL:02}{plm}
#'
#' \insertRef{ZEIL:04}{plm}
#'
#' @keywords regression
#' @examples
#'
#' data("Produc", package = "plm")
#' zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
#' data = Produc, model = "random")
#' ## as function input to plm's summary method (with and without additional arguments):
#' summary(zz, vcov = vcovHC)
#' summary(zz, vcov = function(x) vcovHC(x, method="arellano", type="HC1"))
#'
#' ## standard coefficient significance test
#' library(lmtest)
#' coeftest(zz)
#' ## robust significance test, cluster by group
#' ## (robust vs. serial correlation)
#' coeftest(zz, vcov.=vcovHC)
#' ## idem with parameters, pass vcov as a function argument
#' coeftest(zz, vcov.=function(x) vcovHC(x, method="arellano", type="HC1"))
#' ## idem, cluster by time period
#' ## (robust vs. cross-sectional correlation)
#' coeftest(zz, vcov.=function(x) vcovHC(x, method="arellano",
#' type="HC1", cluster="group"))
#' ## idem with parameters, pass vcov as a matrix argument
#' coeftest(zz, vcov.=vcovHC(zz, method="arellano", type="HC1"))
#' ## joint restriction test
#' waldtest(zz, update(zz, .~.-log(emp)-unemp), vcov=vcovHC)
#' \dontrun{
#' ## test of hyp.: 2*log(pc)=log(emp)
#' library(car)
#' linearHypothesis(zz, "2*log(pc)=log(emp)", vcov.=vcovHC)
#' }
#' ## Robust inference for CCE models
#' data("Produc", package = "plm")
#' ccepmod <- pcce(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc, model="p")
#' summary(ccepmod, vcov = vcovHC)
#'
#' ## Robust inference for GMM models
#' data("EmplUK", package="plm")
#' ar <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1)
#' + log(capital) + lag(log(capital), 2) + log(output)
#' + lag(log(output),2) | lag(log(emp), 2:99),
#' data = EmplUK, effect = "twoways", model = "twosteps")
#' rv <- vcovHC(ar)
#' mtest(ar, order = 2, vcov = rv)
NULL
#' @rdname vcovHC.plm
#' @export
vcovHC.plm <- function(x, method=c("arellano", "white1", "white2"),
type=c("HC0", "sss", "HC1", "HC2", "HC3", "HC4"),
cluster=c("group", "time"), ...) {
## user-level wrapper for White-Arellano covariances
## translate arguments
inner <- switch(match.arg(method),
"arellano" = "cluster",
"white1" = "white",
"white2" = "diagavg")
return(vcovG(x, type=type, cluster=cluster,
l=0, inner=inner, ...))
}
#' @rdname vcovNW
#' @export
vcovNW.plm <- function(x, type=c("HC0", "sss", "HC1", "HC2", "HC3", "HC4"),
maxlag=NULL,
wj=function(j, maxlag) 1-j/(maxlag+1),
...) {
## user-level wrapper for panel Newey-West estimator
## set default lag order
if(is.null(maxlag)) maxlag <- floor((max(pdim(x)$Tint$Ti))^(1/4))
return(vcovSCC(x, type=type, maxlag=maxlag, inner="white", wj=wj, ...))
}
#' @rdname vcovDC
#' @export
vcovDC.plm <- function(x, type=c("HC0", "sss", "HC1", "HC2", "HC3", "HC4"),
...) {
## user-level wrapper for double-clustering (no persistence)
Vcx <- vcovG(x, type=type, cluster="group",
l=0, inner="cluster", ...)
Vct <- vcovG(x, type=type, cluster="time",
l=0, inner="cluster", ...)
Vw <- vcovG(x, type=type, l=0, inner="white", ...)
res <- Vcx + Vct - Vw
# save information about cluster variable in matrix (needed for e.g.,
# robust F test)
attr(res, which = "cluster") <- "group-time"
return(res)
}
#' @rdname vcovSCC
#' @export
vcovSCC.plm <- function(x, type=c("HC0", "sss", "HC1", "HC2", "HC3", "HC4"),
cluster="time",
maxlag=NULL,
inner=c("cluster", "white", "diagavg"),
wj=function(j, maxlag) 1-j/(maxlag+1),
...) {
## replicates vcovSCC
## set default lag order
if(is.null(maxlag)) maxlag <- floor((max(pdim(x)$Tint$Ti))^(1/4))
## def. Bartlett kernel
## wj <- function(j, maxlag) 1-j/(maxlag+1)
## has been passed as argument
S0 <- vcovG(x, type=type, cluster=cluster, l=0, inner=inner)
if(maxlag > 0) {
for(i in seq_len(maxlag)) {
Vctl <- vcovG(x, type=type, cluster=cluster,
l=i, inner=inner)
S0 <- S0 + wj(i, maxlag) * (Vctl + t(Vctl))
}
}
return(S0)
}
##############################################################
## separate function for BK (PCSE) covariance
#' Beck and Katz Robust Covariance Matrix Estimators
#'
#' Unconditional Robust covariance matrix estimators *a la Beck
#' and Katz* for panel models (a.k.a. Panel Corrected Standard Errors
#' (PCSE)).
#'
#' `vcovBK` is a function for estimating a robust covariance matrix of
#' parameters for a panel model according to the
#' \insertCite{BECK:KATZ:95;textual}{plm} method, a.k.a. Panel
#' Corrected Standard Errors (PCSE), which uses an unconditional
#' estimate of the error covariance across time periods (groups)
#' inside the standard formula for coefficient
#' covariance. Observations may be clustered either by `"group"` to
#' account for timewise heteroskedasticity and serial correlation or
#' by `"time"` to account for cross-sectional heteroskedasticity and
#' correlation. It must be borne in mind that the Beck and Katz
#' formula is based on N- (T-) asymptotics and will not be appropriate
#' elsewhere.
#'
#' The `diagonal` logical argument can be used, if set to
#' `TRUE`, to force to zero all non-diagonal elements in the
#' estimated error covariances; this is appropriate if both serial and
#' cross--sectional correlation are assumed out, and yields a
#' timewise- (groupwise-) heteroskedasticity--consistent estimator.
#'
#' Weighting schemes specified by `type` are analogous to those in
#' [sandwich::vcovHC()] in package \CRANpkg{sandwich} and are
#' justified theoretically (although in the context of the standard
#' linear model) by \insertCite{MACK:WHIT:85;textual}{plm} and
#' \insertCite{CRIB:04;textual}{plm} \insertCite{@see @ZEIL:04}{plm}.
#'
# % TODO: once "sss" has been added: `type = "sss"` employs the small
# % sample correction as used by Stata. give formula for "sss";
# % elaborate why different result for FE models (intercept)
#'
#' The main use of `vcovBK` (and the other variance-covariance estimators
#' provided in the package `vcovHC`, `vcovNW`, `vcovDC`, `vcovSCC`) is to pass
#' it to plm's own functions like `summary`, `pwaldtest`, and `phtest` or
#' together with testing functions from the `lmtest` and `car` packages. All of
#' these typically allow passing the `vcov` or `vcov.` parameter either as a
#' matrix or as a function, e.g., for Wald--type testing: argument `vcov.` to
#' `coeftest()`, argument `vcov` to `waldtest()` and other methods in the
#' \CRANpkg{lmtest} package; and argument `vcov.` to
#' `linearHypothesis()` in the \CRANpkg{car} package (see the
#' examples), see \insertCite{@see also @ZEIL:04}{plm}, 4.1-2, and examples below.
#'
#' @param x an object of class `"plm"`,
#' @param type the weighting scheme used, one of `"HC0"`, `"HC1"`,
#' `"HC2"`, `"HC3"`, `"HC4"`, see Details,
#' @param cluster one of `"group"`, `"time"`,
#' @param diagonal a logical value specifying whether to force
#' non-diagonal elements to zero,
#' @param \dots further arguments.
#' @export
#' @return An object of class `"matrix"` containing the estimate of
#' the covariance matrix of coefficients.
#' @author Giovanni Millo
#' @seealso [sandwich::vcovHC()] from the \CRANpkg{sandwich}
#' package for weighting schemes (`type` argument).
#' @references
#'
#'
#' \insertRef{BECK:KATZ:95}{plm}
#'
#' \insertRef{CRIB:04}{plm}
#'
#' \insertRef{GREE:03}{plm}
#'
#' \insertRef{MACK:WHIT:85}{plm}
#'
#' \insertRef{ZEIL:04}{plm}
#'
#' @keywords regression
#' @examples
#'
#' data("Produc", package="plm")
#' zz <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp, data=Produc, model="random")
#' summary(zz, vcov = vcovBK)
#' summary(zz, vcov = function(x) vcovBK(x, type="HC1"))
#'
#' ## standard coefficient significance test
#' library(lmtest)
#' coeftest(zz)
#' ## robust significance test, cluster by group
#' ## (robust vs. serial correlation), default arguments
#' coeftest(zz, vcov.=vcovBK)
#' ## idem with parameters, pass vcov as a function argument
#' coeftest(zz, vcov.=function(x) vcovBK(x, type="HC1"))
#' ## idem, cluster by time period
#' ## (robust vs. cross-sectional correlation)
#' coeftest(zz, vcov.=function(x) vcovBK(x, type="HC1", cluster="time"))
#' ## idem with parameters, pass vcov as a matrix argument
#' coeftest(zz, vcov.=vcovBK(zz, type="HC1"))
#' ## joint restriction test
#' waldtest(zz, update(zz, .~.-log(emp)-unemp), vcov=vcovBK)
#' \dontrun{
#' ## test of hyp.: 2*log(pc)=log(emp)
#' library(car)
#' linearHypothesis(zz, "2*log(pc)=log(emp)", vcov.=vcovBK)
#' }
vcovBK <- function(x, ...) {
UseMethod("vcovBK")
}
# TODO: add type "sss" for vcovBK
#' @rdname vcovBK
#' @export
vcovBK.plm <- function(x, type = c("HC0", "HC1", "HC2", "HC3", "HC4"),
cluster = c("group", "time"),
diagonal = FALSE, ...) {
## Robust vcov a la Beck and Katz (1995; AKA 'pcse')
## for panel models (pooling, random, within or fd type plm obj.)
##
## This version: October 20th, 2009; allows choosing the clustering dimension
## so as to have serial- or x-sectional-correlation robustness;
##
## This function takes the demeaned data from the
## plm object, then estimates an *unconditional* error covariance by
## averaging the empirical covariance blocks by group (time period);
## this average block (say, OmegaM in EViews notation) is then put into
## White's formula instead of each Omega_i.
##
## The clustering defaults to "group" for consistency with vcovHC;
## nevertheless the most likely usage is cluster="time" for robustness vs.
## cross-sectional dependence, as in the original Beck and Katz paper (where
## it is applied to "pooling" models).
##
## This version: compliant with plm 1.2-0; lmtest.
## Code is identical to vcovHC until mark.
##
## Usage:
## myplm <- plm(<model>,<data>, ...)
## # default (cluster by group = robust vs. serial correlation):
## coeftest(myplm, vcov=vcovBK)
## # cluster by time period (robust vs. XS correlation):
## coeftest(myplm, vcov=function(x) vcovBK(x, cluster="time"))
## # idem, HC3 weighting:
## coeftest(myplm, vcov=function(x) vcovBK(x,cluster="time",type="HC3"))
## waldtest(myplm,update(myplm,<new formula>),vcov=vcovBK)
##
## This weighted version implements a system of weights as
## in vcovHC/meatHC. Sure this makes sense for white1, but it
## is open to question for white2 and arellano. We'll see.
##
## Results OK vs. EViews, vcov=PCSE. Unbal. case not exactly the
## same (but then, who knows what EViews does!)
# stopping control for weighted regressions
if (!is.null(x$weights)) stop("vcovXX functions not implemented for weighted panel regressions")
type <- match.arg(type)
model <- describe(x, "model")
if (!model %in% c("random", "within", "pooling", "fd")) {
stop("Model has to be either \"random\", \"within\", \"pooling\", or \"fd\" model")
}
## extract demeaned data
demX <- model.matrix(x, model = model, rhs = 1, cstcovar.rm = "all")
## drop any linear dependent columns (corresponding to aliased coefficients)
## from model matrix X
## na.rm = TRUE because currently, RE tw unbalanced models set aliased simply to NA
if (!is.null(x$aliased) && any(x$aliased, na.rm = TRUE)) demX <- demX[ , !x$aliased, drop = FALSE]
## control: IV or not (two- or one-part formula)
if(length(formula(x))[2L] > 1L) {
demZ <- model.matrix(x, model = model, rhs = 2, cstcovar.rm = "all")
## substitute (transformed) X with projection of X on Z
## any linear dependence in Z (demZ) is appropriately taken care of by lm.fit()
nms <- colnames(demX)
demX <- lm.fit(demZ, demX)$fitted.values
# catches case with only one regressor -> need to convert numeric
# returned from lm.fit()fitted.values to matrix:
if(!is.matrix(demX)) demX <- matrix(demX, dimnames = list(NULL, nms[1L]))
}
pdim <- pdim(x)
nT <- pdim$nT$N
Ti <- pdim$Tint$Ti
k <- dim(demX)[[2L]]
n0 <- pdim$nT$n
t0 <- pdim$nT$T
## extract residuals
uhat <- x$residuals
## robustifying against either serial or xs intragroup dependence:
## if 'group' then keep current indexing, if 'time' then swap i<->t
## so that residuals get 'clustered' by time period instead of by
## group (i.e., the vcov estimator is robust vs. xsectional dependence)
## extract indices
xindex <- unclass(attr(x$model, "index")) # unclass for speed
groupind <- as.numeric(xindex[[1L]])
timeind <- as.numeric(xindex[[2L]])
## Achim's fix for 'fd' model (losing first time period)
if(model == "fd") {
groupind <- groupind[timeind > 1]
timeind <- timeind[ timeind > 1]
nT <- nT - n0
Ti <- Ti - 1
t0 <- t0 - 1
}
## set grouping indexes
cluster <- match.arg(cluster)
switch(cluster,
"group" = {
n <- n0 # this is needed only for 'pcse'
t <- t0 # this is needed only for 'pcse'
relevant.ind <- groupind
lab <- timeind },
"time" = {
n <- t0 # this is needed only for 'pcse'
t <- n0 # this is needed only for 'pcse'
relevant.ind <- timeind
lab <- groupind
})
tind <- split(seq_along(relevant.ind), relevant.ind)
tlab <- split(lab, relevant.ind)
## define residuals weighting function omega(res)
## (code taken from meatHC and modified)
## (the weighting is defined "in sqrt" relative to the literature)
##
## (see the theoretical comments in pvcovHC)
## this is computationally heavy, do only if needed
diaghat <- switch(type, "HC0" = NULL,
"HC1" = NULL,
"HC2" = try(dhat(demX), silent = TRUE),
"HC3" = try(dhat(demX), silent = TRUE),
"HC4" = try(dhat(demX), silent = TRUE))
df <- nT - k
switch(type,
"HC0" = {
omega <- function(residuals, diaghat, df) residuals
}, "HC1" = {
omega <- function(residuals, diaghat, df) residuals *
sqrt(length(residuals)/df)
}, "HC2" = {
omega <- function(residuals, diaghat, df) residuals /
sqrt(1 - diaghat)
}, "HC3" = {
omega <- function(residuals, diaghat, df) residuals /
(1 - diaghat)
}, "HC4" = {
omega <- function(residuals, diaghat, df) residuals/sqrt(1 -
diaghat)^pmin(4, length(residuals) * diaghat/as.integer(round(sum(diaghat),
digits = 0)))
})
## transform residuals by weights
uhat <- omega(uhat, diaghat, df)
## CODE TAKEN FROM pvcovHC() UNTIL HERE except for ind/time labeling ##
## the PCSE covariance estimator is based on the unconditional estimate
## of the intragroup (intraperiod) covariance of errors, OmegaT or OmegaM
## in the EViews help.
## we calculate this based on code from pggls().
## the Omegai function is then:
## - constant if the panel is balanced
## - depending only on the intragroup (intraperiod) position index
## if the panel is unbalanced.
## (code for estimating OmegaM/OmegaT partly taken from pggls)
## est. omega submatrix
## "pre-allocate" an empty array
tres <- array(dim = c(t, t, n))
## array of n "empirical omega-blocks"
## with outer product of t(i) residuals
## for each group 1..n
## (use subscripting from condition 'label in labels' set',
## the rest stays NA if any)
unlabs <- unique(lab) # fetch (all, unique) values of the relevant labels
seq.len.t <- seq_len(t)
for(i in seq_len(n)) {
ut <- uhat[tind[[i]]]
tpos <- seq.len.t[unlabs %in% tlab[[i]]]
## put non-diag elements to 0 if diagonal=TRUE
tres[tpos, tpos, i] <- if(diagonal) diag(diag(ut %o% ut)) else ut %o% ut
}
## average over all omega blocks, removing NAs (apply preserving
## *two* dimensions, i.e., over the third) to get the unconditional
## covariance matrix of errors for a group (viz. time period):
OmegaT <- rowMeans(tres, dims = 2L, na.rm = TRUE) # == apply(tres, 1:2, mean, na.rm = TRUE) but faster
## end of PCSE covariance calculation.
salame <- array(dim = c(k, k, n))
for(i in seq_len(n)) {
groupinds <- tind[[i]]
grouplabs <- tlab[[i]]
xi <- demX[groupinds, , drop = FALSE]
## for every group, take relevant positions
tpos <- unlabs %in% grouplabs
OmegaTi <- OmegaT[tpos, tpos, drop = FALSE]
salame[ , , i] <- crossprod(xi, OmegaTi) %*% xi
}
## meat
salame <- rowSums(salame, dims = 2L) # == apply(salame, 1:2, sum) but faster
## bread
pane <- solve(crossprod(demX))
## sandwich
mycov <- tcrossprod(crossprod(t(pane), salame), t(pane)) # == pane %*% salame %*% pane
# save information about cluster variable in matrix (needed for e.g.,
# robust F test)
attr(mycov, which = "cluster") <- match.arg(cluster)
return(mycov)
}
#######################################################
#####################################
## vcovXX methods for pcce objects ##
#####################################
## pcce is compliant with plm so vcovXX.pcce <- vcovXX.plm
## for any vcov that makes sense computed on the transformed
## data from model.matrix.pcce and pmodel.response.pcce
## TODO: vcovBK.pcce missing? Or not valid?
#' @rdname vcovG
#' @export
vcovG.pcce <- vcovG.plm
#' @rdname vcovHC.plm
#' @export
vcovHC.pcce <- vcovHC.plm
#' @rdname vcovNW
#' @export
vcovNW.pcce <- vcovNW.plm
#' @rdname vcovSCC
#' @export
vcovSCC.pcce <- vcovSCC.plm
####################################
## vcovHC method for pgmm objects ##
####################################
#' @rdname vcovHC.plm
#' @importFrom MASS ginv
#' @export
vcovHC.pgmm <- function(x, ...) {
model <- describe(x, "model")
transformation <- describe(x, "transformation")
A1 <- x$A1
A2 <- x$A2
if(transformation == "ld") {
## yX <- lapply(x$model,function(x) rbind(diff(x),x))
## residuals <-lapply(x$residuals,function(x) c(diff(x),x))
yX <- x$model
residuals <- x$residuals
}
else {
yX <- x$model
residuals <- x$residuals
}
minevA2 <- min(abs(Re(eigen(A2)$values)))
eps <- 1E-9
SA2 <- if(minevA2 < eps){
warning("a general inverse is used")
ginv(A2)
} else solve(A2)
if(model == "twosteps") {
coef1s <- x$coefficients[[1L]]
res1s <- lapply(yX, function(x) x[ , 1L] - crossprod(t(x[ , -1L, drop = FALSE]), coef1s))
K <- ncol(yX[[1L]])
D <- c()
WX <- Reduce("+",
mapply(function(x, y) crossprod(x, y[ , -1L, drop = FALSE]), x$W, yX, SIMPLIFY = FALSE))
We <- Reduce("+", mapply(function(x, y) crossprod(x, y), x$W, residuals, SIMPLIFY = FALSE))
B1 <- solve(t(WX) %*% A1 %*% WX)
B2 <- vcov(x)
vcov1s <- B1 %*% (t(WX) %*% A1 %*% SA2 %*% A1 %*% WX) %*% B1
for (k in 2:K) {
exk <- mapply(
function(x, y){
z <- crossprod(t(x[ , k, drop = FALSE]), t(y))
- z - t(z)
},
yX, res1s, SIMPLIFY = FALSE)
wexkw <- Reduce("+",
mapply(
function(x, y)
crossprod(x, crossprod(y, x)),
x$W, exk, SIMPLIFY = FALSE))
Dk <- -B2 %*% t(WX) %*% A2 %*% wexkw %*% A2 %*% We
D <- cbind(D, Dk)
}
vcovr <- B2 + crossprod(t(D), B2) + t(crossprod(t(D), B2)) + D %*% vcov1s %*% t(D)
}
else {
# model = "onestep"
res1s <- lapply(yX, function(z) z[ , 1L] - crossprod(t(z[ , -1L, drop = FALSE]), x$coefficients))
K <- ncol(yX[[1L]])
WX <- Reduce("+", mapply(function(z, y) crossprod(z[ , -1L, drop = FALSE], y), yX, x$W, SIMPLIFY = FALSE))
B1 <- vcov(x)
vcovr <- B1 %*% (WX %*% A1 %*% SA2 %*% A1 %*% t(WX)) %*% B1
}
vcovr
}
## dhat: diaghat function for matrices
dhat <- function(x) {
rowSums(crossprod(t(x), solve(crossprod(x))) * x) # == (old) diag(crossprod(t(x), solve(crossprod(x), t(x)))
}
|