1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/est_plm.R, R/est_plm.list.R, R/tool_methods.R
\name{plm}
\alias{plm}
\alias{print.plm.list}
\alias{terms.panelmodel}
\alias{vcov.panelmodel}
\alias{fitted.panelmodel}
\alias{residuals.panelmodel}
\alias{df.residual.panelmodel}
\alias{coef.panelmodel}
\alias{print.panelmodel}
\alias{update.panelmodel}
\alias{deviance.panelmodel}
\alias{formula.plm}
\alias{plot.plm}
\alias{residuals.plm}
\alias{fitted.plm}
\title{Panel Data Estimators}
\usage{
plm(
formula,
data,
subset,
weights,
na.action,
effect = c("individual", "time", "twoways", "nested"),
model = c("within", "random", "ht", "between", "pooling", "fd"),
random.method = NULL,
random.models = NULL,
random.dfcor = NULL,
inst.method = c("bvk", "baltagi", "am", "bms"),
restrict.matrix = NULL,
restrict.rhs = NULL,
index = NULL,
...
)
\method{print}{plm.list}(
x,
digits = max(3, getOption("digits") - 2),
width = getOption("width"),
...
)
\method{terms}{panelmodel}(x, ...)
\method{vcov}{panelmodel}(object, ...)
\method{fitted}{panelmodel}(object, ...)
\method{residuals}{panelmodel}(object, ...)
\method{df.residual}{panelmodel}(object, ...)
\method{coef}{panelmodel}(object, ...)
\method{print}{panelmodel}(
x,
digits = max(3, getOption("digits") - 2),
width = getOption("width"),
...
)
\method{update}{panelmodel}(object, formula., ..., evaluate = TRUE)
\method{deviance}{panelmodel}(object, model = NULL, ...)
\method{formula}{plm}(x, ...)
\method{plot}{plm}(
x,
dx = 0.2,
N = NULL,
seed = 1,
within = TRUE,
pooling = TRUE,
between = FALSE,
random = FALSE,
...
)
\method{residuals}{plm}(object, model = NULL, effect = NULL, ...)
\method{fitted}{plm}(object, model = NULL, effect = NULL, ...)
}
\arguments{
\item{formula}{a symbolic description for the model to be
estimated,}
\item{data}{a \code{data.frame},}
\item{subset}{see \code{\link[stats:lm]{stats::lm()}},}
\item{weights}{see \code{\link[stats:lm]{stats::lm()}},}
\item{na.action}{see \code{\link[stats:lm]{stats::lm()}}; currently, not fully
supported,}
\item{effect}{the effects introduced in the model, one of
\code{"individual"}, \code{"time"}, \code{"twoways"}, or
\code{"nested"},}
\item{model}{one of \code{"pooling"}, \code{"within"},
\code{"between"}, \code{"random"} \code{"fd"}, or \code{"ht"},}
\item{random.method}{method of estimation for the variance
components in the random effects model, one of \code{"swar"}
(default), \code{"amemiya"}, \code{"walhus"}, \code{"nerlove"}; for
Hausman-Taylor estimation set to \code{"ht"} (see Details and Examples),}
\item{random.models}{an alternative to the previous argument, the
models used to compute the variance components estimations are
indicated,}
\item{random.dfcor}{a numeric vector of length 2 indicating which
degree of freedom should be used,}
\item{inst.method}{the instrumental variable transformation: one of
\code{"bvk"}, \code{"baltagi"}, \code{"am"}, or \code{"bms"} (see also Details),}
\item{restrict.matrix}{a matrix which defines linear restrictions
on the coefficients,}
\item{restrict.rhs}{the right hand side vector of the linear
restrictions on the coefficients,}
\item{index}{the indexes,}
\item{\dots}{further arguments.}
\item{x, object}{an object of class \code{"plm"},}
\item{digits}{number of digits for printed output,}
\item{width}{the maximum length of the lines in the printed output,}
\item{formula.}{a new formula for the update method,}
\item{evaluate}{a boolean for the update method, if \code{TRUE} the
updated model is returned, if \code{FALSE} the call is returned,}
\item{dx}{the half--length of the individual lines for the plot
method (relative to x range),}
\item{N}{the number of individual to plot,}
\item{seed}{the seed which will lead to individual selection,}
\item{within}{if \code{TRUE}, the within model is plotted,}
\item{pooling}{if \code{TRUE}, the pooling model is plotted,}
\item{between}{if \code{TRUE}, the between model is plotted,}
\item{random}{if \code{TRUE}, the random effect model is plotted,}
}
\value{
An object of class \code{"plm"}.
A \code{"plm"} object has the following elements :
\item{coefficients}{the vector of coefficients,}
\item{vcov}{the variance--covariance matrix of the coefficients,}
\item{residuals}{the vector of residuals (these are the residuals
of the (quasi-)demeaned model),}
\item{weights}{(only for weighted estimations) weights as
specified,}
\item{df.residual}{degrees of freedom of the residuals,}
\item{formula}{an object of class \code{"Formula"} describing the model,}
\item{model}{the model frame as a \code{"pdata.frame"} containing the
variables used for estimation: the response is in first column followed by
the other variables, the individual and time indexes are in the 'index'
attribute of \code{model},}
\item{ercomp}{an object of class \code{"ercomp"} providing the
estimation of the components of the errors (for random effects
models only),}
\item{aliased}{named logical vector indicating any aliased
coefficients which are silently dropped by \code{plm} due to
linearly dependent terms (see also \code{\link[=detect.lindep]{detect.lindep()}}),}
\item{call}{the call.}
It has \code{print}, \code{summary} and \code{print.summary} methods. The
\code{summary} method creates an object of class \code{"summary.plm"} that
extends the object it is run on with information about (inter alia) F
statistic and (adjusted) R-squared of model, standard errors, t--values, and
p--values of coefficients, (if supplied) the furnished vcov, see
\code{\link[=summary.plm]{summary.plm()}} for further details.
}
\description{
Linear models for panel data estimated using the \code{lm} function on
transformed data.
}
\details{
\code{plm} is a general function for the estimation of linear panel
models. It supports the following estimation methods: pooled OLS
(\code{model = "pooling"}), fixed effects (\code{"within"}), random effects
(\code{"random"}), first--differences (\code{"fd"}), and between
(\code{"between"}). It supports unbalanced panels and two--way effects
(although not with all methods).
For random effects models, four estimators of the transformation
parameter are available by setting \code{random.method} to one of
\code{"swar"} \insertCite{SWAM:AROR:72}{plm} (default), \code{"amemiya"}
\insertCite{AMEM:71}{plm}, \code{"walhus"}
\insertCite{WALL:HUSS:69}{plm}, or \code{"nerlove"}
\insertCite{NERLO:71}{plm} (see below for Hausman-Taylor instrumental
variable case).
For first--difference models, the intercept is maintained (which
from a specification viewpoint amounts to allowing for a trend in
the levels model). The user can exclude it from the estimated
specification the usual way by adding \code{"-1"} to the model formula.
Instrumental variables estimation is obtained using two--part
formulas, the second part indicating the instrumental variables
used. This can be a complete list of instrumental variables or an
update of the first part. If, for example, the model is \code{y ~ x1 + x2 + x3}, with \code{x1} and \code{x2} endogenous and \code{z1} and \code{z2} external
instruments, the model can be estimated with:
\itemize{
\item \code{formula = y~x1+x2+x3 | x3+z1+z2},
\item \code{formula = y~x1+x2+x3 | . -x1-x2+z1+z2}.
}
If an instrument variable estimation is requested, argument
\code{inst.method} selects the instrument variable transformation
method:
\itemize{
\item \code{"bvk"} (default) for \insertCite{BALE:VARA:87;textual}{plm},
\item \code{"baltagi"} for \insertCite{BALT:81;textual}{plm},
\item \code{"am"} for \insertCite{AMEM:MACU:86;textual}{plm},
\item \code{"bms"} for \insertCite{BREU:MIZO:SCHM:89;textual}{plm}.
}
The Hausman--Taylor estimator \insertCite{HAUS:TAYL:81}{plm} is
computed with arguments \code{random.method = "ht"}, \code{model = "random"},
\code{inst.method = "baltagi"} (the other way with only \code{model = "ht"}
is deprecated).
See also the vignettes for introductions to model estimations (and more) with
examples.
}
\examples{
data("Produc", package = "plm")
zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
data = Produc, index = c("state","year"))
summary(zz)
# replicates some results from Baltagi (2013), table 3.1
data("Grunfeld", package = "plm")
p <- plm(inv ~ value + capital,
data = Grunfeld, model = "pooling")
wi <- plm(inv ~ value + capital,
data = Grunfeld, model = "within", effect = "twoways")
swar <- plm(inv ~ value + capital,
data = Grunfeld, model = "random", effect = "twoways")
amemiya <- plm(inv ~ value + capital,
data = Grunfeld, model = "random", random.method = "amemiya",
effect = "twoways")
walhus <- plm(inv ~ value + capital,
data = Grunfeld, model = "random", random.method = "walhus",
effect = "twoways")
# summary and summary with a furnished vcov (passed as matrix,
# as function, and as function with additional argument)
summary(wi)
summary(wi, vcov = vcovHC(wi))
summary(wi, vcov = vcovHC)
summary(wi, vcov = function(x) vcovHC(x, method = "white2"))
## nested random effect model
# replicate Baltagi/Song/Jung (2001), p. 378 (table 6), columns SA, WH
# == Baltagi (2013), pp. 204-205
data("Produc", package = "plm")
pProduc <- pdata.frame(Produc, index = c("state", "year", "region"))
form <- log(gsp) ~ log(pc) + log(emp) + log(hwy) + log(water) + log(util) + unemp
summary(plm(form, data = pProduc, model = "random", effect = "nested"))
summary(plm(form, data = pProduc, model = "random", effect = "nested",
random.method = "walhus"))
## Instrumental variable estimations
# replicate Baltagi (2013/2021), p. 133/162, table 7.1
data("Crime", package = "plm")
FE2SLS <- plm(lcrmrte ~ lprbarr + lpolpc + lprbconv + lprbpris + lavgsen +
ldensity + lwcon + lwtuc + lwtrd + lwfir + lwser + lwmfg + lwfed +
lwsta + lwloc + lpctymle + lpctmin + region + smsa + factor(year)
| . - lprbarr - lpolpc + ltaxpc + lmix,
data = Crime, model = "within")
G2SLS <- update(FE2SLS, model = "random", inst.method = "bvk")
EC2SLS <- update(G2SLS, model = "random", inst.method = "baltagi")
## Hausman-Taylor estimator and Amemiya-MaCurdy estimator
# replicate Baltagi (2005, 2013), table 7.4; Baltagi (2021), table 7.5
data("Wages", package = "plm")
ht <- plm(lwage ~ wks + south + smsa + married + exp + I(exp ^ 2) +
bluecol + ind + union + sex + black + ed |
bluecol + south + smsa + ind + sex + black |
wks + married + union + exp + I(exp ^ 2),
data = Wages, index = 595,
random.method = "ht", model = "random", inst.method = "baltagi")
summary(ht)
am <- plm(lwage ~ wks + south + smsa + married + exp + I(exp ^ 2) +
bluecol + ind + union + sex + black + ed |
bluecol + south + smsa + ind + sex + black |
wks + married + union + exp + I(exp ^ 2),
data = Wages, index = 595,
random.method = "ht", model = "random", inst.method = "am")
summary(am)
}
\references{
\insertRef{AMEM:71}{plm}
\insertRef{AMEM:MACU:86}{plm}
\insertRef{BALE:VARA:87}{plm}
\insertRef{BALT:81}{plm}
\insertRef{BALT:SONG:JUNG:01}{plm}
\insertRef{BALT:13}{plm}
\insertRef{BREU:MIZO:SCHM:89}{plm}
\insertRef{HAUS:TAYL:81}{plm}
\insertRef{NERLO:71}{plm}
\insertRef{SWAM:AROR:72}{plm}
\insertRef{WALL:HUSS:69}{plm}
}
\seealso{
\code{\link[=summary.plm]{summary.plm()}} for further details about the associated
summary method and the "summary.plm" object both of which provide some model
tests and tests of coefficients. \code{\link[=fixef]{fixef()}} to compute the fixed
effects for "within" models (=fixed effects models). \code{\link[=predict.plm]{predict.plm()}} for
predicted values.
}
\author{
Yves Croissant
}
\keyword{regression}
|