1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/tool_vcovG.R
\name{vcovHC.plm}
\alias{vcovHC.plm}
\alias{vcovHC}
\alias{vcovHC.pcce}
\alias{vcovHC.pgmm}
\title{Robust Covariance Matrix Estimators}
\usage{
\method{vcovHC}{plm}(
x,
method = c("arellano", "white1", "white2"),
type = c("HC0", "sss", "HC1", "HC2", "HC3", "HC4"),
cluster = c("group", "time"),
...
)
\method{vcovHC}{pcce}(
x,
method = c("arellano", "white1", "white2"),
type = c("HC0", "sss", "HC1", "HC2", "HC3", "HC4"),
cluster = c("group", "time"),
...
)
\method{vcovHC}{pgmm}(x, ...)
}
\arguments{
\item{x}{an object of class \code{"plm"} which should be the result of a
random effects or a within model or a model of class \code{"pgmm"}
or an object of class \code{"pcce"},}
\item{method}{one of \code{"arellano"}, \code{"white1"}, \code{"white2"},}
\item{type}{the weighting scheme used, one of \code{"HC0"}, \code{"sss"},
\code{"HC1"}, \code{"HC2"}, \code{"HC3"}, \code{"HC4"}, see Details,}
\item{cluster}{one of \code{"group"}, \code{"time"},}
\item{\dots}{further arguments.}
}
\value{
An object of class \code{"matrix"} containing the estimate of
the asymptotic covariance matrix of coefficients.
}
\description{
Robust covariance matrix estimators \emph{a la White} for panel
models.
}
\details{
\code{vcovHC} is a function for estimating a robust covariance matrix of
parameters for a fixed effects or random effects panel model
according to the White method
\insertCite{WHIT:80,WHIT:84b,AREL:87}{plm}. Observations may be
clustered by \code{"group"} (\code{"time"}) to account for serial
(cross-sectional) correlation.
All types assume no intragroup (serial) correlation between errors
and allow for heteroskedasticity across groups (time periods). As
for the error covariance matrix of every single group of
observations, \code{"white1"} allows for general heteroskedasticity but
no serial (cross--sectional) correlation; \code{"white2"} is \code{"white1"}
restricted to a common variance inside every group (time period)
\insertCite{@see @GREE:03, Sec. 13.7.1-2, @GREE:12, Sec. 11.6.1-2
and @WOOL:02, Sec. 10.7.2}{plm}; \code{"arellano"} \insertCite{@see
ibid. and the original ref. @AREL:87}{plm} allows a fully general
structure w.r.t. heteroskedasticity and serial (cross--sectional)
correlation.
Weighting schemes specified by \code{type} are analogous to those in
\code{\link[sandwich:vcovHC]{sandwich::vcovHC()}} in package \CRANpkg{sandwich} and are
justified theoretically (although in the context of the standard
linear model) by \insertCite{MACK:WHIT:85;textual}{plm} and
\insertCite{CRIB:04;textual}{plm}
\insertCite{ZEIL:04}{plm}. \code{type = "sss"} employs the small sample
correction as used by Stata.
The main use of \code{vcovHC} (and the other variance-covariance estimators
provided in the package \code{vcovBK}, \code{vcovNW}, \code{vcovDC}, \code{vcovSCC}) is to pass
it to plm's own functions like \code{summary}, \code{pwaldtest}, and \code{phtest} or
together with testing functions from the \code{lmtest} and \code{car} packages. All of
these typically allow passing the \code{vcov} or \code{vcov.} parameter either as a
matrix or as a function, e.g., for Wald--type testing: argument \code{vcov.} to
\code{coeftest()}, argument \code{vcov} to \code{waldtest()} and other methods in the
\CRANpkg{lmtest} package; and argument \code{vcov.} to
\code{linearHypothesis()} in the \CRANpkg{car} package (see the
examples), see \insertCite{@see also @ZEIL:04}{plm}, 4.1-2, and examples below.
A special procedure for \code{pgmm} objects, proposed by
\insertCite{WIND:05;textual}{plm}, is also provided.
}
\note{
The function \code{pvcovHC} is deprecated. Use \code{vcovHC} for the
same functionality.
}
\examples{
data("Produc", package = "plm")
zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
data = Produc, model = "random")
## as function input to plm's summary method (with and without additional arguments):
summary(zz, vcov = vcovHC)
summary(zz, vcov = function(x) vcovHC(x, method="arellano", type="HC1"))
## standard coefficient significance test
library(lmtest)
coeftest(zz)
## robust significance test, cluster by group
## (robust vs. serial correlation)
coeftest(zz, vcov.=vcovHC)
## idem with parameters, pass vcov as a function argument
coeftest(zz, vcov.=function(x) vcovHC(x, method="arellano", type="HC1"))
## idem, cluster by time period
## (robust vs. cross-sectional correlation)
coeftest(zz, vcov.=function(x) vcovHC(x, method="arellano",
type="HC1", cluster="group"))
## idem with parameters, pass vcov as a matrix argument
coeftest(zz, vcov.=vcovHC(zz, method="arellano", type="HC1"))
## joint restriction test
waldtest(zz, update(zz, .~.-log(emp)-unemp), vcov=vcovHC)
\dontrun{
## test of hyp.: 2*log(pc)=log(emp)
library(car)
linearHypothesis(zz, "2*log(pc)=log(emp)", vcov.=vcovHC)
}
## Robust inference for CCE models
data("Produc", package = "plm")
ccepmod <- pcce(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc, model="p")
summary(ccepmod, vcov = vcovHC)
## Robust inference for GMM models
data("EmplUK", package="plm")
ar <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage), 0:1)
+ log(capital) + lag(log(capital), 2) + log(output)
+ lag(log(output),2) | lag(log(emp), 2:99),
data = EmplUK, effect = "twoways", model = "twosteps")
rv <- vcovHC(ar)
mtest(ar, order = 2, vcov = rv)
}
\references{
\insertRef{AREL:87}{plm}
\insertRef{CRIB:04}{plm}
\insertRef{GREE:03}{plm}
\insertRef{GREE:12}{plm}
\insertRef{MACK:WHIT:85}{plm}
\insertRef{WIND:05}{plm}
\insertRef{WHIT:84b}{plm}
chap. 6
\insertRef{WHIT:80}{plm}
\insertRef{WOOL:02}{plm}
\insertRef{ZEIL:04}{plm}
}
\seealso{
\code{\link[sandwich:vcovHC]{sandwich::vcovHC()}} from the \CRANpkg{sandwich}
package for weighting schemes (\code{type} argument).
}
\author{
Giovanni Millo & Yves Croissant
}
\keyword{regression}
|