1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
## =============================================================================
## =============================================================================
## Shaded colors for 3-D images
## =============================================================================
## =============================================================================
## =============================================================================
## Calculate surface normals from (x, y, z) matrices
## =============================================================================
normal.matrix <- function(x, y, z, Extend = TRUE, na.rm = FALSE) { # the x- y- and z matrices
# x, y and z: matrices of same dimension
if (Extend & !na.rm) {
xx <- extend(x)
yy <- extend(y)
zz <- extend(z)
} else if (Extend & na.rm) {
xx <- extend.na(x)
yy <- extend.na(y)
zz <- extend.na(z)
}
else {
xx <- x
yy <- y
zz <- z
}
# the facets:
ii <- 1 : (nrow(xx)-1)
jj <- 1 : (ncol(xx)-1)
# normals in x, y, and z direction are matrices
N.x <- N.y <- N.z <- matrix(nrow = nrow(xx)-1, ncol = ncol(xx)-1, data = NA)
# choose points on each vertex
for (i in ii) {
ip1 <- cbind(i, jj+1)
ip2 <- cbind(i+1 , jj)
ip3 <- cbind(i+1 , jj+1)
ip4 <- cbind(i , jj)
p1 <- cbind(xx[ip1] , yy[ip1], zz[ip1])
p2 <- cbind(xx[ip2] , yy[ip2], zz[ip2])
p3 <- cbind(xx[ip3] , yy[ip3], zz[ip3])
p4 <- cbind(xx[ip4] , yy[ip4], zz[ip4])
# two vectors to represent these points
V1 <- p2 - p1
V2 <- p3 - p4
# the (unnormalised) normals
N.x [i, ] <- V1[, 2]*V2[, 3] - V1[, 3]*V2[, 2]
N.y [i, ] <- -V1[, 1]*V2[, 3] + V1[, 3]*V2[, 1]
N.z [i, ] <- V1[, 1]*V2[, 2] - V1[, 2]*V2[, 1]
}
# normalise
Norm <- sqrt(N.x^2 + N.y^2 + N.z^2) # normalisation factor
Norm[Norm == 0] <-1
list (u = N.x/Norm, v = N.y/Norm, w = N.z/Norm)
}
## =============================================================================
normal.points <- function(p1, p2, p3, p4) { #x, y, z of 4 pts
# two vectors to represent these points
V1 <- p2 - p1
V2 <- p3 - p4
# the (unnormalised) normals
N.x <- V1[2, ]*V2[3, ] - V1[3, ]*V2[2, ]
N.y <- -V1[1, ]*V2[3, ] + V1[3, ]*V2[1, ]
N.z <- V1[1, ]*V2[2, ] - V1[2, ]*V2[1, ]
# normalise
Norm <- sqrt(N.x^2 + N.y^2 + N.z^2) # normalisation factor
Norm[Norm == 0] <-1
list (u = N.x/Norm, v = N.y/Norm, w = N.z/Norm)
}
## =============================================================================
normal.points.tri <- function(p1, p2, p3) { #x, y, z of 3 pts
# two vectors to represent these points
V1 <- p2 - p1
V2 <- p3 - p1
# the (unnormalised) normals
N.x <- V1[2, ]*V2[3, ] - V1[3, ]*V2[2, ]
N.y <- -V1[1, ]*V2[3, ] + V1[3, ]*V2[1, ]
N.z <- V1[1, ]*V2[2, ] - V1[2, ]*V2[1, ]
# normalise
Norm <- sqrt(N.x^2 + N.y^2 + N.z^2) # normalisation factor
Norm[Norm == 0] <-1
list (u = N.x/Norm, v = N.y/Norm, w = N.z/Norm)
}
## =============================================================================
## Setup light based on light angles
## =============================================================================
# A translation to R from the C-code in plot3d.c
setuplight <- function(phil, thetal) {
# rotation in x-direction
cosp <- cos(-phil/180*pi)
sinp <- sin(-phil/180*pi)
rotX <- matrix(nrow = 4, data = c(1, 0, 0, 0,
0, cosp, -sinp, 0,
0, sinp, cosp, 0,
0, 0, 0, 1))
VT <- diag(nrow = 4) %*% rotX
# rotation in z-direction
cost <- cos(thetal/180*pi)
sint <- sin(thetal/180*pi)
rotZ <- matrix(nrow = 4, data = c(cost, -sint, 0, 0,
sint, cost, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1))
VT <- VT %*% rotZ
light <- c(0, -1, 0, 1) %*% VT
return(light)
}
## =============================================================================
## Create 3-D facet colors with shading or lighting.
## =============================================================================
facetcols.tri <- function(tri, col, shade){
Nr <- nrow(tri)/3
A <- array(dim = c(3, 3, Nr), data = t(tri))
if (length(col) != Nr)
col <- rep(col, length.out = Nr)
A[1,,] <- A[1,,] *shade$xs
A[2,,] <- A[2,,] *shade$ys
A[3,,] <- A[3,,] *shade$zs
light <- setuplight(shade$lphi, shade$ltheta) [1:3]
Normals <- normal.points.tri(A[,1,], A[,2,], A[,3,])
return(facetcols.shadelight(light, Normals, col, shade))
}
## =============================================================================
## x-y-z is a matrix
## =============================================================================
facetcols <- function(x, y, z, col, shade, Extend = TRUE){
# +90 for "rotation to horizontal"
if (Extend & length(col) != length(x))
col <- rep(col, length.out = length(x))
else if (!Extend & length(col) != prod(dim(x)-1))
col <- rep(col, length.out = prod(dim(x)-1))
light <- setuplight(shade$lphi, shade$ltheta) [1:3]
Normals <- normal.matrix(x * shade$xs, y * shade$ys, z * shade$zs, Extend)
return(facetcols.shadelight(light, Normals, col, shade))
}
## =============================================================================
## facet colors with transparancy
## =============================================================================
facetcols.shadelight <- function(light, Normals, col, shade){
# we keep "transparent" colors
ii <- which (col == "transparent")
if (shade$type == "shade")
Col <- facetcols.shade(light, Normals, col, shade$shade)
else if (shade$type == "light")
Col <- facetcols.light(light, Normals, col, shade)
if (! is.null(shade$alpha))
Col <- setalpha(Col, shade$alpha)
if (length(ii) > 0)
Col[ii] <- "transparent"
return(Col)
}
## =============================================================================
## facet colors with simplified phong lighting.
## =============================================================================
facetcols.light <- function(light, Normals, col, shade) {
# defaults
p <- list(ambient = 0.3, diffuse = 0.6, specular = 1.,
exponent = 20, sr = 0, alpha = 1)
nmsC <- names(p)
p[(namc <- names(shade))] <- shade
# this is different from shaded colors -
# Sum <- Normals$u*light[1] + Normals$v*light[2] + Normals$w*light[3]
# use same as shaded.colors
Sum <- 0.5*(Normals$u*light[1] + Normals$v*light[2] + Normals$w*light[3] +1)
Is <- as.vector(p$specular * abs(Sum) ^ p$exponent)
Id <- as.vector(p$diffuse * pmax(Sum, 0))
rgbcol <- t(col2rgb(col) / 255)
Lrgbcol <- pmin((p$ambient + Id + p$sr * Is) * rgbcol + (1 - p$sr) * Is, 1)
Lrgbcol[is.na(Lrgbcol)] <- 0
if (is.null(p$alpha))
p$alpha <- 1 # necessary for R < 3.0
rgb(Lrgbcol[,1], Lrgbcol[,2], Lrgbcol[,3], p$alpha)
}
## =============================================================================
## facet colors with shading
## =============================================================================
facetcols.shade <- function(light, Normals, col, shade){
if (is.na(shade))
return(col)
shade <- abs(shade)
if (shade < 0 | shade > 1)
stop("'shade' should be a value inbetween 0 and 1")
Sum <- 0.5*(Normals$u*light[1] + Normals$v*light[2] + Normals$w*light[3] +1)
Shade <- Sum^shade
Shade[is.na(Shade)] <- 0
RGB <- t(col2rgb(col)) * as.vector(Shade) / 255
col[] <- rgb(RGB) # alpha = 1
return(col)
}
facetcolsImage <- function (x, y, z, xlim, ylim, zlim, shade, lighting, alpha,
ltheta, lphi, Col, NAcol) {
if (is.null(xlim))
xlim <- range(x, na.rm = TRUE)
if (is.null(ylim))
ylim <- range(y, na.rm = TRUE)
if (is.null(zlim))
zlim <- range(z, na.rm = TRUE)
xs <- 0.5 *abs(diff(xlim))
ys <- 0.5 *abs(diff(ylim))
zs <- 0.5 *abs(diff(zlim))
xs <- ifelse (xs == 0, 1, 1 / xs)
ys <- ifelse (ys == 0, 1, 1 / ys)
zs <- ifelse (zs == 0, 1, 1 / zs)
if (! is.matrix(x)) {
xy <- mesh(x,y)
x <- xy$x
y <- xy$y
}
light <- setuplight(lphi, ltheta) [1:3]
Normals <- normal.matrix(x * xs, y * ys, z * zs, Extend = TRUE,
na.rm = any(is.na(z)))
ina <- which (is.na(Normals$u))
List <- list (shade = shade, alpha = alpha, type = "none")
if (! is.null(lighting)) {
if (is.character(lighting))
List$type <- "light"
else if (is.logical(lighting)) {
if (lighting)
List$type <- "light"
} else if (is.list(lighting)) {
if (!is.null(lighting$type))
List$type <- lighting$type
else
List$type <- "light"
lighting$type <- NULL
List <- c(List, lighting)
}
}
if (! is.null(shade))
if (! is.na(shade) & List$type == "none") # lighting overrules shade
List$type <- "shade"
if (is.null(List$shade))
List$shade <- NA
# we keep "transparent" colors
col <- Col
ii <- which (col == "transparent")
Col[] <- facetcols.shadelight(light, Normals, col, List)
if (! is.null(alpha))
Col <- setalpha(Col, alpha)
if (length(ina) > 0)
Col[ina] <- NAcol
if (length(ii) > 0 )
Col[ii] <- "transparent"
return(Col)
}
|