1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
|
\documentclass[article,nojss]{jss}
\DeclareGraphicsExtensions{.pdf,.eps,.png}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Add-on packages and fonts
\newcommand{\noun}[1]{\textsc{#1}}
%% Bold symbol macro for standard LaTeX users
\providecommand{\boldsymbol}[1]{\mbox{\boldmath $#1$}}
%% Because html converters don't know tabularnewline
\providecommand{\tabularnewline}{\\}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
\newcommand{\p}{\textbf{\textsf{plot3D }}}
\newcommand{\R}{\proglang{R}}
\title{
\p: Tools for plotting 3-D and 2-D data.
}
\Plaintitle{plot3D}
\Keywords{
plot, persp, image, 2-D, 3-D, scatter plots, surface plots, slice plots,
oceanographic data, \proglang{R}
}
\Plainkeywords{
plot, persp, image, 2-D, 3-D, scatter plots, surface plots, slice plots,
oceanographic data, R
}
\author{Karline Soetaert\\
NIOZ-Yerseke\\
The Netherlands
}
\Plainauthor{Karline Soetaert}
\Abstract{
\R{ }package \p \citep{plot3D} contains functions for plotting multi-dimensional
data. Many functions are derived from the \code{persp} function, other
functions start from the \code{image} or \code{contour} function.
Two related packages are:
\begin{itemize}
\item \pkg{plot3Drgl} \citep{plot3Drgl}, that plots multidimensional data
using openGL graphics (and using package \pkg{rgl} \citep{rgl}).
\item \pkg{OceanView} \citep{OceanView} that contains functions for visualing
oceanographic data.
\end{itemize}
A graphical gallery using one of \pkg{plot3D}, \pkg{plot3Drgl} or \pkg{OceanView}
is in \url{http://www.rforscience.com/rpackages/visualisation/oceanview/}
and \url{http://www.rforscience.com/rpackages/visualisation/plot3d/}
}
%% The address of (at least) one author should be given
%% in the following format:
\Address{
Karline Soetaert\\
Royal Netherlands Institute of Sea Research (NIOZ)\\
4401 NT Yerseke, Netherlands\\
E-mail: \email{karline.soetaert@nioz.nl}\\
URL: \url{http://http://www.nioz.nl/}\\
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R/Sweave specific LaTeX commands.
%% need no \usepackage{Sweave}
%\VignetteIndexEntry{plot3D: functions for plotting 3-D and 2-D data}
%\VignetteKeywords{plot, persp, image, 2-D, 3-D, scatter, surface plots, slice plots}
%\VignettePackage{plot3D}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Begin of the document
\begin{document}
\SweaveOpts{engine=R,eps=FALSE,resolution=80}
\SweaveOpts{keep.source=TRUE}
<<preliminaries,echo=FALSE,results=hide>>=
library(plot3D)
options(prompt = " ")
options(continue = " ")
options(width=75)
@
\maketitle
\section{Introduction}
\R{ } package \p provides functions for plotting 2-D and 3-D data, and
that are either extensions of R's \code{persp} function
or of R's \code{image} and \code{contour} function.
The main extensions to these functions are:
\begin{itemize}
\item In addition to the x, y (and z) values, an additional data dimension
can be represented by a color variable (argument \code{colvar}).
\item A color key (argument \code{colkey}) can be written next to the figure.
It is possible to log-transform the color key, rescale it, adjust its position, ...
\item The resolution of a figure can be increased (argument \code{resfac}).
\item Either the \code{facets} can be colored, just the border, or both.
\end{itemize}
Package \p contains:
\begin{itemize}
\item Functions that are based on the \code{persp} function, for visualising 3-D data:
\begin{itemize}
\item \code{persp3D}: an extended version of the \code{persp} function.
\item \code{ribbon3D}: perspective plots as ribbons.
\item \code{hist3D}: 3-D histograms.
\item \code{scatter3D}, \code{points3D}, \code{lines3D}, \code{text3D}:
scatter plots in 3-D, points, lines, labels.
\item \code{surf3D}: 3-D shapes (or surfaces).
\item \code{slice3D}, \code{slicecont3D}, \code{isosurf3D}, \code{voxel3D}:
slices, isosurfaces and voxels from a full 3-D data set.
\item \code{arrows3D}: arrows in 3D.
\item \code{contour3D}, \code{image3D}: contours and images in 3D.
\item \code{segments3D}, \code{polygon3D}, \code{rect3D}, \code{border3D}, \code{box3D}:
line segments, polygons, rectangles, boxes in 3D.
\end{itemize}
\item Functions defined on the \code{image} or \code{contour} function:
\begin{itemize}
\item \code{image2D}, \code{contour2D}, for an extended version of these functions to visualise 2-D (or 3-D) data.
\item \code{ImageOcean}, for an image of the ocean's bathymetry.
\end{itemize}
\item Other functions
\item \code{scatter2D}: colored points, lines, ... in 2-D.
\item \code{text2D}, \code{arrows2D}, \code{segments2D}, \code{rect2D},
\code{polygon2D} for other 2D functions, comparable to R's base graphics but
that have a color key.
\item Colors and colorkeys:
\begin{itemize}
\item \code{colkey}: color legends.
\item \code{jet.col}, \code{jet2.col}, \code{gg.col}, \code{ramp.col}: suitable color palettes.
\end{itemize}
\item Utility functions:
\begin{itemize}
\item \code{mesh}: generating rectangular (2D) or (3D) meshes.
\item \code{plotdev}: plotting on the current device.
\end{itemize}
\item Data sets:
\begin{itemize}
\item \code{Oxsat}: a (rather large) 3-D data set with the
ocean's oxygen saturation values.
\item \code{Hypsometry}: a 2-D data set with the worlds elevation and
the ocean's depth.
\end{itemize}
\end{itemize}
This vignette contains some examples; more can be found in the package's help files.
To run all examples:
\begin{verbatim}
example(persp3D)
example(surf3D)
example(slice3D)
example(scatter3D)
example(segments3D)
example(image2D)
example(image3D)
example(contour3D)
example(colkey)
example(jet.col)
example(perspbox)
example(mesh)
example(trans3D)
example(plot.plist)
example(ImageOcean)
example(Oxsat)
example(legendplot)
\end{verbatim}
\section{Functions image2D and persp3D}
\code{image2D} and \code{persp3D} are extensions of R's \code{image} and \code{persp}
functions.
The arguments of \code{persp3D} are (see the help file for what they mean):
<<>>=
args(persp3D)
@
Many examples of the use of \code{image2D} and \code{persp3D} are in vignette \code{volcano}.
The \code{Hypsometry} data set is depicted first as an \code{image},
with 0 m contour lines added.
Slight shading gives the plot a perspective view.
The zoomed region (used in next figure) is then added.
<<label=hyps,include=FALSE>>=
image2D(Hypsometry, xlab = "longitude", ylab = "latitude",
contour = list(levels = 0, col = "black", lwd = 2),
shade = 0.1, main = "Hypsometry data set", clab = "m")
rect(-50, 10, -20, 40, lwd = 3)
@
\setkeys{Gin}{width=1.0\textwidth}
\begin{figure}
\begin{center}
<<label=hyps,fig=TRUE,echo=FALSE, width = 10, height = 6, pdf = FALSE, png = TRUE>>=
<<hyps>>
@
\end{center}
\caption{Hypsometry data set}
\label{fig:hyps}
\end{figure}
<<>>=
ii <- which(Hypsometry$x > -50 & Hypsometry$x < -20)
jj <- which(Hypsometry$y > 10 & Hypsometry$y < 40)
zlim <- c(-10000, 0)
@
The perspective figure is made with black side-panels (\code{bty}).
Grey contour lines are added on the bottom panel (\code{"zmin"}) and on
the persp plot itself (\code{"z"}).
The resolution is increased (\code{resfac}) to make smoother images.
A color key (\code{colkey}) is added on the first margin (\code{side})
<<label=ocean2,include=FALSE>>=
par(mfrow = c(1, 1))
# Actual bathymetry, 4 times increased resolution, with contours
persp3D(z = Hypsometry$z[ii,jj], xlab = "longitude", bty = "bl2",
ylab = "latitude", zlab = "depth", clab = "depth, m",
expand = 0.5, d = 2, phi = 20, theta = 30, resfac = 2,
contour = list(col = "grey", side = c("zmin", "z")),
zlim = zlim, colkey = list(side = 1, length = 0.5))
@
\setkeys{Gin}{width=0.6\textwidth}
\begin{figure}
\begin{center}
<<label=ocean2,fig=TRUE,echo=FALSE, pdf = FALSE, png = TRUE>>=
<<ocean2>>
@
\end{center}
\caption{Bathymetry of a part of the ocean}
\label{fig:ocean2}
\end{figure}
\newpage
\section{slices and isosurfaces}
Function \code{slice3D} draws slices from volumetric (3D) data,
function \code{isosurf3D} creates and plots isosurfaces.
It makes use of a function from package \code{misc3d} \citep{misc3d}.
<<>>=
args(slice3D)
@
Function \code{mesh} is used to generate a full rectangular 3-D mesh.
This is used to generate the volumetric data (\code{p}) that defines the coloration.
The data are visualised by one slice in x (\code{xs}) and 3 slices in y direction
(\code{ys}).
Function \code{isosurf3D} plots the data for p-values that are equal to \code{0}.
<<label=slice,include=FALSE>>=
par(mfrow = c(1, 2))
x <- y <- z <- seq(-4, 4, by = 0.2)
M <- mesh(x, y, z)
R <- with (M, sqrt(x^2 + y^2 +z^2))
p <- sin(2*R)/(R+1e-3)
slice3D(x, y, z, colvar = p,
xs = 0, ys = c(-4, 0, 4), zs = NULL)
isosurf3D(x, y, z, colvar = p, level = 0, col = "red")
@
\setkeys{Gin}{width=0.8\textwidth}
\begin{figure}
\begin{center}
<<label=slice,fig=TRUE,echo=FALSE, width = 10, height = 6, pdf = FALSE, png = TRUE>>=
<<slice>>
@
\end{center}
\caption{Slices and isosurfaces from volumetric data}
\label{fig:slice}
\end{figure}
\newpage
\section{surf3D}
Function \code{surf3D} creates 3-D surface plots.
<<>>=
args(surf3D)
@
Here are 4 applications, showing the different options of coloration.
<<label=surf,include=FALSE>>=
par(mfrow = c(2, 2), mar = c(0, 0, 0, 0))
# Shape 1
M <- mesh(seq(0, 6*pi, length.out = 80),
seq(pi/3, pi, length.out = 80))
u <- M$x ; v <- M$y
x <- u/2 * sin(v) * cos(u)
y <- u/2 * sin(v) * sin(u)
z <- u/2 * cos(v)
surf3D(x, y, z, colvar = z, colkey = FALSE, box = FALSE)
# Shape 2: add border
M <- mesh(seq(0, 2*pi, length.out = 80),
seq(0, 2*pi, length.out = 80))
u <- M$x ; v <- M$y
x <- sin(u)
y <- sin(v)
z <- sin(u + v)
surf3D(x, y, z, colvar = z, border = "black", colkey = FALSE)
# shape 3: uses same mesh, white facets
x <- (3 + cos(v/2)*sin(u) - sin(v/2)*sin(2*u))*cos(v)
y <- (3 + cos(v/2)*sin(u) - sin(v/2)*sin(2*u))*sin(v)
z <- sin(v/2)*sin(u) + cos(v/2)*sin(2*u)
surf3D(x, y, z, colvar = z, colkey = FALSE, facets = FALSE)
# shape 4: more complex colvar
M <- mesh(seq(-13.2, 13.2, length.out = 50),
seq(-37.4, 37.4, length.out = 50))
u <- M$x ; v <- M$y
b <- 0.4; r <- 1 - b^2; w <- sqrt(r)
D <- b*((w*cosh(b*u))^2 + (b*sin(w*v))^2)
x <- -u + (2*r*cosh(b*u)*sinh(b*u)) / D
y <- (2*w*cosh(b*u)*(-(w*cos(v)*cos(w*v)) - sin(v)*sin(w*v))) / D
z <- (2*w*cosh(b*u)*(-(w*sin(v)*cos(w*v)) + cos(v)*sin(w*v))) / D
surf3D(x, y, z, colvar = sqrt(x + 8.3), colkey = FALSE,
border = "black", box = FALSE)
@
\setkeys{Gin}{width=0.8\textwidth}
\begin{figure}
\begin{center}
<<label=surf,fig=TRUE,echo=FALSE, pdf = FALSE, png = TRUE>>=
<<surf>>
@
\end{center}
\caption{Surface plots}
\label{fig:surf}
\end{figure}
\subsection{scatter2D and scatter3D}
Functions \code{scatter2D} and \code{scatter3D} draw scatterplots.
<<>>=
args(scatter2D)
args(scatter3D)
@
The dataset \code{quakes} is plotted using function \code{scatter3D}.
Before the 3-D quakes data are drawn, small dots are added on the bottom
and on the depth plane (\code{panelfirst}).
<<label=scatter,include=FALSE>>=
par(mfrow = c(1, 1))
panelfirst <- function(pmat) {
zmin <- min(-quakes$depth)
XY <- trans3D(quakes$long, quakes$lat,
z = rep(zmin, nrow(quakes)), pmat = pmat)
scatter2D(XY$x, XY$y, colvar = quakes$mag, pch = ".",
cex = 2, add = TRUE, colkey = FALSE)
xmin <- min(quakes$long)
XY <- trans3D(x = rep(xmin, nrow(quakes)), y = quakes$lat,
z = -quakes$depth, pmat = pmat)
scatter2D(XY$x, XY$y, colvar = quakes$mag, pch = ".",
cex = 2, add = TRUE, colkey = FALSE)
}
with(quakes, scatter3D(x = long, y = lat, z = -depth, colvar = mag,
pch = 16, cex = 1.5, xlab = "longitude", ylab = "latitude",
zlab = "depth, km", clab = c("Richter","Magnitude"),
main = "Earthquakes off Fiji", ticktype = "detailed",
panel.first = panelfirst, theta = 10, d = 2,
colkey = list(length = 0.5, width = 0.5, cex.clab = 0.75))
)
@
\setkeys{Gin}{width=1.0\textwidth}
\begin{figure}
\begin{center}
<<label=scatter,fig=TRUE,echo=FALSE, pdf = FALSE, png = TRUE>>=
<<scatter>>
@
\end{center}
\caption{Scatter plot}
\label{fig:scatter}
\end{figure}
\newpage
\subsection{arrows3D, arrows2D}
Functions \code{arrows2D} and \code{arrows3D} extend R function \code{arrows} with
a color variable.
<<label=arrows,include=FALSE>>=
par (mfrow = c(1, 2))
arrows2D(x0 = runif(10), y0 = runif(10),
x1 = runif(10), y1 = runif(10), colvar = 1:10,
code = 3, main = "arrows2D")
arrows3D(x0 = runif(10), y0 = runif(10), z0 = runif(10),
x1 = runif(10), y1 = runif(10), z1 = runif(10),
colvar = 1:10, code = 1:3, main = "arrows3D", colkey = FALSE)
@
\setkeys{Gin}{width=1.0\textwidth}
\begin{figure}
\begin{center}
<<label=arrows,fig=TRUE,echo=FALSE, width = 10, height = 6, pdf = FALSE, png = TRUE>>=
<<arrows>>
@
\end{center}
\caption{arrows}
\label{fig:arrows}
\end{figure}
\newpage
\section{Functions based on image}
The \code{image2D} function is an extended version of \code{image}.
It has two S3 methods:
\begin{verbatim}
image2D(z =, ...)
image2D.matrix(z, x = NULL, y = NULL, ...,
col = jet.col(100), NAcol = "white", facets = TRUE,
contour = FALSE, colkey = NULL, resfac = 1,
clab = NULL, theta = 0, border = NA)
image2D.array(z, margin = c(1, 2), subset, ask = NULL, ...)
\end{verbatim}
The data set \code{Oxsat} has oxygen saturation values in the ocean, at 2dg
horizontal resolution, and for 33 depth intervals.
<<>>=
names(Oxsat)
dim(Oxsat$val)
@
Function \code{image2D.array} plots several depth intervals at once, looping over
the first and second margin. The color key is added in a separate figure.
<<label=image2D,include=FALSE>>=
sub <- c(1, 5, 9)
image2D(z = Oxsat$val, subset = sub,
x = Oxsat$lon, y = Oxsat$lat,
margin = c(1, 2), NAcol = "black", colkey = FALSE,
xlab = "longitude", ylab = "latitude",
main = paste("depth ", Oxsat$depth[sub], " m"),
clim = c(0, 115), mfrow = c(2, 2))
colkey(clim = c(0, 115), clab = c("O2 saturation", "percent"))
@
\setkeys{Gin}{width=1.0\textwidth}
\begin{figure}
\begin{center}
<<label=image2D,fig=TRUE,echo=FALSE, pdf = FALSE, png = TRUE>>=
<<image2D>>
@
\end{center}
\caption{image2D function}
\label{fig:image2D}
\end{figure}
\newpage
\section{Composite figures}
It is also possible to make a composite figure combining several functions.
<<label=Composite,include=FALSE>>=
persp3D(z = volcano, zlim = c(-60, 200), phi = 20,
colkey = list(length = 0.2, width = 0.4, shift = 0.15,
cex.axis = 0.8, cex.clab = 0.85), lighting = TRUE, lphi = 90,
clab = c("","height","m"), bty = "f", plot = FALSE)
# create gradient in x-direction
Vx <- volcano[-1, ] - volcano[-nrow(volcano), ]
# add as image with own color key, at bottom
image3D(z = -60, colvar = Vx/10, add = TRUE,
colkey = list(length = 0.2, width = 0.4, shift = -0.15,
cex.axis = 0.8, cex.clab = 0.85),
clab = c("","gradient","m/m"), plot = FALSE)
# add contour
contour3D(z = -60+0.01, colvar = Vx/10, add = TRUE,
col = "black", plot = TRUE)
@
\setkeys{Gin}{width=1.0\textwidth}
\begin{figure}
\begin{center}
<<label=Composite,fig=TRUE,echo=FALSE, pdf = FALSE, png = TRUE>>=
<<Composite>>
@
\end{center}
\caption{Several color keys in composite figure}
\label{fig:Composite}
\end{figure}
\newpage
\section{plotting with legends and colorkeys}
As from version 1.4, a new feature has been added, allowing plotting functions to have colorkeys, or legends that are positioned outside of the plotting region.
See ?legendplot.
For instance, to put a legend outside of a boxplot:
<<label=legendboxplot,include=FALSE>>=
pm <- par(mar = c(4,3,4,2))
legend.plt(formula = len ~ dose:supp, data = ToothGrowth,
boxwex = 0.5, col = c("orange", "yellow"),
main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg", ylab = "tooth length",
sep = ":", lex.order = TRUE, ylim = c(0, 35), yaxs = "i",
method = "boxplot", legend.side = 2,
legend = list(legend = c("Ascorbic acid", "Orange juice"),
fill = c("yellow", "orange")))
@
\setkeys{Gin}{width=0.8\textwidth}
\begin{figure}
\begin{center}
<<label=legendboxplot,fig=TRUE,echo=FALSE, pdf = FALSE, png = TRUE>>=
<<legendboxplot>>
@
\end{center}
\caption{adding a legend to boxplot}
\label{fig:legendboxplot}
\end{figure}
\newpage
To add a colorkey
<<label=colorkeypie,include=FALSE>>=
n <- 100
colorkey.plt(method = "pie", x = rep(1, n), labels = "",
col = rainbow(n), border = NA,
main = "colorkeyplot with 'pie'",
colorkey = list(col = rainbow(n), clim = c(1,n)))
@
\setkeys{Gin}{width=0.5\textwidth}
\begin{figure}
\begin{center}
<<label=colorkeypie,fig=TRUE,echo=FALSE, pdf = FALSE, png = TRUE>>=
<<colorkeypie>>
@
\end{center}
\caption{adding a colorkey}
\label{fig:colorkeypie}
\end{figure}
\newpage
\section{Issues}
\subsection{Specifying axes limits}
There are two ways in which the axes limits can be set, either allowing the 3D data
to overflow the axes, or to be clipped.
Consider the following code, which is based on a demo from the \pkg{rgl} package \citep{rgl}.
In this code, the \code{iris} data set is fitted with two models, and the
data plotted using \code{scatter3D} and the fitted surfaces using \code{persp3D}.
The z-axis limits are set to \code{c(1, 9)}; plotting is postponed until all
objects have been added (this avoids clogging - see next subsection).
Then the result is plotted using \code{plotdev} (this plots the graph on any device
that has been opened). The first time, without specifying the axes limits, the
second time setting the axes limits.
<<label=Fit,include=FALSE>>=
nout <- 30
xout <- with(iris, seq(min(Sepal.Length), max(Sepal.Length), length = nout))
yout <- with(iris, seq(min(Sepal.Width) , max(Sepal.Width), length = nout))
xy <- expand.grid(Sepal.Length = xout, Sepal.Width = yout)
# Fit two models, linear and quadratic
mod <- with(iris, lm(Petal.Length ~Sepal.Length + Sepal.Width))
mod2 <- with(iris, lm(Petal.Length ~Sepal.Length + Sepal.Width +
I(Sepal.Length^2) + I(Sepal.Width^2) +
I(Sepal.Length*Sepal.Width)))
# prodict at new values
zpred.1 <- matrix(
predict(mod, newdata = xy), nrow = nout, ncol = nout)
zpred.2 <- matrix(
predict(mod2, newdata = xy), nrow = nout, ncol = nout)
# make graph, postpone plotting till the end
par(mfrow = c(1, 2))
with(iris,
scatter3D(Sepal.Length, Sepal.Width, Petal.Length,
colvar = as.numeric(Species), colkey = FALSE,
col = c("blue", "red", "gold"), bty = "b",
xlab = 'SL', ylab = 'PL', zlab = 'SW', zlim = c(1, 9),
pch = 16, cex = 2, theta = 0, plot = FALSE))
persp3D(x = xout, y = yout, z = zpred.1, facets = NA,
add = TRUE, col = "blue", plot = FALSE)
persp3D(x = xout, y = yout, z = zpred.2,
add = TRUE, col = "green", plot = FALSE)
# plot using traditional device
plotdev(theta = -50, alpha = 0.5)
plotdev(theta = -50, alpha = 0.5, zlim = c(1, 9))
# if you want to see this in rgl:
# library(plot3Drgl)
#plotrgl(alpha = 0.5)
@
\setkeys{Gin}{width=1.0\textwidth}
\begin{figure}
\begin{center}
<<label=Fit,fig=TRUE,echo=FALSE, width = 10, height = 6, pdf = FALSE, png = TRUE>>=
<<Fit>>
@
\end{center}
\caption{calling plotdev() with axes limits causes the figure to be clipped}
\label{fig:hyps}
\end{figure}
\subsection{Preventing clogging of the figures}
When a lot of objects are \code{add}ed then the ultimate figure may appear clogged.
This is because each time something is added, all the objects are redrawn on top of
what was already there - the only thing that is not redrawn are the axes and titles.
To create `slim' figures, use \code{plotdev()} (e.g. see previous section).
\section{Finally}
This vignette was made with Sweave \citep{Leisch02}.
\clearpage
\bibliography{vignettes}
\end{document}
|