1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
\name{3-D volume visualisation}
\alias{slice3D}
\alias{slicecont3D}
\alias{isosurf3D}
\alias{triangle3D}
\alias{voxel3D}
\alias{createisosurf}
\alias{createvoxel}
\title{
Functions for plotting 3-D volumetric data.
}
\description{
\code{slice3D} plots a 3-D dataset with a color variable as slices or on surfaces.
\code{slicecont3D} plots a 3-D dataset with a color variable as contours on slices.
\code{isosurf3D} plots isosurfaces from a 3-D dataset.
\code{voxel3D} plots isosurfaces as scatterpoints.
\code{createisosurf} create the isosurfaces (triangulations)
from volumetric data. Its output can be plotted with \code{triangle3D}.
\code{createvoxel} creates voxels (x, y, z) points from volumetric data.
Its output can be plotted with \link{scatter3D}.
}
\usage{
slice3D (x, y, z, colvar, ..., phi = 40, theta = 40,
xs = min(x), ys = max(y), zs = min(z),
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL,
panel.first = NULL, clim = NULL,
clab = NULL, bty = "b",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
add = FALSE, plot = TRUE)
slicecont3D (x, y, z, colvar, ..., phi = 40, theta = 40,
xs = NULL, ys = NULL, zs = NULL, level = NULL,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE,
colkey = NULL, panel.first = NULL,
clim = NULL, clab = NULL, bty = "b",
dDepth = 0, add = FALSE, plot = TRUE)
isosurf3D (x, y, z, colvar, ..., phi = 40, theta = 40,
level = mean(colvar, na.rm = TRUE), isofunc = createisosurf,
col = NULL, border = NA, facets = TRUE,
colkey = NULL, panel.first = NULL,
clab = NULL, bty = "b",
lighting = FALSE, shade = 0.5, ltheta = -135, lphi = 0,
add = FALSE, plot = TRUE)
voxel3D (x, y, z, colvar, ..., phi = 40, theta = 40,
level = mean(colvar, na.rm = TRUE), eps = 0.01, operator = "=",
col = NULL, NAcol = "white", breaks = NULL, colkey = FALSE,
panel.first = NULL, bty = "b", add = FALSE, plot = TRUE)
triangle3D (tri, colvar = NULL, ..., phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE,
colkey = NULL, panel.first = NULL,
lighting = FALSE, shade = 0.5, ltheta = -135, lphi = 0,
clim = NULL, clab = NULL,
bty = "b", add = FALSE, plot = TRUE)
createisosurf (x, y, z, colvar, level = mean(colvar, na.rm = TRUE))
createvoxel (x, y, z, colvar, level = mean(colvar, na.rm = TRUE), eps = 0.01,
operator = "=")
}
\arguments{
\item{x, y, z }{Vectors with x, y and z-values.
They should be of length equal to the first, second and
third dimension of \code{colvar} respectively.
}
\item{colvar }{The variable used for coloring.
It should be an array of dimension equal to
\code{c(length(x), length(y), length(z))}.
For \code{triangle3D}, \code{colvar} should be of length = nrow(\code{tri}) / 3.
It must be present.
}
\item{tri }{A three-columned matrix (x, y, z) with triangle coordinates.
A triangle is defined by three consecutive rows.
}
\item{isofunc }{A function defined as \code{function(x, y, z, colvar, level)},
and that returns the three-columned matrix with triangle coordinates.
The default, \code{createisosurf} uses function \link{computeContour3d}
from package \code{misc3d}.
}
\item{theta, phi }{the angles defining the viewing direction.
\code{theta} gives the azimuthal direction and \code{phi} the colatitude. see \link{persp}.
}
\item{col }{Colors to be used for coloring the \code{colvar} variable.
If \code{col} is \code{NULL}
then a red-yellow-blue colorscheme (\link{jet.col}) will be used.
}
\item{NAcol }{Colors to be used for \code{colvar} values that are \code{NA}.
}
\item{breaks }{a set of finite numeric breakpoints for the colors;
must have one more breakpoint than color and be in increasing order.
Unsorted vectors will be sorted, with a warning.
}
\item{border }{The color of the lines drawn around the surface facets.
The default, \code{NA}, will disable the drawing of borders.
}
\item{facets }{If \code{TRUE}, then \code{col} denotes the color of the surface facets.
If \code{FALSE}, then the surface facets are colored ``white'' and the \code{border}
(if \code{NA}) will be colored as specified by \code{col}.
If \code{NA} then the facets will be transparent.
It is usually faster to draw with \code{facets = FALSE}.
}
\item{colkey }{A logical, \code{NULL} (default), or a \code{list} with parameters
for the color key (legend). List parameters should be one of
\code{side, plot, length, width, dist, shift, addlines, col.clab, cex.clab,
side.clab, line.clab, adj.clab, font.clab}
and the axis parameters \code{at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck, tcl, las}.
The defaults for the parameters are \code{side = 4, plot = TRUE, length = 1, width = 1,
dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab = par("cex.lab"),
side.clab = NULL, line.clab = NULL, adj.clab = NULL, font.clab = NULL})
See \link{colkey}.
The default is to draw the color key on side = 4, i.e. in the right margin.
If \code{colkey} = \code{NULL} then a color key will be added only if \code{col} is a vector.
Setting \code{colkey = list(plot = FALSE)} will create room for the color key
without drawing it.
if \code{colkey = FALSE}, no color key legend will be added.
}
\item{panel.first }{A \code{function} to be evaluated after the plot axes are
set up but before any plotting takes place.
This can be useful for drawing background grids or scatterplot smooths.
The function should have as argument the transformation matrix, e.g. it should
be defined as \code{function(pmat)}. See last example and example of \link{persp3D}.
}
\item{clab }{Only if \code{colkey} is not \code{NULL} or \code{FALSE},
the label to be written on top of the color key.
The label will be written at the same level as the main title.
To lower it, \code{clab} can be made a vector, with the first values empty
strings.
}
\item{clim }{Only if \code{colvar} is specified, the range of the color variable, used
for the color key. Values of \code{colvar} that extend the range will be put to \code{NA}.
}
\item{xs, ys, zs }{Vectors or matrices.
Vectors specify the positions in x, y or z where the slices (planes) are to be drawn.
The values of \code{colvar} will be projected on these slices.
Matrices specify a surface on which the \code{colvar} will be projected.
}
\item{level }{The level(s) at which the \code{contour} will be generated or the
isosurfaces generated.
There can be more than one level, but for \code{slicecont3D} too many
will give a crowded view, and one is often best.
For \code{isosurf3D}, the use of multiple values may need transparent colors to visualise.
For \code{voxel3D}, \code{level} should either be one number (if \code{operator}
equals \code{'=', '<', '>'}) or two numbers (for \code{operator = '<>'}).
}
\item{lighting }{If not \code{FALSE} the facets will be illuminated, and colors may
appear more bright. To switch on lighting, the argument \code{lighting}
should be either set to \code{TRUE} (using default settings) or it can be a
list with specifications of one of the following:
\code{ambient, diffuse, specular, exponent, sr} and \code{alpha}.
Will overrule \code{shade} not equal to \code{NA}.
See examples in \link{jet.col}.
}
\item{shade }{the degree of shading of the surface facets.
Values of shade close to one yield shading similar to a point light
source model and values close to zero produce no shading.
Values in the range 0.5 to 0.75 provide an approximation to daylight illumination.
See \link{persp}.
}
\item{ltheta, lphi }{if finite values are specified for \code{ltheta} and
\code{lphi}, the surface is shaded as though it was being illuminated from
the direction specified by azimuth \code{ltheta} and colatitude \code{lphi}.
See \link{persp}.
}
\item{bty }{The type of the box, the default only draws background panels.
Only effective if the \link{persp}
argument (\code{box}) equals \code{TRUE} (this is the default). See \link{perspbox}.
}
\item{eps }{The voxel precision, only used when \code{operator = "="}.
A point is selected if it closer than \code{eps*diff(range(colvar))}
to the required level.
}
\item{operator }{One of '=', '<', '>', '<>' for selection of points `equal' (within
precision), larger or smaller than the required level or to be within an
interval.
}
\item{dDepth }{When a contour is added on an image, the image polygons may
hide some contour segments. To avoid that, the viewing depth of the segments
can be artificially decreased with the factor \code{dDepth} times the
\link{persp} argument \code{expand} (usually = 1), to make them
appear in front of the polygons.
Too large values of \code{dDepth} may create visible artifacts.
See \link{contour3D}.
}
\item{add }{Logical. If \code{TRUE}, then the slices, voxels or surfaces will be added to the current plot.
If \code{FALSE} a new plot is started.
}
\item{plot }{Logical. If \code{TRUE} (default), a plot is created,
otherwise the viewing transformation matrix is returned (as invisible).
}
\item{\dots}{additional arguments passed to the plotting methods.
The following \link{persp} arguments can be specified:
\code{xlim, ylim, zlim, xlab, ylab, zlab, main, sub, r, d,
scale, expand, box, axes, nticks, ticktype}.
The arguments \code{xlim}, \code{ylim}, \code{zlim} only affect the axes.
All objects will be plotted, including those that fall out of these ranges.
To select objects only within the axis limits, use \link{plotdev}.
In addition, the \link{perspbox} arguments
\code{col.axis, col.panel, lwd.panel, col.grid, lwd.grid} can
also be given a value.
\code{alpha} can be given a value inbetween 0 and 1 to make colors transparent.
For all functions, the arguments \code{lty, lwd} can be specified.
The arguments after \dots must be matched exactly.
}
}
\note{
The \code{isosurf3D} function uses function \code{computeContour3d},
from package \code{misc3d}, which is based on the marching cubes algorithm.
Please cite the package \code{misc3d} (Feng & Tierney, 2008) when using \code{isosurf3D}.
For \code{voxel3D}, coloring is always according to the z-variable. A more flexible
coloration can be achieved by using \code{createvoxel}, followed by \link{scatter3D}.
See examples.
}
\value{
The plotting functions return the viewing transformation matrix,
See \link{trans3D}.
Function \code{createisosurf} returns a three-columned matrix (x, y, z) with
triangle coordinates. One triangle is defined by three consecutive rows.
It can be plotted with \code{triangle3D}.
Function \code{createvoxel} returns a list with the elements \code{x, y, z}
defining the points that are at a distance of less than
\code{eps*diff(range(colvar))} from the required \code{level}.
Its output can be plotted with \link{scatter3D}.
}
\seealso{
\link{Oxsat} for another example of \code{slice3D}.
\link{plotdev} for zooming, rescaling, rotating a plot.
}
\author{Karline Soetaert <karline.soetaert@nioz.nl>}
\examples{
# save plotting parameters
pm <- par("mfrow")
pmar <- par("mar")
## =======================================================================
## Simple slice3D examples
## =======================================================================
par(mfrow = c(2, 2))
x <- y <- z <- seq(-1, 1, by = 0.1)
grid <- mesh(x, y, z)
colvar <- with(grid, x*exp(-x^2 - y^2 - z^2))
# default is just the panels
slice3D (x, y, z, colvar = colvar, theta = 60)
# contour slices
slicecont3D (x, y, z, ys = seq(-1, 1, by = 0.5), colvar = colvar,
theta = 60, border = "black")
slice3D (x, y, z, xs = c(-1, -0.5, 0.5), ys = c(-1, 0, 1),
zs = c(-1, 0), colvar = colvar,
theta = 60, phi = 40)
## =======================================================================
## coloring on a surface
## =======================================================================
XY <- mesh(x, y)
ZZ <- XY$x*XY$y
slice3D (x, y, z, xs = XY$x, ys = XY$y, zs = ZZ, colvar = colvar,
lighting = TRUE, lphi = 90, ltheta = 0)
## =======================================================================
## Specifying transparent colors
## =======================================================================
par(mfrow = c(1, 1))
x <- y <- z <- seq(-4, 4, by = 0.2)
M <- mesh(x, y, z)
R <- with (M, sqrt(x^2 + y^2 + z^2))
p <- sin(2*R) /(R+1e-3)
\dontrun{
# This is very slow - alpha = 0.5 makes it transparent
slice3D(x, y, z, colvar = p, col = jet.col(alpha = 0.5),
xs = 0, ys = c(-4, 0, 4), zs = NULL, d = 2)
}
slice3D(x, y, z, colvar = p, d = 2, theta = 60, border = "black",
xs = c(-4, 0), ys = c(-4, 0, 4), zs = c(-4, 0))
## =======================================================================
## A section along a transect
## =======================================================================
data(Oxsat)
Ox <- Oxsat$val[, Oxsat$lat > - 5 & Oxsat$lat < 5, ]
slice3D(x = Oxsat$lon, z = -Oxsat$depth, y = 1:5, colvar = Ox,
ys = 1:5, zs = NULL, NAcol = "black",
expand = 0.4, theta = 45, phi = 45)
## =======================================================================
## isosurf3D example - rather slow
## =======================================================================
par(mfrow = c(2, 2), mar = c(2, 2, 2, 2))
x <- y <- z <- seq(-2, 2, length.out = 15)
xyz <- mesh(x, y, z)
F <- with(xyz, log(x^2 + y^2 + z^2 +
10*(x^2 + y^2) * (y^2 + z^2) ^2))
# use shading for level = 1 - show triangulation with border
isosurf3D(x, y, z, F, level = 1, shade = 0.9,
col = "yellow", border = "orange")
# lighting for level - 2
isosurf3D(x, y, z, F, level = 2, lighting = TRUE,
lphi = 0, ltheta = 0, col = "blue", shade = NA)
# three levels, transparency added
isosurf3D(x, y, z, F, level = seq(0, 4, by = 2),
col = c("red", "blue", "yellow"),
clab = "F", alpha = 0.2, theta = 0, lighting = TRUE)
# transparency can also be added afterwards with plotdev()
\dontrun{
isosurf3D(x, y, z, F, level = seq(0, 4, by = 2),
col = c("red", "blue", "yellow"),
shade = NA, plot = FALSE, clab = "F")
plotdev(lighting = TRUE, alpha = 0.2, theta = 0)
}
# use of creatisosurf
iso <- createisosurf(x, y, z, F, level = 2)
head(iso)
triangle3D(iso, col = "green", shade = 0.3)
\dontrun{
# higher resolution
x <- y <- z <- seq(-2, 2, length.out = 50)
xyz <- mesh(x, y, z)
F <- with(xyz, log(x^2 + y^2 + z^2 +
10*(x^2 + y^2) * (y^2 + z^2) ^2))
# three levels
isosurf3D(x, y, z, F, level = seq(0, 4, by = 2),
col = c("red", "blue", "yellow"),
shade = NA, plot = FALSE, clab = "F")
plotdev(lighting = TRUE, alpha = 0.2, theta = 0)
}
## =======================================================================
## voxel3D example
## =======================================================================
par(mfrow = c(2, 2), mar = c(2, 2, 2, 2))
# fast but needs high resolution grid
x <- y <- z <- seq(-2, 2, length.out = 70)
xyz <- mesh(x, y, z)
F <- with(xyz, log(x^2 + y^2 + z^2 +
10*(x^2 + y^2) * (y^2 + z^2) ^2))
voxel3D(x, y, z, F, level = 4, pch = ".", cex = 5)
## =======================================================================
## rotation
## =======================================================================
plotdev(theta = 45, phi = 0)
plotdev(theta = 90, phi = 10)
# same using createvoxel - more flexible for coloring
vox <- createvoxel(x, y, z, F, level = 4)
scatter3D(vox$x, vox$y, vox$z, colvar = vox$y,
bty = "g", colkey = FALSE)
## =======================================================================
## voxel3D to show hypox sites
## =======================================================================
par(mfrow = c(1, 1), mar = c(2, 2, 2, 2))
Hypox <- createvoxel(Oxsat$lon, Oxsat$lat, Oxsat$depth[1:19],
Oxsat$val[,,1:19], level = 40, operator = "<")
panel <- function(pmat) { # an image at the bottom
Nx <- length(Oxsat$lon)
Ny <- length(Oxsat$lat)
M <- mesh(Oxsat$lon, Oxsat$lat)
xy <- trans3D(pmat = pmat, x = as.vector(M$x), y = as.vector(M$y),
z = rep(-1000, length.out = Nx*Ny))
x <- matrix(nrow = Nx, ncol = Ny, data = xy$x)
y <- matrix(nrow = Nx, ncol = Ny, data = xy$y)
Bat <- Oxsat$val[,,1]; Bat[!is.na(Bat)] <- 1
image2D(x = x, y = y, z = Bat, NAcol = "black", col = "grey",
add = TRUE, colkey = FALSE)
}
scatter3D(Hypox$x, Hypox$y, -Hypox$z, colvar = Hypox$cv,
panel.first = panel, pch = ".", bty = "b",
theta = 30, phi = 20, ticktype = "detailed",
zlim = c(-1000,0), xlim = range(Oxsat$lon),
ylim = range(Oxsat$lat) )
# restore plotting parameters
par(mfrow = pm)
par(mar = pmar)
}
\references{
Lorensen, W.E. and Cline, H.E.,
Marching Cubes: a high resolution 3D surface reconstruction algorithm,
Computer Graphics, Vol. 21, No. 4, pp 163-169 (Proc. of SIGGRAPH), 1987.
Dai Feng, Luke Tierney, Computing and Displaying Isosurfaces in R,
Journal of Statistical Software 28(1), 2008.
URL \url{https://www.jstatsoft.org/v28/i01/}.
}
\keyword{ hplot }
|