File: slice3D.Rd

package info (click to toggle)
r-cran-plot3d 1.4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,588 kB
  • sloc: makefile: 2
file content (442 lines) | stat: -rw-r--r-- 18,542 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
\name{3-D volume visualisation}
\alias{slice3D}
\alias{slicecont3D}
\alias{isosurf3D}
\alias{triangle3D}
\alias{voxel3D}
\alias{createisosurf}
\alias{createvoxel}
\title{
 Functions for plotting 3-D volumetric data.
}
\description{
  
  \code{slice3D} plots a 3-D dataset with a color variable as slices or on surfaces.

  \code{slicecont3D} plots a 3-D dataset with a color variable as contours on slices.
  
  \code{isosurf3D} plots isosurfaces from a 3-D dataset.

  \code{voxel3D} plots isosurfaces as scatterpoints.

  \code{createisosurf} create the isosurfaces (triangulations)
  from volumetric data. Its output can be plotted with \code{triangle3D}.

  \code{createvoxel} creates voxels (x, y, z) points from volumetric data. 
  Its output can be plotted with \link{scatter3D}.
}
\usage{
slice3D (x, y, z, colvar, ..., phi = 40, theta = 40,
         xs = min(x), ys = max(y), zs = min(z),
         col = NULL, NAcol = "white", breaks = NULL,
         border = NA, facets = TRUE, colkey = NULL, 
         panel.first = NULL, clim = NULL, 
         clab = NULL, bty = "b", 
         lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,  
         add = FALSE, plot = TRUE) 

slicecont3D (x, y, z, colvar, ..., phi = 40, theta = 40,
         xs = NULL, ys = NULL, zs = NULL, level = NULL,
         col = NULL, NAcol = "white", breaks = NULL,
         border = NA, facets = TRUE, 
         colkey = NULL, panel.first = NULL,
         clim = NULL, clab = NULL, bty = "b", 
         dDepth = 0, add = FALSE, plot = TRUE) 

isosurf3D (x, y, z, colvar, ..., phi = 40, theta = 40, 
         level = mean(colvar, na.rm = TRUE), isofunc = createisosurf,
         col = NULL, border = NA, facets = TRUE, 
         colkey = NULL, panel.first = NULL, 
         clab = NULL, bty = "b", 
         lighting = FALSE, shade = 0.5, ltheta = -135, lphi = 0, 
         add = FALSE, plot = TRUE) 

voxel3D (x, y, z, colvar, ..., phi = 40, theta = 40, 
         level = mean(colvar, na.rm = TRUE), eps = 0.01, operator = "=", 
         col = NULL, NAcol = "white", breaks = NULL, colkey = FALSE,
         panel.first = NULL, bty = "b", add = FALSE, plot = TRUE)

triangle3D (tri, colvar = NULL, ..., phi = 40, theta = 40,
           col = NULL, NAcol = "white", breaks = NULL,
           border = NA, facets = TRUE,
           colkey = NULL, panel.first = NULL,
           lighting = FALSE, shade = 0.5, ltheta = -135, lphi = 0, 
           clim = NULL, clab = NULL,
           bty = "b", add = FALSE, plot = TRUE)  

createisosurf (x, y, z, colvar, level = mean(colvar, na.rm = TRUE))

createvoxel (x, y, z, colvar, level = mean(colvar, na.rm = TRUE), eps = 0.01,
             operator = "=")
}

\arguments{
  \item{x, y, z }{Vectors with x, y and z-values. 
    They should be of length equal to the first, second and 
    third dimension of \code{colvar} respectively.
    }
  \item{colvar }{The variable used for coloring. 
    It should be an array of dimension equal to 
    \code{c(length(x), length(y), length(z))}.
    For \code{triangle3D}, \code{colvar} should be of length = nrow(\code{tri}) / 3.
    It must be present.
    }
  \item{tri }{A three-columned matrix (x, y, z) with triangle coordinates. 
    A triangle is defined by three consecutive rows.
    }  
  \item{isofunc }{A function defined as \code{function(x, y, z, colvar, level)},
    and that returns the three-columned matrix with triangle coordinates.
    The default, \code{createisosurf} uses function \link{computeContour3d} 
    from package \code{misc3d}. 
    }
  \item{theta, phi }{the angles defining the viewing direction. 
    \code{theta} gives the azimuthal direction and \code{phi} the colatitude. see \link{persp}.
    }
  \item{col }{Colors to be used for coloring the \code{colvar} variable. 
    If \code{col} is \code{NULL} 
    then a red-yellow-blue colorscheme (\link{jet.col}) will be used.
    }
  \item{NAcol }{Colors to be used for \code{colvar} values that are \code{NA}.
    }
  \item{breaks }{a set of finite numeric breakpoints for the colors;
    must have one more breakpoint than color and be in increasing order.
    Unsorted vectors will be sorted, with a warning.
    }
  \item{border }{The color of the lines drawn around the surface facets.
    The default, \code{NA}, will disable the drawing of borders.
    }
  \item{facets }{If \code{TRUE}, then \code{col} denotes the color of the surface facets. 
    If \code{FALSE}, then the surface facets are colored ``white'' and the \code{border} 
    (if \code{NA}) will be colored as specified by \code{col}. 
    If \code{NA} then the facets will be transparent. 
    It is usually faster to draw with \code{facets = FALSE}.
    }
 \item{colkey }{A logical, \code{NULL} (default), or a \code{list} with parameters 
    for the color key (legend). List parameters should be one of 
    \code{side, plot, length, width, dist, shift, addlines, col.clab, cex.clab,
      side.clab, line.clab, adj.clab, font.clab}
    and the axis parameters \code{at, labels, tick, line, pos, outer, font, lty, lwd,
    lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck, tcl, las}.
    The defaults for the parameters are \code{side = 4, plot = TRUE, length = 1, width = 1, 
      dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab = par("cex.lab"), 
      side.clab = NULL, line.clab = NULL, adj.clab = NULL, font.clab = NULL})
    See \link{colkey}.
    
    The default is to draw the color key on side = 4, i.e. in the right margin.
    If \code{colkey} = \code{NULL} then a color key will be added only if \code{col} is a vector.
    Setting \code{colkey = list(plot = FALSE)} will create room for the color key 
    without drawing it.
    if \code{colkey = FALSE}, no color key legend will be added.
    } 
  \item{panel.first }{A \code{function} to be evaluated after the plot axes are 
    set up but before any plotting takes place. 
    This can be useful for drawing background grids or scatterplot smooths. 
    The function should have as argument the transformation matrix, e.g. it should
    be defined as \code{function(pmat)}. See last example and example of \link{persp3D}.
    } 
  \item{clab }{Only if \code{colkey} is not \code{NULL} or \code{FALSE}, 
    the label to be written on top of the color key. 
    The label will be written at the same level as the main title.
    To lower it, \code{clab} can be made a vector, with the first values empty 
    strings. 
    } 
  \item{clim }{Only if \code{colvar} is specified, the range of the color variable, used
    for the color key. Values of \code{colvar} that extend the range will be put to \code{NA}.
    } 
  \item{xs, ys, zs }{Vectors or matrices.
    Vectors specify the positions in x, y or z where the slices (planes) are to be drawn.
    The values of \code{colvar} will be projected on these slices.
    Matrices specify a surface on which the \code{colvar} will be projected.
    } 
  \item{level }{The level(s) at which the \code{contour} will be generated or the
    isosurfaces generated. 
    
    There can be more than one level, but for \code{slicecont3D} too many 
    will give a crowded view, and one is often best.
    For \code{isosurf3D}, the use of multiple values may need transparent colors to visualise.
    For \code{voxel3D}, \code{level} should either be one number (if \code{operator}
    equals \code{'=', '<', '>'}) or two numbers (for \code{operator = '<>'}).
    } 

  \item{lighting }{If not \code{FALSE} the facets will be illuminated, and colors may
    appear more bright. To switch on lighting, the argument \code{lighting} 
    should be either set to \code{TRUE} (using default settings) or it can be a 
    list with specifications of one of the following: 
    \code{ambient, diffuse, specular, exponent, sr} and \code{alpha}. 

    Will overrule \code{shade} not equal to \code{NA}.
    
    See examples in \link{jet.col}.
    }
  \item{shade }{the degree of shading of the surface facets. 
    Values of shade close to one yield shading similar to a point light 
    source model and values close to zero produce no shading. 
    Values in the range 0.5 to 0.75 provide an approximation to daylight illumination.
    See \link{persp}.
    } 
  \item{ltheta, lphi }{if finite values are specified for \code{ltheta} and 
    \code{lphi}, the surface is shaded as though it was being illuminated from 
    the direction specified by azimuth \code{ltheta} and colatitude \code{lphi}.
    See \link{persp}.
    }  
  \item{bty }{The type of the box, the default only draws background panels.
    Only effective if the \link{persp} 
    argument (\code{box}) equals \code{TRUE} (this is the default). See \link{perspbox}.
    }
  \item{eps }{The voxel precision, only used when \code{operator = "="}.
    A point is selected if it closer than \code{eps*diff(range(colvar))} 
    to the required level.
    }
  \item{operator }{One of '=', '<', '>', '<>' for selection of points `equal' (within
    precision), larger or smaller than the required level or to be within an 
    interval.
    }
  \item{dDepth }{When a contour is added on an image, the image polygons may
    hide some contour segments. To avoid that, the viewing depth of the segments
    can be artificially decreased with the factor \code{dDepth} times the 
    \link{persp} argument \code{expand} (usually = 1), to make them 
    appear in front of the polygons. 
    Too large values of \code{dDepth} may create visible artifacts.
    See \link{contour3D}.
    }   
  \item{add }{Logical. If \code{TRUE}, then the slices, voxels or surfaces will be added to the current plot.
    If \code{FALSE} a new plot is started. 
    } 
  \item{plot }{Logical. If \code{TRUE} (default), a plot is created, 
     otherwise the viewing transformation matrix is returned (as invisible). 
    } 
  \item{\dots}{additional arguments passed to the plotting methods. 

    The following \link{persp} arguments can be specified: 
    \code{xlim, ylim, zlim, xlab, ylab, zlab, main, sub, r, d, 
    scale, expand, box, axes, nticks, ticktype}.      
    The arguments \code{xlim}, \code{ylim}, \code{zlim} only affect the axes.
    All objects will be plotted, including those that fall out of these ranges.
    To select objects only within the axis limits, use \link{plotdev}.

    In addition, the \link{perspbox} arguments
    \code{col.axis, col.panel, lwd.panel, col.grid, lwd.grid} can 
    also be given a value.

    \code{alpha} can be given a value inbetween 0 and 1 to make colors transparent.

    For all functions, the arguments \code{lty, lwd} can be specified.
    
    The arguments after \dots must be matched exactly.
    }
}

\note{
  The \code{isosurf3D} function uses function  \code{computeContour3d}, 
  from package \code{misc3d}, which is based on the marching cubes algorithm.
  Please cite the package \code{misc3d} (Feng & Tierney, 2008) when using \code{isosurf3D}.
  
  For \code{voxel3D}, coloring is always according to the z-variable. A more flexible
  coloration can be achieved by using \code{createvoxel}, followed by \link{scatter3D}.
  See examples.
}
                         
\value{
  The plotting functions return the viewing transformation matrix,
  See \link{trans3D}.
  
  Function \code{createisosurf} returns a three-columned matrix (x, y, z) with 
  triangle coordinates. One triangle is defined by three consecutive rows.
  It can be plotted with \code{triangle3D}.
  
  Function \code{createvoxel} returns a list with the elements \code{x, y, z} 
  defining the points that are at a distance of less than 
  \code{eps*diff(range(colvar))} from the required \code{level}.
  Its output can be plotted with \link{scatter3D}.
}
\seealso{
  \link{Oxsat} for another example of \code{slice3D}.

  \link{plotdev} for zooming, rescaling, rotating a plot.
}
\author{Karline Soetaert <karline.soetaert@nioz.nl>}

\examples{
# save plotting parameters
 pm <- par("mfrow")
 pmar <- par("mar")

## =======================================================================
## Simple slice3D examples
## =======================================================================

 par(mfrow = c(2, 2))
 x <- y <- z <- seq(-1, 1, by = 0.1)
 grid   <- mesh(x, y, z)
 colvar <- with(grid, x*exp(-x^2 - y^2 - z^2))

# default is just the panels
 slice3D  (x, y, z, colvar = colvar, theta = 60)

# contour slices
 slicecont3D (x, y, z, ys = seq(-1, 1, by = 0.5), colvar = colvar, 
           theta = 60, border = "black")
          
 slice3D  (x, y, z, xs = c(-1, -0.5, 0.5), ys = c(-1, 0, 1), 
           zs = c(-1, 0), colvar = colvar, 
           theta = 60, phi = 40)

## =======================================================================
## coloring on a surface
## =======================================================================

 XY <- mesh(x, y)
 ZZ <- XY$x*XY$y
 slice3D  (x, y, z, xs = XY$x, ys = XY$y, zs = ZZ, colvar = colvar, 
           lighting =  TRUE, lphi = 90, ltheta = 0)

## =======================================================================
## Specifying transparent colors
## =======================================================================

 par(mfrow = c(1, 1))
 x <- y <- z <- seq(-4, 4, by = 0.2)
 M <- mesh(x, y, z)

 R <- with (M, sqrt(x^2 + y^2 + z^2))
 p <- sin(2*R) /(R+1e-3)

\dontrun{
# This is very slow - alpha = 0.5 makes it transparent

 slice3D(x, y, z, colvar = p, col = jet.col(alpha = 0.5), 
         xs = 0, ys = c(-4, 0, 4), zs = NULL, d = 2) 
}

 slice3D(x, y, z, colvar = p, d = 2, theta = 60, border = "black",
         xs = c(-4, 0), ys = c(-4, 0, 4), zs = c(-4, 0))

## =======================================================================
## A section along a transect
## =======================================================================

 data(Oxsat)
 Ox <- Oxsat$val[,  Oxsat$lat > - 5 & Oxsat$lat < 5, ]
 slice3D(x = Oxsat$lon, z = -Oxsat$depth, y = 1:5, colvar = Ox, 
         ys = 1:5, zs = NULL, NAcol = "black", 
         expand = 0.4, theta = 45, phi = 45)

## =======================================================================
## isosurf3D example - rather slow
## =======================================================================

 par(mfrow = c(2, 2), mar  = c(2, 2, 2, 2))
 x <- y <- z <- seq(-2, 2, length.out = 15)
 xyz <- mesh(x, y, z)
 F <- with(xyz, log(x^2 + y^2 + z^2 + 
                10*(x^2 + y^2) * (y^2 + z^2) ^2))

# use shading for level = 1 - show triangulation with border
 isosurf3D(x, y, z, F, level = 1, shade = 0.9, 
           col = "yellow", border = "orange")

# lighting for level - 2
 isosurf3D(x, y, z, F, level = 2, lighting = TRUE,
           lphi = 0, ltheta = 0, col = "blue", shade = NA)  
 
# three levels, transparency added
 isosurf3D(x, y, z, F, level = seq(0, 4, by = 2), 
   col = c("red", "blue", "yellow"), 
   clab = "F", alpha = 0.2, theta = 0, lighting = TRUE)  

# transparency can also be added afterwards with plotdev()
\dontrun{
 isosurf3D(x, y, z, F, level = seq(0, 4, by = 2), 
   col = c("red", "blue", "yellow"), 
   shade = NA, plot = FALSE, clab = "F")  
 plotdev(lighting = TRUE, alpha = 0.2, theta = 0)
}
# use of creatisosurf
 iso <- createisosurf(x, y, z, F, level = 2)
 head(iso)
 triangle3D(iso, col = "green", shade = 0.3)

\dontrun{
 # higher resolution
  x <- y <- z <- seq(-2, 2, length.out = 50)
  xyz <- mesh(x, y, z)
  F <- with(xyz, log(x^2 + y^2 + z^2 + 
                10*(x^2 + y^2) * (y^2 + z^2) ^2))

# three levels
  isosurf3D(x, y, z, F, level = seq(0, 4, by = 2), 
    col = c("red", "blue", "yellow"), 
    shade = NA, plot = FALSE, clab = "F")  
  plotdev(lighting = TRUE, alpha = 0.2, theta = 0)
}

## =======================================================================
## voxel3D example
## =======================================================================

 par(mfrow = c(2, 2), mar  = c(2, 2, 2, 2))

# fast but needs high resolution grid
 x <- y <- z <- seq(-2, 2, length.out = 70)
 xyz <- mesh(x, y, z)
 F <- with(xyz, log(x^2 + y^2 + z^2 + 
                10*(x^2 + y^2) * (y^2 + z^2) ^2))

 voxel3D(x, y, z, F, level = 4, pch = ".", cex = 5)

## =======================================================================
## rotation 
## =======================================================================

 plotdev(theta = 45, phi = 0)
 plotdev(theta = 90, phi = 10)

# same using createvoxel -  more flexible for coloring
 vox <- createvoxel(x, y, z, F, level = 4)
 scatter3D(vox$x, vox$y, vox$z, colvar = vox$y, 
   bty = "g", colkey = FALSE)


## =======================================================================
## voxel3D to show hypox sites
## =======================================================================

 par(mfrow = c(1, 1), mar = c(2, 2, 2, 2))
 Hypox <- createvoxel(Oxsat$lon, Oxsat$lat, Oxsat$depth[1:19], 
                      Oxsat$val[,,1:19], level = 40, operator = "<")

 panel <- function(pmat) {  # an image at the bottom
   Nx <- length(Oxsat$lon)
   Ny <- length(Oxsat$lat)
   M <- mesh(Oxsat$lon, Oxsat$lat) 
   xy <- trans3D(pmat = pmat, x = as.vector(M$x), y = as.vector(M$y), 
        z = rep(-1000, length.out = Nx*Ny)) 
   x <- matrix(nrow = Nx, ncol = Ny, data = xy$x)
   y <- matrix(nrow = Nx, ncol = Ny, data = xy$y)
   Bat <- Oxsat$val[,,1]; Bat[!is.na(Bat)] <- 1
   image2D(x = x, y = y, z = Bat, NAcol = "black", col = "grey",
         add = TRUE, colkey = FALSE)
 }
   
 scatter3D(Hypox$x, Hypox$y, -Hypox$z, colvar = Hypox$cv, 
           panel.first = panel, pch = ".", bty = "b", 
           theta = 30, phi = 20, ticktype = "detailed",
           zlim = c(-1000,0), xlim = range(Oxsat$lon), 
           ylim = range(Oxsat$lat) )
           
# restore plotting parameters
 par(mfrow = pm)
 par(mar = pmar)
}
\references{
Lorensen, W.E. and Cline, H.E.,
Marching Cubes: a high resolution 3D surface reconstruction algorithm,
Computer Graphics, Vol. 21, No. 4, pp 163-169 (Proc. of SIGGRAPH), 1987.

Dai Feng, Luke Tierney, Computing and Displaying Isosurfaces in R, 
Journal of Statistical Software 28(1), 2008.
URL \url{https://www.jstatsoft.org/v28/i01/}.
}

\keyword{ hplot }