1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
\name{3-D surfaces}
\alias{surf3D}
\alias{spheresurf3D}
\title{
Functions for plotting 3 dimensional shapes
}
\description{
\code{surf3D} plots a surface in 3-D with a color variable.
\code{spheresurf3D} plots a colored image on a sphere.
}
\usage{
surf3D (x, y, z, ..., colvar = z, phi = 40, theta = 40,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, colkey = NULL,
panel.first = NULL, clim = NULL, clab = NULL, bty = "n",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
inttype = 1, add = FALSE, plot = TRUE)
spheresurf3D (colvar = matrix(nrow = 50, ncol = 50, data = 1:50, byrow = TRUE),
..., phi = 0, theta = 0,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, contour = FALSE,
colkey = NULL, resfac = 1,
panel.first = NULL, clim = NULL, clab = NULL, bty = "n",
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
inttype = 1, full = FALSE, add = FALSE, plot = TRUE)
}
\arguments{
\item{x, y, z }{Matrices with x, y and z-values that define the surfaces to
be colored. They should be of the same dimension
as \code{colvar}.
}
\item{colvar }{The variable used for coloring. If a matrix, it should be of the same
dimension as \code{x, y, z}.
Values of \code{NULL}, \code{NA}, or \code{FALSE}
will toggle off coloration according to \code{colvar}. This gives good results
only if \code{border} is given a color or a shade is used.
}
\item{theta, phi }{the angles defining the viewing direction.
\code{theta} gives the azimuthal direction and \code{phi} the colatitude. see \link{persp}.
}
\item{col }{Color palette to be used for coloring the \code{colvar} variable.
If \code{col} is \code{NULL} and \code{colvar} is specified,
then a red-yellow-blue colorscheme (\link{jet.col}) will be used.
If \code{col} is \code{NULL} and \code{colvar} is not specified, then
\code{col} will be "grey".
}
\item{NAcol }{Colors to be used for \code{colvar} values that are \code{NA}.
}
\item{breaks }{a set of finite numeric breakpoints for the colors;
must have one more breakpoint than color and be in increasing order.
Unsorted vectors will be sorted, with a warning.
}
\item{border }{The color of the lines drawn around the surface facets.
The default, \code{NA}, will disable the drawing of borders.
}
\item{facets }{If \code{TRUE}, then \code{col} denotes the color of the surface facets.
If \code{FALSE}, then the surface facets are colored ``white'' and the \code{border}
(if \code{NA}) will be colored as specified by \code{col}.
If \code{NA} then the facets will be transparent.
It is usually faster to draw with \code{facets = FALSE}.
}
\item{contour }{If \code{TRUE}, then a \link{contour} plot will be
added to the image plot, unless \code{x, y} are a matrix.
Also allowed is to pass a \code{list} with arguments for the
\link{contour} function.
}
\item{colkey }{A logical, \code{NULL} (default), or a \code{list} with parameters
for the color key (legend). List parameters should be one of
\code{side, plot, length, width, dist, shift, addlines, col.clab, cex.clab,
side.clab, line.clab, adj.clab, font.clab}
and the axis parameters \code{at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck, tcl, las}.
The defaults for the parameters are \code{side = 4, plot = TRUE, length = 1, width = 1,
dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab = par("cex.lab"),
side.clab = NULL, line.clab = NULL, adj.clab = NULL, font.clab = NULL})
See \link{colkey}.
The default is to draw the color key on side = 4, i.e. in the right margin.
If \code{colkey} = \code{NULL} then a color key will be added only if \code{col} is a vector.
Setting \code{colkey = list(plot = FALSE)} will create room for the color key
without drawing it.
if \code{colkey = FALSE}, no color key legend will be added.
}
\item{resfac }{Resolution factor, one value or a vector of two numbers, for
the x and y- values respectively. A value > 1 will increase the
resolution. For instance, if \code{resfac} equals \code{3} then for each
adjacent pair of x- and y-values, z will be interpolated to two intermediary points.
This uses simple linear interpolation. If \code{resfac} is one number then
the resolution will be increased similarly in x and y-direction.
}
\item{panel.first }{A \code{function} to be evaluated after the plot axes are
set up but before any plotting takes place.
This can be useful for drawing background grids or scatterplot smooths.
The function should have as argument the transformation matrix, e.g. it should
be defined as \code{function(pmat)}. See example of \link{persp3D} and last example of \link{voxel3D}.
}
\item{clab }{Only if \code{colkey} is not \code{NULL} or \code{FALSE},
the label to be written on top of the color key.
The label will be written at the same level as the main title.
To lower it, \code{clab} can be made a vector, with the first values empty
strings.
}
\item{clim }{Only if \code{colvar} is specified, the range of the color variable, used
for the color key. Values of \code{colvar} that extend the range will be put to \code{NA}.
}
\item{bty }{The type of the box, the default is to draw no box.
Set \code{bty = "f"} or \code{bty = "b"} if you want a full box or the backpanel.
See \link{perspbox}.
}
\item{lighting }{If not \code{FALSE} the facets will be illuminated, and colors may
appear more bright. To switch on lighting, the argument \code{lighting}
should be either set to \code{TRUE} (using default settings) or it can be a
list with specifications of one of the following:
\code{ambient, diffuse, specular, exponent, sr} and \code{alpha}.
Will overrule \code{shade} not equal to \code{NA}.
See examples in \link{jet.col}.
}
\item{shade }{the degree of shading of the surface facets.
Values of shade close to one yield shading similar to a point light
source model and values close to zero produce no shading.
Values in the range 0.5 to 0.75 provide an approximation to daylight illumination.
See \link{persp}.
}
\item{ltheta, lphi }{if finite values are specified for \code{ltheta} and
\code{lphi}, the surface is shaded as though it was being illuminated from
the direction specified by azimuth \code{ltheta} and colatitude \code{lphi}.
See \link{persp}.
}
\item{inttype }{The interpolation type to create the polygons, either
taking the mean of the \code{colvar} variable (\code{inttype = 1, 3} or
extending the \code{x, y, z} values (\code{inttype = 2}).
Values \code{1, 3} differ in how they treat \code{NA}s in the \code{colvar} variable.
For \code{inttype = 3}, \code{NA}s are removed before taking averages;
this will tend to make the \code{NA} region smaller.
\code{NA}s are included when \code{inttype = 1}. This will tend to make the \code{NA} region larger.
See details and an example in \link{persp3D}.
}
\item{full }{Logical. If \code{TRUE}, the full sphere will be drawn, including the
invisible part. If \code{FALSE} only the visible half will be drawn (faster).
}
\item{add }{Logical. If \code{TRUE}, then the surfaces will be added to the current plot.
If \code{FALSE} a new plot is started.
}
\item{plot }{Logical. If \code{TRUE} (default), a plot is created,
otherwise the viewing transformation matrix is returned (as invisible).
}
\item{\dots}{Additional arguments passed to the plotting methods.
The following \link{persp} arguments can be specified:
\code{xlim, ylim, zlim, xlab, ylab, zlab, main, sub, r, d,
scale, expand, box, axes, nticks, ticktype}.
The arguments \code{xlim}, \code{ylim}, \code{zlim} only affect the axes.
All objects will be plotted, including those that fall out of these ranges.
To select objects only within the axis limits, use \link{plotdev}.
In addition, the \link{perspbox} arguments
\code{col.axis, col.panel, lwd.panel, col.grid, lwd.grid} can
also be given a value.
The arguments after \dots must be matched exactly.
}
}
\value{
Returns the viewing transformation matrix,
See \link{trans3D}.
}
\seealso{
\link{persp} for the function on which this implementation is based.
\link{jet.col}, \link{plotdev} for other examples of \code{surf3D}.
\link{plotdev} for zooming, rescaling, rotating a plot.
}
\author{Karline Soetaert <karline.soetaert@nioz.nl>}
\details{
Function \code{spheresurf3D} is a projection on a sphere with radius 1.
This means that the x- y- and z- axes range from [-1, 1].
}
\examples{
# save plotting parameters
pm <- par("mfrow")
pmar <- par("mar")
par(mar = c(1, 1, 1, 1))
## =======================================================================
## A three-dimensional shape
## (ala http://docs.enthought.com/mayavi/mayavi/mlab.html)
## =======================================================================
par(mfrow = c(2, 2))
# create grid matrices
X <- seq(0, pi, length.out = 50)
Y <- seq(0, 2*pi, length.out = 50)
M <- mesh(X, Y)
phi <- M$x
theta <- M$y
# x, y and z grids
r <- sin(4*phi)^3 + cos(2*phi)^3 + sin(6*theta)^2 + cos(6*theta)^4
x <- r * sin(phi) * cos(theta)
y <- r * cos(phi)
z <- r * sin(phi) * sin(theta)
# full colored image
surf3D(x, y, z, colvar = y, colkey = FALSE, shade = 0.5,
box = FALSE, theta = 60)
# same, but just facets
surf3D(x, y, z, colvar = y, colkey = FALSE, box = FALSE,
theta = 60, facets = FALSE)
# with colors and border, AND increasing the size
# (by reducing the x- y and z- ranges
surf3D(x, y, z, colvar = y, colkey = FALSE, box = FALSE,
theta = 60, border = "black", xlim = range(x)*0.8,
ylim = range(y)*0.8, zlim = range(z)*0.8)
# Now with one color and shading
surf3D(x, y, z, box = FALSE,
theta = 60, col = "lightblue", shade = 0.9)
\dontrun{ # rotation
for (angle in seq(0, 360, by = 10))
plotdev(theta = angle)
}
## =======================================================================
## Several other shapes
## http://xahlee.info/surface/gallery.html
## =======================================================================
par(mfrow = c(2, 2))
# Shape 1
M <- mesh(seq(0, 6*pi, length.out = 50),
seq(pi/3, pi, length.out = 50))
u <- M$x ; v <- M$y
x <- u/2 * sin(v) * cos(u)
y <- u/2 * sin(v) * sin(u)
z <- u/2 * cos(v)
surf3D(x, y, z, colvar = z, colkey = FALSE, box = FALSE, phi = 50)
# Shape 2: add border
M <- mesh(seq(0, 2*pi, length.out = 50),
seq(0, 2*pi, length.out = 50))
u <- M$x ; v <- M$y
x <- sin(u)
y <- sin(v)
z <- sin(u + v)
surf3D(x, y, z, colvar = z, border = "black",
colkey = FALSE)
# shape 3: uses same mesh, other perspective (d >1)
x <- (3 + cos(v/2)*sin(u) - sin(v/2)*sin(2*u))*cos(v)
y <- (3 + cos(v/2)*sin(u) - sin(v/2)*sin(2*u))*sin(v)
z <- sin(v/2)*sin(u) + cos(v/2)*sin(2*u)
surf3D(x, y, z, colvar = z, colkey = FALSE, d = 2, facets = FALSE)
# shape 4: more complex colvar
M <- mesh(seq(-13.2, 13.2, length.out = 50),
seq(-37.4, 37.4, length.out = 50))
u <- M$x ; v <- M$y
b <- 0.4; r <- 1 - b^2; w <- sqrt(r)
D <- b*((w*cosh(b*u))^2 + (b*sin(w*v))^2)
x <- -u + (2*r*cosh(b*u)*sinh(b*u)) / D
y <- (2*w*cosh(b*u)*(-(w*cos(v)*cos(w*v)) - sin(v)*sin(w*v))) / D
z <- (2*w*cosh(b*u)*(-(w*sin(v)*cos(w*v)) + cos(v)*sin(w*v))) / D
surf3D(x, y, z, colvar = sqrt(x + 8.3), colkey = FALSE,
theta = 10, border = "black", box = FALSE)
box()
## =======================================================================
## A sphere, with box type with grid lines
## =======================================================================
par(mar = c(2, 2, 2, 2))
par(mfrow = c(1, 1))
M <- mesh(seq(0, 2*pi, length.out = 50),
seq(0, pi, length.out = 50))
u <- M$x ; v <- M$y
x <- cos(u)*sin(v)
y <- sin(u)*sin(v)
z <- cos(v)
colvar <- sin(u*6) * sin(v*6)
surf3D(y, x, z, colvar = colvar, phi = 0, bty = "b2",
lighting = TRUE, ltheta = 40)
## =======================================================================
## Function spheresurf3D
## =======================================================================
par(mfrow = c(2, 2))
spheresurf3D()
# true ranges are [-1, 1]; set limits to [-0.8, 0.8] to make larger plots
lim <- c(-0.8, 0.8)
spheresurf3D(colkey = FALSE, xlim = lim, ylim = lim, zlim = lim)
spheresurf3D(bty = "b", ticktype = "detailed", phi = 50)
spheresurf3D(colvar = matrix(nrow = 30, ncol = 30, data = runif(900)))
## =======================================================================
## Images on a sphere
## =======================================================================
par(mfrow = c(1, 1), mar = c(1, 1, 1, 3))
AA <- Hypsometry$z; AA[AA<=0] <- NA
lim <- c(-0.8, 0.8)
# log transformation of color variable
spheresurf3D(AA, NAcol = "black", theta = 90, phi = 30, box = FALSE,
xlim = lim, ylim = lim, zlim = lim, log = "c")
# restore plotting parameters
par(mfrow = pm)
par(mar = pmar)
}
\keyword{ hplot }
|