1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
\name{2D image and contour plots}
\alias{image2D}
\alias{contour2D}
\alias{image2D.matrix}
\alias{image2D.array}
\alias{image2D.list}
\title{
Extended image and contour plots for 2-D (and 3-D) data.
}
\description{
\code{image2D} extends R's \link{image} function. Input can be a matrix (2-D) or an array (3-D) or a list.
\code{contour2D} extends R's \link{contour} function.
}
\usage{
image2D (z, ...)
contour2D (z, x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)), ...,
col = NULL, NAcol = NULL,
colkey = NULL, resfac = 1,
clab = NULL, add = FALSE, plot = TRUE)
\method{image2D}{matrix}(z, x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)), colvar = z, ...,
col = NULL, NAcol = "white", breaks = NULL,
border = NA, facets = TRUE, contour = FALSE,
colkey = NULL, resfac = 1, clab = NULL,
lighting = FALSE, shade = NA, ltheta = -135, lphi = 0,
theta = 0, rasterImage = FALSE,
add = FALSE, plot = TRUE)
\method{image2D}{array}(z, margin = c(1, 2), subset, ask = NULL, ...)
\method{image2D}{list}(z, ...)
}
\arguments{
\item{z }{Matrix (2-D) or array (3-D) or a list with matrices or arrays,
with z-values. By default \code{colvar} is equal to \code{z}, hence
\code{z} also defines the variable used to color the \link{image}.
Only when \code{shade} or \code{lighting} is toggled on does it make
sense to use \code{z} different from \code{colvar}.
}
\item{x, y }{Vectors or matrix with x and y values.
If a vector \code{x} should be of length equal to \code{nrow(z)} and
\code{y} should be of length equal to \code{ncol(z)}.
If a matrix (only for \code{image2D}), they should have
the same dimension as \code{z} or be of dimension = \code{dim(z)+1}.
}
\item{colvar }{Only used when \code{shade} or \code{lighting} is toggled on.
The variable used to color the image.
}
\item{col }{Color palette to be used for the \link{image} function or for the contours.
See details.
}
\item{NAcol }{Color to be used for \code{NA} values of \code{z}; for \code{image2D}, the default is ``white'',
for \code{contour2D}, the default is to do nothing.
}
\item{breaks }{a set of finite numeric breakpoints for the colors;
must have one more breakpoint than color and be in increasing order.
Unsorted vectors will be sorted, with a warning.
}
\item{contour }{If \code{TRUE}, then a \link{contour} plot will be
added to the image plot, unless \code{x, y} are a matrix.
Also allowed is to pass a \code{list} with arguments for the
\link{contour} function.
}
\item{colkey }{A logical, \code{NULL} (default), or a \code{list} with parameters
for the color key (legend). List parameters should be one of
\code{side, plot, length, width, dist, shift, addlines, col.clab, cex.clab,
side.clab, line.clab, adj.clab, font.clab}
and the axis parameters \code{at, labels, tick, line, pos, outer, font, lty, lwd,
lwd.ticks, col.box, col.axis, col.ticks, hadj, padj, cex.axis, mgp, tck, tcl, las}.
The defaults for the parameters are \code{side = 4, plot = TRUE, length = 1, width = 1,
dist = 0, shift = 0, addlines = FALSE, col.clab = NULL, cex.clab = par("cex.lab"),
side.clab = NULL, line.clab = NULL, adj.clab = NULL, font.clab = NULL})
See \link{colkey}.
The default is to draw the color key on side = 4, i.e. in the right margin.
If \code{colkey} = \code{NULL} then a color key will be added only if \code{col} is a vector.
Setting \code{colkey = list(plot = FALSE)} will create room for the color key
without drawing it.
if \code{colkey = FALSE}, no color key legend will be added.
}
\item{clab }{Only if \code{colkey} is not \code{NULL} or \code{FALSE},
the label to be written on top of the color key.
The label will be written at the same level as the main title.
To lower it, \code{clab} can be made a vector, with the first values empty
strings.
}
\item{resfac }{Resolution factor, one value or a vector of two numbers, for
the x and y- values respectively. A value > 1 will increase the
resolution. For instance, if \code{resfac} equals \code{3} then for each
adjacent pair of x- and y-values, z will be interpolated to two intermediary points.
This uses simple linear interpolation. If \code{resfac} is one number then
the resolution will be increased similarly in x and y-direction.
}
\item{lighting }{If not \code{FALSE} the facets will be illuminated, and colors may
appear more bright. To switch on lighting, the argument \code{lighting}
should be either set to \code{TRUE} (using default settings) or it can be a
list with specifications of one of the following:
\code{ambient, diffuse, specular, exponent, sr} and \code{alpha}.
Will overrule \code{shade} not equal to \code{NA}.
See examples in \link{jet.col}.
}
\item{shade }{the degree of shading of the surface facets.
Values of shade close to one yield shading similar to a point light
source model and values close to zero produce no shading.
Values in the range 0.5 to 0.75 provide an approximation to daylight illumination.
See \link{persp}.
}
\item{ltheta, lphi }{if finite values are specified for \code{ltheta} and
\code{lphi}, the surface is shaded as though it was being illuminated from
the direction specified by azimuth \code{ltheta} and colatitude \code{lphi}.
See \link{persp}.
}
\item{theta }{The angle defining the azimuthal direction.
Implemented for consistency with the other functions based on \link{persp}.
}
\item{border }{The color of the lines drawn around the surface facets.
The default, \code{NA}, will disable the drawing of borders.
}
\item{facets }{If \code{TRUE}, then \code{col} denotes the color of the surface facets.
If \code{FALSE}, then the surface facets are colored ``white'' and the \code{border}
will be colored as specified by \code{col}. If \code{NA} then the facets will be
transparent.
It is usually faster to draw with \code{facets = FALSE}.
}
\item{rasterImage }{If \code{TRUE}, the function \link{rasterImage} will be
used for plotting rather than \link{image} or \link{polygon}. This requires
the \code{x} and \code{y} to be a vector with equally spaced elements.
Note that by default, \link{rasterImage} linearly interpolates the image,
so it will appear smoother.
}
\item{add }{Logical. If \code{TRUE}, then the points will be added to the current plot.
If \code{FALSE} a new plot is started.
}
\item{plot }{Logical. If \code{TRUE} (default), a plot is created,
otherwise (for 3D plots) the viewing transformation matrix is returned (as invisible).
}
\item{margin }{A vector giving the subscripts which the \code{image}
function will be applied over.
The image function will loop over the index that is not in \code{margin}.
For instance, \code{c(1, 2)}, indicates to plot rows(x) and columns(y) and to
loop over index \code{3};
\code{c(2, 1)} will do the same but the image will be transposed.
\code{margin} should be a vector with two numbers inbetween \code{1}, and \code{3}.
}
\item{ask }{A logical; if \code{TRUE}, the user is asked before each plot,
if \code{NULL} the user is only asked if more than one page of plots is
necessary and the current graphics device is set interactive,
see \link{par}(ask) and \link{dev.interactive}.
}
\item{subset }{Either a logical expression indicating over which elements to loop,
or a vector or integers denoting the indices of the elements over which to loop.
Missing values are taken as \code{FALSE}.
}
\item{\dots}{additional arguments passed to the plotting methods \link{image},
\link{rasterImage}, \link{polygon} and \link{contour}.
\code{alpha} can be given a value inbetween 0 and 1 to make colors transparent.
The arguments after \dots must be matched exactly.
}
}
\details{
\code{image2D} is an extension to the default \link{image} plot that has
the possibility to add a color key and contourlines, and to increase the
resolution in order to make smoother images. It also uses a different color
scheme, it can deal with decreasing x- and y- values and x and y can be
a matrix. In the latter case, the image will be drawn as a set of \link{polygon}s;
if \code{x} and \code{y} are a vector, either R-function \link{image} or
\link{rasterImage} will be used.
\code{image2D.array} and \code{image2D.list} are versions that
accept a 3 dimensional array respectively a list with z-matrices
as their first argument to produce multiple plots.
For argument \code{col} of the \code{image2D} function,
both \code{NA} and \code{NULL} are allowed,
in which case the color will be white, and no color key will be drawn.
To set the ranges of the z-variable, both arguments \code{zlim} (as in \link{image})
and \code{clim} (as in the other \code{plot3D} functions) are accepted.
Upon returning from the \code{image2D} and \code{contour2D} functions, the figure coordinates are defined
by the main figure (excluding the color key). Thus, one can safely add other
plotting elements.
}
\note{
The first argument, \code{z} generally determines the color variable.
For consistency with the other functions, another variable, \code{colvar}
is also defined and set by default equal to \code{z}. \code{colvar} will
only be used if \code{shade} or \code{lighting} are toggled on. In this case,
\code{z} will be used to define the shading (orientation of each facet), while
\code{colvar} will define the color.
When \code{x} and \code{y} is a vector, the function uses R-function \link{image}.
This means that the x- and y- axis will extend the x- and y- values with half
a grid cell.
In contrast, when \code{x} and \code{y} are a matrix,
the axis will not extend the x- or y- values. See first example.
}
\value{
Returns nothing.
}
\author{Karline Soetaert <karline.soetaert@nioz.nl>}
\seealso{
\link{jet.col}, \link{ImageOcean},
\link{Oxsat}, \link{persp3D}, \link{scatter2D}
for other examples where \code{image2D} is used.
\link{image} and \link{contour} for the original R functions.
\code{plot.image} from the fields package.
}
\examples{
# save plotting parameters
pm <- par("mfrow")
## =======================================================================
## Difference between x or y a vector/matrix and rasterImage
## =======================================================================
par(mfrow = c(2, 2))
x <- y <- 1:3
z <- matrix (nrow = 3, ncol = 3, data = 1:9)
image2D(z, x, y, border = "black")
image2D(z, x, y, rasterImage = TRUE, border = "black")
image2D(z, x = matrix(nrow = 3, ncol = 3, data = rep(x, times = 3)),
y, border = "black")
image2D(z, x, y, border = "black", theta = 45)
## =======================================================================
## shading, light, adding contours, points and lines
## =======================================================================
par(mfrow = c(2, 2))
nr <- nrow(volcano)
nc <- ncol(volcano)
image2D(volcano, x = 1:nr, y = 1:nc, lighting = TRUE,
main = "volcano", clab = "height, m")
abline(v = seq(10, 80, by = 10))
abline(h = seq(10, 60, by = 10))
points(50, 30, pch = 3, cex = 5, lwd = 3, col = "white")
image2D(z = volcano, x = 1:nr, y = 1:nc, lwd = 2, shade = 0.2,
main = "volcano", clab = "height, m")
image2D(volcano, x = 1:nr, y = 1:nc, contour = TRUE, shade = 0.5, lphi = 0,
col = "lightblue", main = "volcano")
breaks <- seq(90, 200, by = 10)
image2D(volcano, x = 1:nr, y = 1:nc, col = jet.col(length(breaks)-1),
main = "volcano", clab = "height, m", breaks = breaks)
## =======================================================================
## Contour plots
## =======================================================================
par(mfrow = c(2, 2))
V <- volcano - 150
# default, no color key
contour2D(z = V, colkey = FALSE, lwd = 2)
# imposed levels
contour2D(z = V, lwd = 2, levels = seq(-40, 40, by = 20))
# negative levels dashed
contour2D(z = V, col = "black", lwd = 2,
levels = seq(0, 40, by = 20))
contour2D(z = V, col = "black", lwd = 2, lty = 2,
levels = seq(-40, -20, by = 20), add = TRUE)
# no labels, imposed number of levels, colorkey
contour2D(z = V, lwd = 2, nlevels = 20, drawlabels = FALSE,
colkey = list(at = seq(-40, 40, by = 20)))
## =======================================================================
## A large data set, input is an array
## =======================================================================
par(mfrow = c(1, 1))
image2D(z = Oxsat$val[, , 1], x = Oxsat$lon, y = Oxsat$lat,
main = "surface oxygen saturation data 2005", NAcol = "black",
clab = c("","","\%"))
# images at first 9 depths - use subset to select them
image2D(z = Oxsat$val, subset = 1:9,
x = Oxsat$lon, y = Oxsat$lat,
margin = c(1, 2), NAcol = "black",
xlab = "longitude", ylab = "latitude",
zlim = c(0, 115),
main = paste("depth ", Oxsat$depth[1:9], " m"),
mfrow = c(3, 3))
# images at latitude - depth section - increase resolution
z <- Oxsat$val[, Oxsat$lat > - 5 & Oxsat$lat < 5, ]
image2D(z = z, x = Oxsat$lon, y = Oxsat$depth,
margin = c(1, 3), NAcol = "black",
resfac = 3, ylim = c(5000, 0))
# show position of transects
image2D(z = Oxsat$val[ , ,1],
x = Oxsat$lon, y = Oxsat$lat,
NAcol = "black")
abline(h = Oxsat$lat[Oxsat$lat > - 5 & Oxsat$lat < 5])
## =======================================================================
## Image of a list of matrices
## =======================================================================
listvolcano <- list(volcano = volcano, logvolcano = log(volcano))
image2D(listvolcano, x = 1:nr, y = 1:nc, contour = TRUE,
main = c("volcano", "log(volcano)"),
clab = list("height, m", "log(m)"),
zlim = list(c(80, 200), c(4.4, 5.5)))
## =======================================================================
## Image of a list of arrays
## =======================================================================
\dontrun{
# crude conversion from oxsat to oxygen
listoxygen <- list(Oxsat$val, Oxsat$val/100 * 360)
image2D(z = listoxygen,
x = Oxsat$lon, y = Oxsat$lat,
margin = c(1, 2), NAcol = "black",
main = c("Oxygen saturation ", " Oxygen concentration"),
mtext = paste("depth ", Oxsat$depth, " m")
)
}
## =======================================================================
## 'x', 'y' and 'z' are matrices
## =======================================================================
par(mfrow = c(2, 1))
# tilted x- and y-coordinates of 'volcano'
volcx <- matrix(nrow = 87, ncol = 61, data = rep(1:87, times=61))
volcx <- volcx + matrix(nrow = 87, ncol = 61, byrow = TRUE,
data = rep(seq(0., 15, length.out=61), times=87))
volcy <- matrix(ncol = 87, nrow = 61, data = rep(1:61, times=87))
volcy <- t(volcy + matrix(ncol = 87, nrow = 61, byrow = TRUE,
data = rep(seq(0., 25, length.out=87), times=61)))
image2D(volcano, x = volcx, y = volcy)
# x and y can also be of dimension dim(z)+1:
\dontrun{
# tilted x- and y-coordinates of 'volcano'
volcx <- matrix(nrow = 88, ncol = 62, data = rep(1:88, times=62))
volcx <- volcx + matrix(nrow = 88, ncol = 62, byrow = TRUE,
data = rep(seq(0., 15, length.out=62), times=88))
volcy <- matrix(ncol = 88, nrow = 62, data = rep(1:62, times=88))
volcy <- t(volcy + matrix(ncol = 88, nrow = 62, byrow = TRUE,
data = rep(seq(0., 25, length.out=88), times=62)))
image2D(volcano, x = volcx, y = volcy)
}
# use of panel function
image2D(volcano, x = volcx, y = volcy, NAcol = "black",
panel.first = substitute(box(col = "lightgrey", lwd = 30)))
## =======================================================================
## Image with NAs and logs
## =======================================================================
par(mfrow = c(2, 2))
# normal volcano
image2D(volcano, clab = c("height", "m"))
# logarithmic z-axis
image2D(volcano, log = "z", clab = c("height", "m"),
main = "log='z'")
# Including NAs
VOLC <- volcano - 110
VOLC [VOLC <= 0] <- NA
image2D(VOLC, main = "including NAs and rescaled")
# both
image2D(VOLC, NAcol = "black", log = "z", zlim = c(1, 100),
main = "NAs and log = 'z'")
## =======================================================================
## Image with contour specification (alpha sets the transparency)
## =======================================================================
par(mfrow = c(1, 1))
image2D(volcano, shade = 0.2, rasterImage = TRUE,
contour = list(col = "white", labcex = 0.8, lwd = 3, alpha = 0.5))
# same:
\dontrun{
image2D(z = volcano, shade = 0.2, rasterImage = TRUE)
contour2D(z = volcano, col = "white", labcex = 0.8,
lwd = 3, alpha = 0.5, add = TRUE)
}
# reset plotting parameters
par(mfrow = pm)
}
\keyword{ hplot }
|