File: ggplotly.R

package info (click to toggle)
r-cran-plotly 4.10.4%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 30,636 kB
  • sloc: javascript: 195,272; sh: 24; makefile: 6
file content (1546 lines) | stat: -rw-r--r-- 59,412 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
#' Convert ggplot2 to plotly
#'
#' This function converts a [ggplot2::ggplot()] object to a 
#' plotly object. 
#' 
#' @details Conversion of relative sizes depends on the size of the current 
#' graphics device (if no device is open, width/height of a new (off-screen) 
#' device defaults to 640/480). In other words, `height` and
#' `width` must be specified at runtime to ensure sizing is correct.
#' For examples on how to specify the output container's `height`/`width` in a 
#' shiny app, see `plotly_example("shiny", "ggplotly_sizing")`.
#' 
#'
#' @param p a ggplot object.
#' @param width Width of the plot in pixels (optional, defaults to automatic sizing).
#' @param height Height of the plot in pixels (optional, defaults to automatic sizing).
#' @param tooltip a character vector specifying which aesthetic mappings to show
#' in the tooltip. The default, "all", means show all the aesthetic mappings
#' (including the unofficial "text" aesthetic). The order of variables here will
#' also control the order they appear. For example, use
#' `tooltip = c("y", "x", "colour")` if you want y first, x second, and
#' colour last.
#' @param dynamicTicks should plotly.js dynamically generate axis tick labels? 
#' Dynamic ticks are useful for updating ticks in response to zoom/pan
#' interactions; however, they can not always reproduce labels as they 
#' would appear in the static ggplot2 image.
#' @param layerData data from which layer should be returned?
#' @param originalData should the "original" or "scaled" data be returned?
#' @param source a character string of length 1. Match the value of this string 
#' with the source argument in [event_data()] to retrieve the 
#' event data corresponding to a specific plot (shiny apps can have multiple plots).
#' @param ... arguments passed onto methods.
#' @export
#' @author Carson Sievert
#' @references \url{https://plotly.com/ggplot2/}
#' @seealso [plot_ly()]
#' @examples \dontrun{
#' # simple example
#' ggpenguins <- qplot(bill_length_mm , body_mass_g, 
#' data = palmerpenguins::penguins, color = species)
#' ggplotly(ggpenguins)
#'
#' data(canada.cities, package = "maps")
#' viz <- ggplot(canada.cities, aes(long, lat)) +
#'   borders(regions = "canada") +
#'   coord_equal() +
#'   geom_point(aes(text = name, size = pop), colour = "red", alpha = 1/2)
#' ggplotly(viz, tooltip = c("text", "size"))
#' 
#' # linked scatterplot brushing
#' d <- highlight_key(mtcars)
#' qplot(data = d, x = mpg, y = wt) %>%
#'   subplot(qplot(data = d, x = mpg, y = vs)) %>% 
#'   layout(title = "Click and drag to select points") %>%
#'   highlight("plotly_selected")
#' 
#' 
#' # more brushing (i.e. highlighting) examples
#' demo("crosstalk-highlight-ggplotly", package = "plotly")
#' 
#' # client-side linked brushing in a scatterplot matrix
#' highlight_key(palmerpenguins::penguins) %>%
#'   GGally::ggpairs(aes(colour = Species), columns = 1:4) %>%
#'   ggplotly(tooltip = c("x", "y", "colour")) %>%
#'   highlight("plotly_selected")
#' }
#'
ggplotly <- function(p = ggplot2::last_plot(), width = NULL, height = NULL,
                     tooltip = "all", dynamicTicks = FALSE, 
                     layerData = 1, originalData = TRUE, source = "A", ...) {
  UseMethod("ggplotly", p)
}

#' @export
ggplotly.NULL <- function(...) {
  htmltools::browsable(htmltools::div(...))
}

#' @export
ggplotly.plotly <- function(p = ggplot2::last_plot(), width = NULL, height = NULL,
                            tooltip = "all", dynamicTicks = FALSE, 
                            layerData = 1, originalData = TRUE, source = "A", ...) {
  p
}

#' @export
ggplotly.ggmatrix <- function(p = ggplot2::last_plot(), width = NULL,
                              height = NULL, tooltip = "all", dynamicTicks = FALSE, 
                              layerData = 1, originalData = TRUE, source = "A", ...) {
  dots <- list(...)

  # provide a sensible crosstalk if none is already provided (makes ggnostic() work at least)
  if (!crosstalk_key() %in% names(p$data)) {
    p$data[[crosstalk_key()]] <- p$data[[".rownames"]] %||% seq_len(nrow(p$data))
    attr(p$data, "set") <- dots[["set"]] %||% new_id()
  }
  subplotList <- list()
  for (i in seq_len(p$ncol)) {
    columnList <- list()
    for (j in seq_len(p$nrow)) {
      thisPlot <- p[j, i]
      if (i == 1) {
        # should the first column contain axis labels?
        if (p$showYAxisPlotLabels %||% TRUE) thisPlot <- thisPlot + ylab(p$yAxisLabels[j])
      } else {
        # y-axes are never drawn on the interior, and diagonal plots are densities,
        # so it doesn't make sense to synch zoom actions on y
        thisPlot <- thisPlot + ylab(NULL) +
          theme(
            axis.ticks.y = element_blank(),
            axis.text.y = element_blank()
          )
      }
      columnList <- c(
        columnList, list(ggplotly(
          thisPlot, tooltip = tooltip, dynamicTicks = dynamicTicks, 
          layerData = layerData, originalData = originalData, source = source,
          width = width, height = height
        ))
      )
    }
    # conditioned on a column in a ggmatrix, the x-axis should be on the
    # same scale.
    s <- subplot(columnList, nrows = p$nrow, margin = 0.01, shareX = TRUE,
                 titleY = TRUE, titleX = TRUE)
    subplotList <- c(subplotList, list(s))
  }
  s <- subplot(subplotList, nrows = 1, margin = 0.01, 
               titleY = TRUE, titleX = TRUE) %>% 
    hide_legend() %>%
    layout(dragmode = "select")
  if (robust_nchar(p$title) > 0) {
    s <- layout(s, title = p$title)
  }
  for (i in seq_along(p$xAxisLabels)) {
    s$x$layout[[sub("^xaxis1$", "xaxis", paste0("xaxis", i))]]$title <- p$xAxisLabels[[i]]
  }
  if (length(p$yAxisLabels)) {
    s$x$layout$margin$l <- s$x$layout$margin$l + 50
  }
  
  config(s)
}

#' @export
ggplotly.ggplot <- function(p = ggplot2::last_plot(), width = NULL,
                            height = NULL, tooltip = "all", dynamicTicks = FALSE,  
                            layerData = 1, originalData = TRUE, source = "A", ...) {
  l <- gg2list(p, width = width, height = height, tooltip = tooltip, 
               dynamicTicks = dynamicTicks, layerData = layerData, 
               originalData = originalData, source = source, ...)
  config(as_widget(l))
}

#' Convert a ggplot to a list.
#' @param p ggplot2 plot.
#' @param width Width of the plot in pixels (optional, defaults to automatic sizing).
#' @param height Height of the plot in pixels (optional, defaults to automatic sizing).
#' @param tooltip a character vector specifying which aesthetic tooltips to show in the
#' tooltip. The default, "all", means show all the aesthetic tooltips
#' (including the unofficial "text" aesthetic).
#' @param dynamicTicks accepts the following values: `FALSE`, `TRUE`, `"x"`, or `"y"`.
#' Dynamic ticks are useful for updating ticks in response to zoom/pan/filter
#' interactions; however, there is no guarantee they reproduce axis tick text 
#' as they would appear in the static ggplot2 image.
#' @param layerData data from which layer should be returned?
#' @param originalData should the "original" or "scaled" data be returned?
#' @param source a character string of length 1. Match the value of this string 
#' with the source argument in [event_data()] to retrieve the 
#' event data corresponding to a specific plot (shiny apps can have multiple plots).
#' @param ... currently not used
#' @return a 'built' plotly object (list with names "data" and "layout").
#' @export
gg2list <- function(p, width = NULL, height = NULL, 
                    tooltip = "all", dynamicTicks = FALSE, 
                    layerData = 1, originalData = TRUE, source = "A", ...) {
  
  # To convert relative sizes correctly, we use grid::convertHeight(),
  # which requires a known output (device) size.
  dev_fun <- if (capabilities("aqua") || capabilities("png")) {
    grDevices::png
  } else if (capabilities("jpeg")) {
    grDevices::jpeg 
  } else if (is_installed("Cairo")) {
    function(filename, ...) Cairo::Cairo(file = filename, ...)
  } else {
    stop(
      "No Cairo or bitmap device is available. Such a graphics device is required to convert sizes correctly in ggplotly().\n\n", 
      " You have two options:\n",
      "  (1) install.packages('Cairo')\n",
      "  (2) compile R to use a bitmap device (png or jpeg)",
      call. = FALSE
    )
  }
  # if a device (or RStudio) is already open, use the device size as default size
  if (!is.null(grDevices::dev.list()) || is_rstudio()) {
    width <- width %||% default(grDevices::dev.size("px")[1])
    height <- height %||% default(grDevices::dev.size("px")[2])
  }
  # open the device and make sure it closes on exit
  dev_fun(filename = tempfile(), width = width %||% 640, height = height %||% 480)
  on.exit(grDevices::dev.off(), add = TRUE)
  
  # check the value of dynamicTicks
  dynamicValues <- c(FALSE, TRUE, "x", "y")
  if (length(setdiff(dynamicTicks, dynamicValues))) {
   stop(
     sprintf(
       "`dynamicValues` accepts the following values: '%s'", 
       paste(dynamicValues, collapse = "', '")
     ), call. = FALSE
    )
  }
  
  # ------------------------------------------------------------------------
  # Our internal version of ggplot2::ggplot_build(). Modified from
  # https://github.com/hadley/ggplot2/blob/0cd0ba/R/plot-build.r#L18-L92
  # ------------------------------------------------------------------------
  ggplotly_build <- function(p) {
    plot <- ggfun("plot_clone")(p)
    
    if (length(plot$layers) == 0) {
      plot <- plot + geom_blank()
    }
    layers <- plot$layers
    layer_data <- lapply(layers, function(y) y$layer_data(plot$data))
    
    # save crosstalk sets before this attribute gets squashed
    sets <- lapply(layer_data, function(y) attr(y, "set"))
    
    scales <- plot$scales
    
    # Apply function to layer and matching data
    by_layer <- function(f) {
      out <- vector("list", length(data))
      for (i in seq_along(data)) {
        out[[i]] <- f(l = layers[[i]], d = data[[i]])
      }
      out
    }
    
    # ggplot2 3.1.0.9000 introduced a Layer method named setup_layer() 
    # currently, LayerSf is the only core-ggplot2 Layer that makes use
    # of it https://github.com/tidyverse/ggplot2/pull/2875#issuecomment-438708426
    data <- layer_data
    if (get_package_version("ggplot2") > "3.1.0") {
      data <- by_layer(function(l, d) if (is.function(l$setup_layer)) l$setup_layer(d, plot) else d)
    }
    
    # Initialise panels, add extra data for margins & missing facetting
    # variables, and add on a PANEL variable to data
    layout <- ggfun("create_layout")(plot$facet, plot$coordinates)
    data <- layout$setup(data, plot$data, plot$plot_env)
    
    # save the domain of the group for display in tooltips
    groupDomains <- Map(function(x, y) {
      aes_g <- y$mapping[["group"]] %||% plot$mapping[["group"]]
      tryNULL(rlang::eval_tidy(aes_g, x))
    }, data, layers)
    
    # for simple (StatIdentity) geoms, add crosstalk key to aes mapping
    # (effectively adding it as a group)
    # later on, for more complicated geoms (w/ non-trivial summary statistics),
    # we construct a nested key mapping (within group)
    layers <- Map(function(x, y) {
      if (crosstalk_key() %in% names(y) && !"key" %in% names(x[["mapping"]]) && 
          inherits(x[["stat"]], "StatIdentity")) {
        # ggplot2 v3.3.4 started using the computed_mapping (instead of mapping)
        # field to inform the compute_aesthetics() method, so in order to add
        # the crosstalk key, we need to add to that field (when present)
        # https://github.com/tidyverse/ggplot2/pull/4475
        nm <- if ("computed_mapping" %in% names(x)) "computed_mapping" else "mapping"
        x[[nm]] <- c(x[[nm]], key = as.name(crosstalk_key()))
      }
      x
    }, layers, layer_data)
    
    # Compute aesthetics to produce data with generalised variable names
    data <- by_layer(function(l, d) l$compute_aesthetics(d, plot))
    
    # add frame to group if it exists
    data <- lapply(data, function(d) { 
      if (!"frame" %in% names(d)) return(d)
      d$group <- with(d, paste(group, frame, sep = "-"))
      d
    })
    
    # The computed aesthetic codes the groups as integers
    # Here we build a map each of the integer values to the group label
    group_maps <- Map(function(x, y) {
      tryCatch({
        x_group <- x[["group"]]
        names(x_group) <- y
        x_group <- x_group[!duplicated(x_group)]
        x_group
      }, error = function(e) NULL
      )
    }, data, groupDomains)
    
    # Before mapping x/y position, save the domain (for discrete scales)
    # to display in tooltip.
    data <- lapply(data, function(d) {
      d[["x_plotlyDomain"]] <- d[["x"]]
      d[["y_plotlyDomain"]] <- d[["y"]]
      d
    })
    # And since we're essentially adding an "unknown" (to ggplot2) 
    # aesthetic, add it to the dropped_aes field to avoid fals positive
    # warnings (https://github.com/tidyverse/ggplot2/pull/4866)
    layers <- lapply(layers, function(l) {
      l$stat$dropped_aes <- c(l$stat$dropped_aes, "x_plotlyDomain")
      l$stat$dropped_aes <- c(l$stat$dropped_aes, "y_plotlyDomain")
      l
    })
    
    # Transform all scales
    data <- lapply(data, scales_transform_df, scales = scales)
    
    # Map and train positions so that statistics have access to ranges
    # and all positions are numeric
    scale_x <- function() scales$get_scales("x")
    scale_y <- function() scales$get_scales("y")
    
    layout$train_position(data, scale_x(), scale_y())
    
    data <- layout$map_position(data)
    
    # build a mapping between group and key
    # if there are multiple keys within a group, the key is a list-column
    reComputeGroup <- function(x, layer = NULL) {
      # 1-to-1 link between data & visual marks -- group == key
      if (inherits(layer$geom, "GeomDotplot")) {
        x <- split(x, x[["PANEL"]])
        x <- lapply(x, function(d) { 
          d[["group"]] <- do.call("order", d[c("x", "group")]) 
          d 
        })
        x <- dplyr::bind_rows(x)
      }
      if (inherits(layer$geom, "GeomSf")) {
        x <- split(x, x[["PANEL"]])
        x <- lapply(x, function(d) { 
          d[["group"]] <- seq_len(nrow(d))
          d 
        })
        # I think this is safe?
        x <- suppressWarnings(dplyr::bind_rows(x))
      }
      x
    }
    
    nestedKeys <- Map(function(x, y, z) { 
      key <- y[[crosstalk_key()]]
      if (is.null(key) || inherits(z[["stat"]], "StatIdentity")) return(NULL)
      x <- reComputeGroup(x, z)
      tib <- tibble::as_tibble(x[c("PANEL", "group")])
      tib[["key"]] <- key
      nested <- tidyr::nest(tib, key = key)
      # reduce the dimensions of list column elements from 2 to 1
      nested$key <- lapply(nested$key, function(x) x[[1]])
      nested
    }, data, layer_data, layers)
    
    # for some geoms (e.g. boxplots) plotly.js needs the "pre-statistics" data
    # we also now provide the option to return one of these two
    prestats_data <- data
    data <- by_layer(function(l, d) l$compute_statistic(d, layout))
    data <- by_layer(function(l, d) l$map_statistic(d, plot))
    
    # Make sure missing (but required) aesthetics are added
    scales_add_missing(plot, c("x", "y"))
    
    # Reparameterise geoms from (e.g.) y and width to ymin and ymax
    data <- by_layer(function(l, d) l$compute_geom_1(d))
    
    # compute_geom_1 can reorder the rows from `data`, making groupDomains
    # invalid. We rebuild groupDomains based on the current `data` and the
    # group map we built before.
    groupDomains <- Map(function(x, y) {
      tryCatch({
        names(y)[match(x$group, y)]
      }, error = function(e) NULL
      )
    }, data, group_maps)
    
    # there are some geoms (e.g. geom_dotplot()) where attaching the key 
    # before applying the statistic can cause problems, but there is still a 
    # 1-to-1 corresponding between graphical marks and 
    
    # Apply position adjustments
    data <- by_layer(function(l, d) l$compute_position(d, layout))
    
    # Reset position scales, then re-train and map.  This ensures that facets
    # have control over the range of a plot: is it generated from what's
    # displayed, or does it include the range of underlying data
    layout$reset_scales()
    layout$train_position(data, scale_x(), scale_y())
    layout$setup_panel_params()
    data <- layout$map_position(data)
    
    # Train and map non-position scales
    npscales <- scales$non_position_scales()
    if (npscales$n() > 0) {
      lapply(data, scales_train_df, scales = npscales)
      # this for loop is unique to plotly -- it saves the "domain"
      # of each non-positional scale for display in tooltips
      for (sc in npscales$scales) {
        data <- lapply(data, function(d) {
          # scale may not be relevant for every layer data
          if (any(names(d) %in% sc$aesthetics)) {
            d[paste0(sc$aesthetics, "_plotlyDomain")] <- d[sc$aesthetics]
          }
          d
        })
      }
      data <- lapply(data, scales_map_df, scales = npscales)
    }
    
    # Fill in defaults etc.
    data <- by_layer(function(l, d) l$compute_geom_2(d))
    
    # Let layer stat have a final say before rendering
    data <- by_layer(function(l, d) l$finish_statistics(d))
    
    # Let Layout modify data before rendering
    data <- layout$finish_data(data)
    
    # if necessary, attach key
    data <- Map(function(x, y, z) { 
      if (!length(y)) return(x)
      x <- reComputeGroup(x, z)
      # dplyr issue??? https://github.com/tidyverse/dplyr/issues/2701
      attr(y$group, "n") <- NULL
      # https://github.com/plotly/plotly.R/issues/2013
      if (!identical(class(x$group), class(y$group))) {
        x$group <- as.character(x$group)
        y$group <- as.character(y$group)
      }
      suppressMessages(dplyr::left_join(x, y))
    }, data, nestedKeys, layers)
    
    structure(
      list(
        data = data, layout = layout, plot = plot, 
        env = environment()
      ), 
      class = "ggplot_built"
    )
  }
  
  # Allow thematic to add new defaults to the plot object based on it's theme
  built <- if (isNamespaceLoaded("thematic")) {
    tns <- asNamespace("thematic")
    tns$ggthematic_build(p, ggplotly_build, tns$thematic_get_theme(resolve = TRUE))
  } else {
    ggplotly_build(p)
  }
  
  # Assign all the objects available to ggplotly_build() to this functions environment
  built_env <- built$env
  envir <- environment()
  for (var in ls(built_env)) {
    assign(var, built_env[[var]], envir = envir)
  }
  
  # initiate plotly.js layout with some plot-wide theming stuff
  theme <- ggfun("plot_theme")(plot)
  elements <- names(which(sapply(theme, inherits, "element")))
  for (i in elements) {
    theme[[i]] <- ggplot2::calc_element(i, theme)
  }
  # Translate plot wide theme elements to plotly.js layout
  pm <- unitConvert(theme$plot.margin, "pixels")
  gglayout <- list(
    margin = list(t = pm[[1]], r = pm[[2]], b = pm[[3]], l = pm[[4]]),
    plot_bgcolor = toRGB(theme$panel.background$fill),
    paper_bgcolor = toRGB(theme$plot.background$fill),
    font = text2font(theme$text)
  )
  # main plot title
  if (robust_nchar(plot$labels$title) > 0) {
    gglayout$title <- list(
      text = faced(plot$labels$title, theme$plot.title$face),
      font = text2font(theme$plot.title),
      # don't translate vjust to y since they since have very different meaning...
      # y is allowed to span the paper coordinate whereas vjust it local to it's grob
      x = theme$plot.title$hjust,
      xref = "paper"
    )
    gglayout$margin$t <- gglayout$margin$t + gglayout$title$font$size
  }
  # ensure there's enough space for the modebar (this is based on a height of 1em)
  # https://github.com/plotly/plotly.js/blob/dd1547/src/components/modebar/index.js#L171
  gglayout$margin$t <- gglayout$margin$t + 16
  
  # important stuff like layout$panel_params is already flipped, but
  # plot$scales/plot$labels/data aren't. We flip x/y trace data at the very end
  # and scales in the axis loop below.
  if (inherits(plot$coordinates, "CoordFlip")) {
    plot$labels[c("x", "y")] <- plot$labels[c("y", "x")]
  }
  
  # important panel summary stats
  nPanels <- nrow(layout$layout)
  nRows <- max(layout$layout$ROW)
  nCols <- max(layout$layout$COL)
  
  # panel -> plotly.js axis/anchor info
  # (assume a grid layout by default)
  layout$layout <- dplyr::mutate(
    layout$layout,
    xaxis = COL,
    yaxis = ROW,
    xanchor = nRows,
    yanchor = 1L
  )
  if (inherits(plot$facet, "FacetWrap")) {
    if (plot$facet$params$free$x && plot$facet$params$free$y) {
      layout$layout <- dplyr::mutate(
        layout$layout,
        xaxis = PANEL,
        yaxis = PANEL,
        xanchor = PANEL,
        yanchor = PANEL
      )
    } else if (plot$facet$params$free$x) {
      layout$layout <- dplyr::mutate(
        layout$layout,
        xaxis = PANEL,
        xanchor = ROW
      )
    } else if (plot$facet$params$free$y) {
      layout$layout <- dplyr::mutate(
        layout$layout,
        yaxis = PANEL,
        yanchor = COL
      )
    }
    # anchor X axis to the lowest plot in its column
    layout$layout <- dplyr::group_by(layout$layout, !!rlang::sym("xaxis"))
    layout$layout <-  dplyr::mutate(layout$layout, xanchor = max(as.integer(yaxis)))
  }
  layout$layout <- as.data.frame(layout$layout)

  # format the axis/anchor to a format plotly.js respects
  layout$layout$xaxis <- paste0("xaxis", sub("^1$", "", layout$layout$xaxis))
  layout$layout$yaxis <- paste0("yaxis", sub("^1$", "", layout$layout$yaxis))
  layout$layout$xanchor <- paste0("y", sub("^1$", "", layout$layout$xanchor))
  layout$layout$yanchor <- paste0("x", sub("^1$", "", layout$layout$yanchor))
  # for some layers2traces computations, we need the range of each panel
  layout$layout$x_min <- sapply(layout$panel_params, function(z) { min(z[["x"]]$dimension %()% z$x.range %||% z$x_range) })
  layout$layout$x_max <- sapply(layout$panel_params, function(z) { max(z[["x"]]$dimension %()% z$x.range %||% z$x_range) })
  layout$layout$y_min <- sapply(layout$panel_params, function(z) { min(z[["y"]]$dimension %()% z$y.range %||% z$y_range) })
  layout$layout$y_max <- sapply(layout$panel_params, function(z) { max(z[["y"]]$dimension %()% z$y.range %||% z$y_range) })
  
  # layers -> plotly.js traces
  plot$tooltip <- tooltip
  data <- Map(function(x, y) {
    tryCatch({ x$group_plotlyDomain <- y; x }, error = function(e) x)
  }, data, groupDomains)
  
  # reattach crosstalk key-set attribute
  data <- Map(function(x, y) structure(x, set = y), data, sets)
  traces <- layers2traces(data, prestats_data, layout, plot)
  
  gglayout <- layers2layout(gglayout, layers, layout$layout)
  
  # default to just the text in hover info, mainly because of this
  # https://github.com/plotly/plotly.js/issues/320
  traces <- lapply(traces, function(tr) {
    tr$hoverinfo <- tr$hoverinfo %||%"text"
    tr
  })
  # show only one legend entry per legendgroup
  grps <- sapply(traces, "[[", "legendgroup")
  traces <- Map(function(x, y) {
    if (!is.null(x[["frame"]])) return(x)
    x$showlegend <- isTRUE(x$showlegend) && y
    x
  }, traces, !duplicated(grps))
  
  # ------------------------------------------------------------------------
  # axis/facet/margin conversion
  # ------------------------------------------------------------------------
  
  # panel margins must be computed before panel/axis loops
  # (in order to use get_domains())
  panelMarginX <- unitConvert(
    theme[["panel.spacing.x"]] %||% theme[["panel.spacing"]],
    "npc", "width"
  )
  panelMarginY <- unitConvert(
    theme[["panel.spacing.y"]] %||% theme[["panel.spacing"]],
    "npc", "height"
  )
  # space for _interior_ facet strips
  if (inherits(plot$facet, "FacetWrap")) {
    stripSize <- unitConvert(
      theme[["strip.text.x"]] %||% theme[["strip.text"]],
      "npc", "height"
    )
    panelMarginY <- panelMarginY + stripSize
    # space for ticks/text in free scales
    if (plot$facet$params$free$x) {
      axisTicksX <- unitConvert(
        theme[["axis.ticks.x"]] %||% theme[["axis.ticks"]],
        "npc", "height"
      )
      # allocate enough space for the _longest_ text label
      axisTextX <- theme[["axis.text.x"]] %||% theme[["axis.text"]]
      labz <- unlist(lapply(layout$panel_params, function(pp) { pp[["x"]]$get_labels %()% pp$x.labels }))
      lab <- longest_element(labz)
      panelMarginY <- panelMarginY + axisTicksX +
        bbox(lab, axisTextX$angle, unitConvert(axisTextX, "npc", "height"))[["height"]]
    }
    if (plot$facet$params$free$y) {
      axisTicksY <- unitConvert(
        theme[["axis.ticks.y"]] %||% theme[["axis.ticks"]],
        "npc", "width"
      )
      # allocate enough space for the _longest_ text label
      axisTextY <- theme[["axis.text.y"]] %||% theme[["axis.text"]]
      labz <- unlist(lapply(layout$panel_params, function(pp) { pp[["y"]]$get_labels %()% pp$y.labels }))
      lab <- longest_element(labz)
      panelMarginX <- panelMarginX + axisTicksY +
        bbox(lab, axisTextY$angle, unitConvert(axisTextY, "npc", "width"))[["width"]]
    }
  }
  margins <- c(
    rep(panelMarginX, 2),
    rep(panelMarginY, 2)
  )
  doms <- get_domains(nPanels, nRows, margins)
  
  for (i in seq_len(nPanels)) {
    lay <- layout$layout[i, ]
    for (xy in c("x", "y")) {
      # find axis specific theme elements that inherit from their parent
      theme_el <- function(el) {
        theme[[paste0(el, ".", xy)]] %||% theme[[el]]
      }
      axisTicks <- theme_el("axis.ticks")
      axisText <- theme_el("axis.text")
      axisTitle <- theme_el("axis.title")
      axisLine <- theme_el("axis.line")
      panelGrid <- theme_el("panel.grid.major") %||% theme_el("panel.grid") 
      stripText <- theme_el("strip.text")
      
      axisName <- lay[, paste0(xy, "axis")]
      anchor <- lay[, paste0(xy, "anchor")]
      rng <- layout$panel_params[[i]]
      
      # panel_params is quite different for "CoordSf"
      if ("CoordSf" %in% class(p$coordinates)) {
        # see CoordSf$render_axis_v
        direction <- if (xy == "x") "E" else "N"
        idx <- rng$graticule$type == direction & 
          !is.na(rng$graticule$degree_label) &
          # Respect the logical 'plot12' column which sf constructs for 
          # determining which tick labels should be drawn
          # https://github.com/r-spatial/sf/blob/b49d37/R/graticule.R#L199
          # https://github.com/r-spatial/sf/blob/52a8351/R/plot.R#L580
          (rng$graticule$plot12 %||% TRUE)
        tickData <- rng$graticule[idx, ]
        # TODO: how to convert a language object to unicode character string?
        rng[[paste0(xy, ".labels")]] <- sub(
          "\\*\\s+degree[ ]?[\\*]?", "&#176;", 
          gsub("\"", "", tickData[["degree_label"]])
        )
        rng[[paste0(xy, ".major")]] <- tickData[[paste0(xy, "_start")]]
        
        # If it doesn't already exist (for this panel), 
        # generate graticule (as done in, CoordSf$render_bg)
        isGrill <- vapply(traces, function(tr) {
          identical(tr$xaxis, lay$xaxis) && 
            identical(tr$yaxis, lay$yaxis) &&
            isTRUE(tr$`_isGraticule`)
        }, logical(1))
        
        if (sum(isGrill) == 0) {
          # TODO: reduce the number of points (via coord_munch?)
          d <- fortify_sf(rng$graticule)
          d$x <- scales::rescale(d$x, rng$x_range, from = c(0, 1))
          d$y <- scales::rescale(d$y, rng$y_range, from = c(0, 1))
          params <- list(
            colour = panelGrid$colour, 
            linetype = panelGrid$linetype
          )
          nm <- linewidth_or_size(panelGrid)
          params[[nm]] <- panelGrid[[nm]]
          grill <- geom2trace.GeomPath(d, params)
          grill$hoverinfo <- "none"
          grill$showlegend <- FALSE
          grill$`_isGraticule` <- TRUE
          grill$xaxis <- sub("axis", "", lay$xaxis)
          grill$yaxis <- sub("axis", "", lay$yaxis)
          
          traces <- c(list(grill), traces)
        }
        
        # if labels are empty, don't show axis ticks
        tickExists <- with(rng$graticule, sapply(degree_label, is.language))
        if (sum(tickExists) == 0) {
          theme$axis.ticks.length <- 0
        }
      }
      
      # stuff like layout$panel_params is already flipped, but scales aren't
      sc <- if (inherits(plot$coordinates, "CoordFlip")) {
        scales$get_scales(setdiff(c("x", "y"), xy))
      } else {
        scales$get_scales(xy)
      }
      # type of unit conversion
      type <- if (xy == "x") "height" else "width"
      # get axis title
      axisTitleText <- sc$name %||% plot$labels[[xy]] %||% ""
      if (is_blank(axisTitle)) axisTitleText <- ""
      
      # is this axis dynamic?
      isDynamic <- isTRUE(dynamicTicks) || identical(dynamicTicks, xy)
      if (isDynamic && !p$coordinates$is_linear()) {
        warning(
          "`dynamicTicks` is only supported for linear (i.e., cartesian) coordinates", 
          call. = FALSE
        )
      }
      
      # determine axis types
      isDate <- inherits(sc, c("ScaleContinuousDatetime", "ScaleContinuousDate"))
      isDateType <- isDynamic && isDate
      isDiscrete <- inherits(sc, "ScaleDiscretePosition")
      isDiscreteType <- isDynamic && isDiscrete
      
      # In 3.2.x .major disappeared in favor of break_positions()
      # (tidyverse/ggplot2#3436), but with 3.4.x break_positions() no longer
      # yields the actual final positions on a 0-1 scale, but .major does
      # (tidyverse/ggplot2#5029)
      ticktext <- rng[[paste0(xy, ".labels")]] %||% rng[[xy]]$get_labels()
      tickvals <- rng[[paste0(xy, ".major")]] %||% rng[[xy]]$break_positions()
      
      # https://github.com/tidyverse/ggplot2/pull/3566#issuecomment-565085809
      hasTickText <- !(is.na(ticktext) | is.na(tickvals))
      ticktext <- ticktext[hasTickText]
      tickvals <- tickvals[hasTickText]
      
      axisObj <- list(
        # TODO: log type?
        type = if (isDateType) "date" else if (isDiscreteType) "category" else "linear",
        autorange = isDynamic,
        range = rng[[xy]]$dimension %()% rng[[paste0(xy, ".range")]] %||% rng[[paste0(xy, "_range")]],
        tickmode = if (isDynamic) "auto" else "array",
        ticktext = ticktext,
        tickvals = tickvals,
        categoryorder = "array",
        categoryarray = ticktext,
        nticks = nrow(rng),
        ticks = if (is_blank(axisTicks)) "" else "outside",
        tickcolor = toRGB(axisTicks$colour),
        ticklen = unitConvert(theme$axis.ticks.length, "pixels", type),
        tickwidth = unitConvert(axisTicks, "pixels", type),
        showticklabels = !is_blank(axisText),
        tickfont = text2font(axisText, type),
        tickangle = - (axisText$angle %||% 0),
        showline = !is_blank(axisLine),
        linecolor = toRGB(axisLine$colour),
        linewidth = unitConvert(axisLine, "pixels", type),
        # TODO: always `showgrid=FALSE` and implement our own using traces
        showgrid = !is_blank(panelGrid) && !"CoordSf" %in% class(p$coordinates),
        domain = sort(as.numeric(doms[i, paste0(xy, c("start", "end"))])),
        gridcolor = toRGB(panelGrid$colour),
        gridwidth = unitConvert(panelGrid, "pixels", type),
        zeroline = FALSE,
        anchor = anchor,
        # layout.axisid.title don't yet support alignment :(
        title = list(
          text = faced(axisTitleText, axisTitle$face),
          font = text2font(axisTitle)
        )
      )
      
      # set scaleanchor/scaleratio if these are fixed coordinates
      # the logic here is similar to what p$coordinates$aspect() does,
      # but the ratio is scaled to the data range by plotly.js 
      fixed_coords <- c("CoordSf", "CoordFixed", "CoordMap", "CoordQuickmap")
      if (inherits(p$coordinates, fixed_coords)) {
        axisObj$scaleanchor <- anchor
        ratio <- p$coordinates$ratio %||% 1
        axisObj$scaleratio <- if (xy == "y") ratio else 1 / ratio
        
        if (inherits(p$coordinates, "CoordSf")) {
          if (isTRUE(sf::st_is_longlat(rng$crs))) {
            ratio <- cos(mean(rng$y_range) * pi/180)
          }
          # note how ratio is flipped in CoordSf$aspect() vs CoordFixed$aspect()
          axisObj$scaleratio <- if (xy == "y") 1 / ratio else ratio
        }
      }
      
      # TODO: seems like we _could_ support this with scaleanchors, 
      # but inverse transform by the panel ranges?
      # also, note how aspect.ratio overwrites fixed coordinates:
      # ggplot(mtcars, aes(wt, mpg)) + geom_point() + coord_fixed(0.5)
      # ggplot(mtcars, aes(wt, mpg)) + geom_point() + coord_fixed(0.5) + theme(aspect.ratio = 1)
      if (!is.null(theme$aspect.ratio)) {
        warning(
          "Aspect ratios aren't yet implemented, but you can manually set", 
          " a suitable height/width", call. = FALSE
        )
      }
      
      # tickvals are currently on 0-1 scale, but we want them on data scale
      axisObj$tickvals <- scales::rescale(
        axisObj$tickvals, to = axisObj$range, from = c(0, 1)
      )
      
      # inverse transform date data based on tickvals/ticktext
      invert_date <- function(x, scale) {
        if (inherits(scale, "ScaleContinuousDatetime")) {
          as.POSIXct(x, origin = "1970-01-01", tz = scale$timezone)
        } else {
          as.Date(x, origin = "1970-01-01", tz = scale$timezone)
        }
      }
      
      if (isDateType) {
        axisObj$range <- invert_date(axisObj$range, sc)
        traces <- lapply(traces, function(tr) {
          tr[[xy]] <- invert_date(tr[[xy]], sc)
          # TODO: are there other similar cases we need to handle?
          if (identical("bar", tr$type)) {
            tr[["width"]] <- invert_date(tr[["width"]], sc)
          }
          tr
        })
      }
      
      # inverse transform categorical data based on tickvals/ticktext
      if (isDiscreteType) {
        traces <- lapply(traces, function(tr) { 
          # map x/y trace data back to the 'closest' ticktext label
          # http://r.789695.n4.nabble.com/check-for-nearest-value-in-a-vector-td4369339.html
          tr[[xy]]<- vapply(tr[[xy]], function(val) {
            with(axisObj, ticktext[[which.min(abs(tickvals - val))]])
          }, character(1))
          tr
        })
        if ("dodge" %in% sapply(layers, ggtype, "position")) gglayout$barmode <- "dodge"
      }
      
      # attach axis object to the layout
      gglayout[[axisName]] <- axisObj
      
      # do some stuff that should be done once for the entire plot
      is_x <- xy == "x"
      if (i == 1) {
        # Split ticktext elements by "\n"  to account for linebreaks
        axisTickText <- strsplit(as.character(axisObj$ticktext), split = "\n", fixed = TRUE)
        axisTickText <- longest_element(unlist(axisTickText))
        side <- if (is_x) "b" else "l"
        # account for axis ticks, ticks text, and titles in plot margins
        # (apparently ggplot2 doesn't support axis.title/axis.text margins)
        gglayout$margin[[side]] <- gglayout$margin[[side]] + axisObj$ticklen +
          bbox(axisTickText, axisObj$tickangle, axisObj$tickfont$size)[[type]] +
          bbox(axisTitleText, axisTitle$angle, unitConvert(axisTitle, "pixels", type))[[type]]
        
        if (robust_nchar(axisTitleText) > 0) {
          axisTextSize <- unitConvert(axisText, "npc", type)
          axisTitleSize <- unitConvert(axisTitle, "npc", type)
        }
        
        # add space for exterior facet strips in `layout.margin`
        
        if (has_facet(plot)) {
          stripSize <- unitConvert(stripText, "pixels", type)
          if (is_x) {
            gglayout$margin$t <- gglayout$margin$t + stripSize
          }
          if (is_x && inherits(plot$facet, "FacetGrid")) {
            gglayout$margin$r <- gglayout$margin$r + stripSize
          }
          # facets have multiple axis objects, but only one title for the plot,
          # so we empty the titles and try to draw the title as an annotation
          if (robust_nchar(axisTitleText) > 0) {
            axisAnn <- make_label(
              faced(axisTitleText, axisTitle$face), 
              el = axisTitle,
              x = if (is_x) 0.5 else 0,
              y = if (is_x) 0 else 0.5,
              xanchor = if (is_x) "center" else "right", 
              yanchor = if (is_x) "top" else "center", 
              annotationType = "axis"
            )
            
            textMargin <- sum(axisText$margin[if (is_x) c(1, 3) else c(2, 4)])
            class(textMargin) <- setdiff(class(textMargin), "margin")
            titleMargin <- axisTitle$margin[if (is_x) 1 else 2]
            class(titleMargin) <- setdiff(class(titleMargin), "margin")
            offset <- bbox(axisTickText, axisText$angle, axisTextSize)[[type]] +
                 unitConvert(theme$axis.ticks.length, "npc", type) +
                 unitConvert(textMargin, "npc", type) +
                 unitConvert(titleMargin, "npc", type)
            
            offset <- unitConvert(grid::unit(offset, "npc"), "pixels", type)
            
            shift <- if (is_x) "yshift" else "xshift"
            axisAnn[[1]][[shift]] <- -1 * offset
            gglayout$annotations <- c(gglayout$annotations, axisAnn)
          }
        }
      }
      if (has_facet(plot)) gglayout[[axisName]]$title <- ""
    } # end of axis loop
    
    # theme(panel.border = ) -> plotly rect shape
    xdom <- gglayout[[lay[, "xaxis"]]]$domain
    ydom <- gglayout[[lay[, "yaxis"]]]$domain
    border <- make_panel_border(xdom, ydom, theme)
    gglayout$shapes <- c(gglayout$shapes, border)
    
    # facet strips -> plotly annotations
    if (has_facet(plot)) {
      col_vars <- ifelse(inherits(plot$facet, "FacetWrap"), "facets", "cols")
      col_txt <- paste(
        plot$facet$params$labeller(
          lay[names(plot$facet$params[[col_vars]])]
        ), collapse = br()
      )
      if (is_blank(theme[["strip.text.x"]])) col_txt <- ""
      if (inherits(plot$facet, "FacetGrid") && lay$ROW != 1) col_txt <- ""
      if (robust_nchar(col_txt) > 0) {
        col_lab <- make_label(
          col_txt, x = mean(xdom), y = max(ydom),
          el = theme[["strip.text.x"]] %||% theme[["strip.text"]],
          xanchor = "center", yanchor = "bottom"
        )
        gglayout$annotations <- c(gglayout$annotations, col_lab)
        strip <- make_strip_rect(xdom, ydom, theme, "top")
        gglayout$shapes <- c(gglayout$shapes, strip)
      }
      row_txt <- paste(
        plot$facet$params$labeller(
          lay[names(plot$facet$params$rows)]
        ), collapse = br()
      )
      if (is_blank(theme[["strip.text.y"]])) row_txt <- ""
      if (inherits(plot$facet, "FacetGrid") && lay$COL != nCols) row_txt <- ""
      if (robust_nchar(row_txt) > 0) {
        row_lab <- make_label(
          row_txt, x = max(xdom), y = mean(ydom),
          el = theme[["strip.text.y"]] %||% theme[["strip.text"]],
          xanchor = "left", yanchor = "middle"
        )
        gglayout$annotations <- c(gglayout$annotations, row_lab)
        strip <- make_strip_rect(xdom, ydom, theme, "right")
        gglayout$shapes <- c(gglayout$shapes, strip)
      }
    }
  } # end of panel loop
  
  
  # ------------------------------------------------------------------------
  # guide conversion
  #   Strategy: Obtain and translate the output of ggplot2:::guides_train().
  #   To do so, we borrow some of the body of ggplot2:::guides_build().
  # ------------------------------------------------------------------------
  # will there be a legend?
  gglayout$showlegend <- sum(unlist(lapply(traces, "[[", "showlegend"))) >= 1
  
  # legend styling
  gglayout$legend <- list(
    bgcolor = toRGB(theme$legend.background$fill),
    bordercolor = toRGB(theme$legend.background$colour),
    borderwidth = unitConvert(
      theme$legend.background[[linewidth_or_size(theme$legend.background)]], 
      "pixels", "width"
    ),
    font = text2font(theme$legend.text)
  )
  
  # if theme(legend.position = "none") is used, don't show a legend _or_ guide
  if (npscales$n() == 0 || identical(theme$legend.position, "none")) {
    gglayout$showlegend <- FALSE
  } else {
    # by default, guide boxes are vertically aligned
    theme$legend.box <- theme$legend.box %||% "vertical"
    
    # size of key (also used for bar in colorbar guide)
    theme$legend.key.width <- theme$legend.key.width %||% theme$legend.key.size
    theme$legend.key.height <- theme$legend.key.height %||% theme$legend.key.size
    
    # legend direction must be vertical
    theme$legend.direction <- theme$legend.direction %||% "vertical"
    if (!identical(theme$legend.direction, "vertical")) {
      warning(
        "plotly.js does not (yet) support horizontal legend items \n",
        "You can track progress here: \n",
        "https://github.com/plotly/plotly.js/issues/53 \n",
        call. = FALSE
      )
      theme$legend.direction <- "vertical"
    }
    
    # justification of legend boxes
    theme$legend.box.just <- theme$legend.box.just %||% c("center", "center")
    # scales -> data for guides
    gdefs <- if (inherits(plot$guides, "ggproto")) {
      get_gdefs_ggproto(npscales$scales, theme, plot, layers, layer_data)
    } else {
      get_gdefs(scales, theme, plot, layers)
    }

    # colourbar -> plotly.js colorbar
    colorbar <- compact(lapply(gdefs, gdef2trace, theme, gglayout))
    nguides <- length(colorbar) + gglayout$showlegend
    # If we have 2 or more guides, set x/y positions accordingly
    if (nguides >= 2) {
      # place legend at the bottom
      gglayout$legend$y <- 1 / nguides
      gglayout$legend$yanchor <- "top"
      # adjust colorbar position(s)
      for (i in seq_along(colorbar)) {
        colorbar[[i]]$marker$colorbar$yanchor <- "top"
        colorbar[[i]]$marker$colorbar$len <- 1 / nguides
        colorbar[[i]]$marker$colorbar$y <- 1 - (i - 1) * (1 / nguides)
      }
    }
    traces <- c(traces, colorbar)
    
    legendTitles <- compact(lapply(gdefs, function(g) if (inherits(g, "legend")) g$title else NULL))
    legendTitle <- paste(legendTitles, collapse = br())
    gglayout$legend$title <- list(
      text = legendTitle,
      font = text2font(theme$legend.title)
    )
  }
  
  # flip x/y in traces for flipped coordinates
  # (we've already done appropriate flipping for axis objects)
  if (inherits(plot$coordinates, "CoordFlip")) {
    for (i in seq_along(traces)) {
      tr <- traces[[i]]
      # flipping logic for bar positioning is in geom2trace.GeomBar
      if (!identical(tr$type, "bar")) traces[[i]][c("x", "y")] <- tr[c("y", "x")]
      if (identical(tr$type, "box")) {
        traces[[i]]$orientation <- "h"
        traces[[i]]$hoverinfo <- "x"
      }
      names(traces[[i]])[grepl("^error_y$", names(tr))] <- "error_x"
      names(traces[[i]])[grepl("^error_x$", names(tr))] <- "error_y"
    }
  }
  
  # Error bar widths in ggplot2 are on the range of the x/y scale,
  # but plotly wants them in pixels:
  for (xy in c("x", "y")) {
    type <- if (xy == "x") "width" else "height"
    err <- if (xy == "x") "error_y" else "error_x"
    for (i in seq_along(traces)) {
      e <- traces[[i]][[err]]
      if (!is.null(e)) {
        # TODO: again, "npc" is on device scale...we really want plot scale
        w <- grid::unit(e$width %||% 0, "npc")
        traces[[i]][[err]]$width <- unitConvert(w, "pixels", type)
      }
    }
  }
  
  # try to merge marker/line traces that have the same values for these props
  props <- c("x", "y", "text", "type", "xaxis", "yaxis", "name")
  hashes <- vapply(traces, function(x) digest::digest(x[names(x) %in% props]), character(1))
  modes <- vapply(traces, function(x) x$mode %||% "", character(1))
  nhashes <- length(unique(hashes))
  if (nhashes < length(traces)) {
    mergedTraces <- vector("list", nhashes)
    for (i in unique(hashes)) {
      idx <- which(hashes %in% i)
      mergedTraces[[i]] <- Reduce(modify_list, traces[idx])
      mergedTraces[[i]]$mode <- paste(
        unique(unlist(lapply(traces[idx], "[[", "mode"))), 
        collapse = "+"
      )
      # show one, show all
      show <- vapply(traces[idx], function(tr) tr$showlegend %||% TRUE, logical(1))
      if (any(show)) {
        mergedTraces[[i]]$showlegend <- TRUE
      }
    }
    traces <- mergedTraces
  }
  
  # better layout defaults (TODO: provide a mechanism for templating defaults)
  gglayout$hovermode <- "closest"
  ax <- grep("^[x-y]axis", names(gglayout))
  for (i in ax) {
    gglayout[[i]]$hoverformat <- ".2f"
  }
  # If a trace isn't named, it shouldn't have additional hoverinfo
  traces <- lapply(compact(traces), function(x) { x$name <- x$name %||% ""; x })
  
  gglayout$width <- width %|D|% NULL
  gglayout$height <- height %|D|% NULL
  gglayout$barmode <- gglayout$barmode %||% "relative"
  
  l <- list(
    data = setNames(traces, NULL),
    layout = compact(gglayout),
    # prevent autosize on doubleClick which clears ggplot2 margins
    config = list(doubleClick = "reset"),
    source = source
  )
  # strip any existing 'AsIs' list elements of their 'AsIs' status.
  # this is necessary since ggplot_build(qplot(1:10, fill = I("red")))
  # returns list element with their 'AsIs' class,
  # which conflicts with our JSON unboxing strategy.
  l <- rm_asis(l)
  
  # start build a plotly object with meta information about the ggplot
  # first, translate layer mappings -> plotly attrs
  mappingFormulas <- lapply(layers, function(x) {
    mappings <- getAesMap(plot, x)
    if (originalData) {
      lapply(mappings, lazyeval::f_new)
    } else {
      nms <- names(mappings)
      setNames(lapply(nms, function(x) lazyeval::f_new(as.name(x))), nms)
    }
  })
  
  return_dat <- if (originalData) layer_data else data
  
  # translate group aesthetics to data attributes
  return_dat <- Map(function(x, y) {
    if (is.null(y[["group"]])) return(x)
    dplyr::group_by(x, !!rlang::as_quosure(y[["group"]]))
  }, return_dat, mappingFormulas)
  
  # don't need to add group as an attribute anymore
  mappingFormulas <- lapply(mappingFormulas, function(x) x[!grepl("^group$", names(x))])
  
  ids <- lapply(seq_along(data), function(x) new_id())
  l$attrs <- setNames(mappingFormulas, ids)
  l$attrs <- lapply(l$attrs, function(x) structure(x, class = "plotly_eval"))
  # the build step removes the first attrs if no type exists
  l$attrs[[1]][["type"]] <- l$data[[1]][["type"]] %||% "scatter"
  
  l$cur_data <- ids[[layerData]]
  l$visdat <- setNames(lapply(return_dat, function(x) function(y) x), ids)

  l
}


# Due to the non-standard use of assign() in g2list() (above)
utils::globalVariables(c("groupDomains", "layers", "prestats_data", "scales", "sets"))


#-----------------------------------------------------------------------------
# ggplotly 'utility' functions
#-----------------------------------------------------------------------------

# convert ggplot2 sizes and grid unit(s) to pixels or normalized point coordinates
unitConvert <- function(u, to = c("npc", "pixels"), type = c("x", "y", "height", "width")) {
  u <- verifyUnit(u)
  
  convert <- switch(
    type[1],
    x = grid::convertX,
    y = grid::convertY,
    width = grid::convertWidth,
    height = grid::convertHeight
  )
  # convert everything to npc first
  if (inherits(u, "margin")) {
    # margins consist of 4 parts: top, right, bottom, and left
    uh <- grid::convertHeight(u, "npc")
    uw <- grid::convertWidth(u, "npc")
    u <- grid::unit(c(uh[1], uw[2], uh[3], uw[4]), "npc")
  } else {
    u <- convert(u, "npc")
  }
  if (to[1] == "pixels") {
    if (inherits(u, "margin")) {
      uh <- mm2pixels(grid::convertHeight(uh, "mm"))
      uw <- mm2pixels(grid::convertWidth(uw, "mm"))
      u <- c(uh[1], uw[2], uh[3], uw[4])
    } else {
      u <- mm2pixels(convert(u, "mm"))
    }
  }
  as.numeric(u)
}

# ggplot2 size is in millimeters. plotly is in pixels. To do this correctly,
# we need to know PPI/DPI of the display. I'm not sure of a decent way to do that
# from R, but it seems 96 is a reasonable assumption.
mm2pixels <- function(u) {
  u <- verifyUnit(u)
  if (any(getUnitType(u) != "mm")) {
    stop("All units must be in millimeters")
  }
  (as.numeric(u) * 96) / 25.4
}
  
verifyUnit <- function(u) {
  if (grid::is.unit(u)) return(u)
  
  ## the default unit in ggplot2 is millimeters (unless it's element_text())
  if (inherits(u, "element")) {
    grid::unit(u[[linewidth_or_size(u)]] %||% 0, "points")
  } else {
    grid::unit(u %||% 0, "mm")
  }
}

# Use public API for getting the unit's type, if available
# https://github.com/ropensci/plotly/pull/1646#issue-331268260
getUnitType <- function(u) {
  tryNULL(get("unitType", envir = asNamespace("grid"))(u)) %||%
    attr(u, "unit")
}

# detect a blank theme element
is_blank <- function(x) {
  inherits(x, "element_blank") && inherits(x, "element")
}

# given text, and x/y coordinates on 0-1 scale,
# convert ggplot2::element_text() to plotly annotation
make_label <- function(txt = "", x, y, el = ggplot2::element_text(), ...) {
  if (is_blank(el) || is.null(txt) || robust_nchar(txt) == 0 || length(txt) == 0) {
    return(NULL)
  }
  angle <- el$angle %||% 0
  list(list(
    text = txt,
    x = x,
    y = y,
    showarrow = FALSE,
    # TODO: hjust/vjust?
    ax = 0,
    ay = 0,
    font = text2font(el),
    xref = "paper",
    yref = "paper",
    textangle = -angle,
    ...
  ))
}

has_facet <- function(x) {
  inherits(x$facet, c("FacetGrid", "FacetWrap"))
}

#' Estimate bounding box of a rotated string
#'
#' @param txt a character string of length 1
#' @param angle sets the angle of the tick labels with respect to the
#' horizontal (e.g., `tickangle` of -90 draws the tick labels vertically)
#' @param size vertical size of a character
#' @references
#' https://www.dropbox.com/s/nc6968prgw8ne4w/bbox.pdf?dl=0

bbox <- function(txt = "foo", angle = 0, size = 12) {
  # assuming the horizontal size of a character is roughly half of the vertical
  n <- robust_nchar(txt)
  if (sum(n) == 0) return(list(height = 0, width = 0))
  w <- size * (robust_nchar(txt) / 2)
  angle <- abs(angle %||% 0)
  # do the sensible thing in the majority of cases
  if (angle == 0) return(list(height = size, width = w))
  if (angle == 90) return(list(height = w, width = size))
  # first, compute the hypotenus
  hyp <- sqrt(size ^ 2 + w ^ 2)
  list(
    height = max(hyp * cos(90 - angle), size),
    width = max(hyp * sin(90 - angle), w)
  )
}

# create a plotly font object from ggplot2::element_text()
text2font <- function(x = ggplot2::element_text(), type = "height") {
  list(
    color = toRGB(x$colour),
    family = font_family(x$family),
    # TODO: what about the size of vertical text?
    size = unitConvert(grid::unit(x$size %||% 0, "points"), "pixels", type)
  )
}

# Replace a default font family, "", with thematic's font option (if set)
font_family <- function(family = "") {
  if (!identical(family, "")) {
    return(family)
  }
  if (!isNamespaceLoaded("thematic")) {
    return("")
  }
  font <- asNamespace("thematic")$thematic_get_option("font", resolve = TRUE)
  if (!length(font)) {
    return("")
  }
  # font$families is a vector of families, but font.family wants to be a 
  # string (like CSS font-family), so make sure the names are unquoted, 
  # then quote them
  families <- sub("'$", "", sub("^'", "", font$families))
  sprintf("'%s'", paste(families, collapse = "', '"))
}

# wrap text in bold/italics according to the text "face"
faced <- function(txt, face = "plain") {
  if (is.null(face)) face <- "plain"
  x <- switch(face,
              plain = txt,
              bold = bold(txt),
              italic = italic(txt),
              bold.italic = bold(italic(txt))
  )
  # if, for some reason, a face we don't support is used, return the text
  if (is.null(x)) txt else x
}
bold <- function(x) paste("<b>", x, "</b>")
italic <- function(x) paste("<i>", x, "</i>")

# if a vector that has one unique value (ignoring missings), return that value
uniq <- function(x) {
  u <- unique(x)
  if (identical(u, NA) || length(u) == 0) return(u)
  u <- u[!is.na(u)]
  if (length(u) == 1) u else x
}

# theme(strip.background) -> plotly.js rect shape
make_strip_rect <- function(xdom, ydom, theme, side = "top") {
  rekt <- rect2shape(theme[["strip.background"]])
  stripTextX <- theme[["strip.text.x"]] %||% theme[["strip.text"]]
  topSize <- 
    mm2pixels(grid::convertHeight(stripTextX$margin[1], "mm")) +
    mm2pixels(grid::convertHeight(stripTextX$margin[3], "mm")) +
    mm2pixels(grid::convertHeight(grid::unit(stripTextX$size, units = "points"), "mm"))
  stripTextY <- theme[["strip.text.y"]] %||% theme[["strip.text"]]
  rightSize <- 
    mm2pixels(grid::convertWidth(stripTextX$margin[2], "mm")) +
    mm2pixels(grid::convertWidth(stripTextX$margin[4], "mm")) +
    mm2pixels(grid::convertWidth(grid::unit(stripTextY$size, units = "points"), "mm"))
  if ("right" %in% side) {
    # x-padding should be accounted for in `layout.margin.r`
    rekt$y0 <- ydom[1]
    rekt$y1 <- ydom[2]
    rekt$x0 <- 0
    rekt$x1 <- rightSize
    rekt$xanchor <- xdom[2]
    rekt$xsizemode <- "pixel"
  }
  if ("top" %in% side) {
    rekt$x0 <- xdom[1]
    rekt$x1 <- xdom[2]
    rekt$y0 <- 0
    rekt$y1 <- topSize
    rekt$yanchor <- ydom[2]
    rekt$ysizemode <- "pixel"
  }
  list(rekt)
}

# theme(panel.border) -> plotly.js rect shape
make_panel_border <- function(xdom, ydom, theme) {
  rekt <- rect2shape(theme[["panel.border"]])
  rekt$x0 <- xdom[1]
  rekt$x1 <- xdom[2]
  rekt$y0 <- ydom[1]
  rekt$y1 <- ydom[2]
  list(rekt)
}

# element_rect -> plotly.js rect shape
rect2shape <- function(rekt = ggplot2::element_rect()) {
  list(
    type = "rect",
    fillcolor = toRGB(rekt$fill),
    line = list(
      color = toRGB(rekt$colour),
      width = unitConvert(rekt, "pixels", "width"),
      linetype = lty2dash(rekt$linetype)
    ),
    yref = "paper",
    xref = "paper"
  )
}

# We need access to internal ggplot2 functions in several places
# this helps us import functions in a way that R CMD check won't cry about
ggfun <- function(x) {
  tryCatch(getFromNamespace(x, "ggplot2"), error = function(e) NULL)
}

ggtype <- function(x, y = "geom") {
  sub(y, "", tolower(class(x[[y]])[1]))
}

# colourbar -> plotly.js colorbar
gdef2trace <- function(gdef, theme, gglayout) {
  if (inherits(gdef, "colorbar")) {
    # sometimes the key has missing values, which we can ignore
    gdef$key <- gdef$key[!is.na(gdef$key$.value), ]
    
    # Put values on a 0-1 scale
    # N.B. ggplot2 >v3.4.2 (specifically #4879) renamed bar to decor and also 
    # started returning normalized values for the key field
    decor <- gdef$decor %||% gdef$bar
    rng <- range(decor$value)
    decor$value <- scales::rescale(decor$value, from = rng)
    if (!"decor" %in% names(gdef)) {
      gdef$key$.value <- scales::rescale(gdef$key$.value, from = rng)
    }
    
    vals <- lapply(gglayout[c("xaxis", "yaxis")], function(ax) {
      if (identical(ax$tickmode, "auto")) ax$ticktext else ax$tickvals
    })
    
    list(
      x = vals[[1]][[1]],
      y = vals[[2]][[1]],
      # essentially to prevent this getting merged at a later point
      name = gdef$hash,
      type = "scatter",
      mode = "markers",
      opacity = 0,
      hoverinfo = "skip",
      showlegend = FALSE,
      # do everything on a 0-1 scale
      marker = list(
        color = c(0, 1),
        colorscale = setNames(decor[c("value", "colour")], NULL),
        colorbar = list(
          bgcolor = toRGB(theme$legend.background$fill),
          bordercolor = toRGB(theme$legend.background$colour),
          borderwidth = unitConvert(
            theme$legend.background[[linewidth_or_size(theme$legend.background)]],
            "pixels", "width"
          ),
          thickness = unitConvert(
            theme$legend.key.width, "pixels", "width"
          ),
          title = gdef$title,
          titlefont = text2font(gdef$title.theme %||% theme$legend.title),
          tickmode = "array",
          ticktext = gdef$key$.label,
          tickvals = gdef$key$.value,
          tickfont = text2font(gdef$label.theme %||% theme$legend.text),
          ticklen = 2,
          len = 1/2
        )
      )
    )
  } else {
    # if plotly.js gets better support for multiple legends,
    # that conversion should go here
    NULL
  }
}


getAesMap <- function(plot, layer) {
  if (isTRUE(layer$inherit.aes)) {
    modify_list(plot$mapping, layer$mapping)
  } else {
    layer$mapping
  }
}

# ------------------------------------------------------------------
# Handle compatibility for changes in ggplot2 >v3.4.2 (specifically #5144),
# which moved away from scales_transform_df(), scales_train_df(), etc  
# towards ggproto methods attached to `scales`
# ------------------------------------------------------------------
scales_transform_df <- function(scales, df) {
  if (is.function(scales$transform_df)) {
    scales$transform_df(df)
  } else {
    ggfun("scales_transform_df")(df, scales = scales)
  }
}

scales_train_df <- function(scales, df) {
  if (is.function(scales$train_df)) {
    scales$train_df(df)
  } else {
    ggfun("scales_train_df")(df, scales = scales)
  }
}

scales_map_df <- function(scales, df) {
  if (is.function(scales$map_df)) {
    scales$map_df(df)
  } else {
    ggfun("scales_map_df")(df, scales = scales)
  }
}

scales_add_missing <- function(plot, aesthetics) {
  if (is.function(plot$scales$add_missing)) {
    plot$scales$add_missing(c("x", "y"), plot$plot_env)
  } else {
    ggfun("scales_add_missing")(plot, aesthetics, plot$plot_env)
  }
}

# -------------------------------------------------------------------------
# Handle compatibility for changes in ggplot2 >v3.4.2 (specifically #4879),
# which away from guides_train(), guides_merge(), guides_geom() 
# towards ggproto methods attached to `plot$guides`
# -------------------------------------------------------------------------
get_gdefs_ggproto <- function(scales, theme, plot, layers, layer_data) {
  
  # Unfortunate duplication of logic in tidyverse/ggplot2#5428
  # which ensures a 1:1 mapping between aesthetics and scales
  aesthetics <- lapply(scales, `[[`, "aesthetics")
  scales     <- rep.int(scales, lengths(aesthetics))
  aesthetics <- unlist(aesthetics, recursive = FALSE, use.names = FALSE)
  
  guides <- plot$guides$setup(scales, aesthetics = aesthetics)
  guides$train(scales, plot$labels)
  if (length(guides$guides) > 0) {
    guides$merge()
    guides$process_layers(layers, layer_data)
  }
  # Add old legend/colorbar classes to guide params so that ggplotly() code
  # can continue to work the same way it always has
  for (i in which(vapply(guides$guides, inherits, logical(1), "GuideColourbar"))) {
    guides$params[[i]] <- prefix_class(guides$params[[i]], "colorbar")
  }
  for (i in which(vapply(guides$guides, inherits, logical(1), "GuideLegend"))) {
    guides$params[[i]] <- prefix_class(guides$params[[i]], "legend")
  }
  guides$params
}

get_gdefs <- function(scales, theme, plot, layers) {
  gdefs <- ggfun("guides_train")(scales, theme, plot$guides, plot$labels)
  if (length(gdefs) > 0) {
    gdefs <- ggfun("guides_merge")(gdefs)
    gdefs <- ggfun("guides_geom")(gdefs, layers, plot$mapping)
  }
  gdefs
}