1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
#' Obtain data associated with a plotly graph
#'
#' `plotly_data()` returns data associated with
#' a plotly visualization (if there are multiple data frames, by default,
#' it returns the most recent one).
#'
#' @param p a plotly visualization.
#' @param id a character string or number referencing an "attribute layer".
#'
#' @param .data a plotly visualization.
#' @param x a plotly visualization.
#' @param ... arguments passed onto the relevant method.
#'
#' @name plotly_data
#' @export
#' @examplesIf interactive() || !identical(.Platform$OS.type, "windows")
#'
#' # use group_by() to define groups of visual markings
#' p <- txhousing %>%
#' group_by(city) %>%
#' plot_ly(x = ~date, y = ~sales)
#' p
#'
#' # plotly objects preserve data groupings
#' groups(p)
#' plotly_data(p)
#'
#' # dplyr verbs operate on plotly objects as if they were data frames
#' p <- economics %>%
#' plot_ly(x = ~date, y = ~unemploy / pop) %>%
#' add_lines() %>%
#' mutate(rate = unemploy / pop) %>%
#' filter(rate == max(rate))
#' plotly_data(p)
#' add_markers(p)
#' layout(p, annotations = list(x = ~date, y = ~rate, text = "peak"))
#'
#' # use group_by() + do() + subplot() for trellis displays
#' d <- group_by(mpg, drv)
#' plots <- do(d, p = plot_ly(., x = ~cty, name = ~drv))
#' subplot(plots[["p"]], nrows = 3, shareX = TRUE)
#'
#' # arrange displays by their mean
#' means <- summarise(d, mn = mean(cty, na.rm = TRUE))
#' means %>%
#' dplyr::left_join(plots) %>%
#' arrange(mn) %>%
#' subplot(nrows = NROW(.), shareX = TRUE)
#'
#' # more dplyr verbs applied to plotly objects
#' p <- mtcars %>%
#' plot_ly(x = ~wt, y = ~mpg, name = "scatter trace") %>%
#' add_markers()
#' p %>% slice(1) %>% plotly_data()
#' p %>% slice(1) %>% add_markers(name = "first observation")
#' p %>% filter(cyl == 4) %>% plotly_data()
#' p %>% filter(cyl == 4) %>% add_markers(name = "four cylinders")
#'
#'
plotly_data <- function(p, id = p$x$cur_data) {
if (!is.plotly(p)) {
stop("`plotly_data()` expects a plotly object as it's first argument.", call. = FALSE)
}
f <- p$x$visdat[[id]]
# if data has been specified, f should be a closure that, when called,
# returns data
if (is.null(f)) return(f)
if (!is.function(f)) stop("Expected a closure", call. = FALSE)
dat <- f()
if (crosstalk::is.SharedData(dat)) {
key <- dat$key()
set <- dat$groupName()
dat <- dat$origData()
dat[[crosstalk_key()]] <- key
# not allowed for list-columns!
#dat <- dplyr::group_by_(dat, crosstalk_key(), add = TRUE)
dat <- structure(dat, set = set)
}
prefix_class(dat, "plotly_data")
}
#' @export
print.plotly_data <- function(x, ...) {
print(remove_class(tibble::as_tibble(x, ...), "plotly_data"))
x
}
#' Highlight/query data based on primary key
#'
#' This function simply creates an object of class [crosstalk::SharedData].
#' The reason it exists is to make it easier to teach others how to leverage
#' its functionality in plotly. It also makes it more discoverable if one
#' is already aware of [highlight].
#'
#' @param x a plotly visualization or a `data.frame`.
#' @param ... arguments passed to `crosstalk::SharedData$new()`
#' @export
#' @author Carson Sievert
#' @return An object of class [crosstalk::SharedData]
#' @seealso [highlight]
highlight_key <- function(x, ...) {
UseMethod("highlight_key")
}
#' @export
highlight_key.plotly <- function(x, ...) {
d <- plotly_data(x)
add_data(x, crosstalk::SharedData$new(d, ...))
}
#' @export
highlight_key.default <- function(x, ...) {
crosstalk::SharedData$new(x, ...)
}
# ---------------------------------------------------------------------------
# dplyr methods
# ---------------------------------------------------------------------------
#' @rdname plotly_data
groups.plotly <- function(x) {
groups(plotly_data(x))
}
#' @rdname plotly_data
ungroup.plotly <- function(x, ...) {
d <- ungroup(plotly_data(x), ...)
add_data(x, d)
}
#' @rdname plotly_data
group_by.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), group_by, ...)
if (crosstalk_key() %in% names(d)) {
d <- preserve_set(d, group_by_add, !!rlang::sym(crosstalk_key()))
}
add_data(.data, d)
}
#' @rdname plotly_data
mutate.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), mutate, ...)
add_data(.data, d)
}
#' @rdname plotly_data
do.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), do, ...)
add_data(.data, d)
}
#' @rdname plotly_data
summarise.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), summarise, ...)
add_data(.data, d)
}
#' @rdname plotly_data
arrange.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), arrange, ...)
add_data(.data, d)
}
#' @rdname plotly_data
select.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), select, ...)
add_data(.data, d)
}
#' @rdname plotly_data
filter.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), filter, ...)
add_data(.data, d)
}
#' @rdname plotly_data
distinct.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), distinct, ...)
add_data(.data, d)
}
#' @rdname plotly_data
slice.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), slice, ...)
add_data(.data, d)
}
#' @rdname plotly_data
rename.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), rename, ...)
add_data(.data, d)
}
#' @rdname plotly_data
transmute.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), transmute, ...)
add_data(.data, d)
}
# Apply a dplyr generic to a dataset while preserving the crosstalk 'set' attribute
preserve_set <- function(.data, func, ...) {
structure(func(.data, ...), set = attr(.data, "set"))
}
# ------------------------------------------------------------
# Deprecated dplyr non-nse generics
# ------------------------------------------------------------
#' @rdname plotly_data
group_by_.plotly <- function(.data, ...) {
d <- group_by_(plotly_data(.data), ...)
# add crosstalk key as a group (to enable examples like demos/highlight-pipeline.R)
if (crosstalk_key() %in% names(d)) {
d <- group_by_add(d, !!rlang::sym(crosstalk_key()), add = TRUE)
}
add_data(.data, d)
}
#' @rdname plotly_data
mutate_.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), mutate_, ...)
add_data(.data, d)
}
#' @rdname plotly_data
do_.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), do_, ...)
add_data(.data, d)
}
#' @rdname plotly_data
summarise_.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), summarise_, ...)
add_data(.data, d)
}
#' @rdname plotly_data
arrange_.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), arrange_, ...)
add_data(.data, d)
}
#' @rdname plotly_data
select_.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), select_, ...)
add_data(.data, d)
}
#' @rdname plotly_data
filter_.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), filter_, ...)
add_data(.data, d)
}
#' @rdname plotly_data
distinct_.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), distinct_, ...)
add_data(.data, d)
}
#' @rdname plotly_data
slice_.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), slice_, ...)
add_data(.data, d)
}
#' @rdname plotly_data
rename_.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), rename_, ...)
add_data(.data, d)
}
#' @rdname plotly_data
transmute_.plotly <- function(.data, ...) {
d <- preserve_set(plotly_data(.data), transmute_, ...)
add_data(.data, d)
}
# ---------------------------------------------------------------------------
# tidyr methods
# waiting on https://github.com/tidyverse/tidyr/pull/229
# ---------------------------------------------------------------------------
# #' @rdname plotly_data
# #' @export
# gather_.plotly <- function(data, key_col, value_col, gather_cols, na.rm = FALSE,
# convert = FALSE, factor_key = FALSE) {
# d <- plotly_data(data)
# set <- attr(d, "set")
# d <- tidyr::gather_(
# d, key_col = key_col, value_col = value_col, gather_cols = gather_cols,
# na.rm = na.rm, convert = convert, factor_key = factor_key
# )
# add_data(data, structure(d, set = set))
# }
#
# #' @importFrom dplyr select_vars
# #' @rdname plotly_data
# #' @export
# gather_vars.plotly <- function(data, key_col, value_col, ...) {
# d <- plotly_data(data)
# if (n_dots(...) == 0) {
# setdiff(colnames(d), c(key_col, value_col))
# } else {
# unname(dplyr::select_vars(colnames(d), ...))
# }
# }
#
# n_dots <- function(...) nargs()
# ---------------------------------------------------------------------------
# miscellanous methods
# ---------------------------------------------------------------------------
# Avoid errors when passing a shared data to ggplot2
# qplot(data = crosstalk::SharedData$new(mtcars), mpg, wt)
#' @export
fortify.SharedData <- function(model, data, ...) {
key <- model$key()
set <- model$groupName()
data <- model$origData()
# need a consistent name so we know how to access it ggplotly()
data[[crosstalk_key()]] <- key
structure(data, set = set)
}
# yes, you can feed a plotly object into ggplot %^)
#' @export
ggplot.plotly <- function(data, mapping = aes(), ...,
environment = parent.frame()) {
ggplot(plotly_data(data), mapping = mapping, ..., environment = environment)
}
|