1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plotly_data.R
\name{plotly_data}
\alias{plotly_data}
\alias{groups.plotly}
\alias{ungroup.plotly}
\alias{group_by.plotly}
\alias{mutate.plotly}
\alias{do.plotly}
\alias{summarise.plotly}
\alias{arrange.plotly}
\alias{select.plotly}
\alias{filter.plotly}
\alias{distinct.plotly}
\alias{slice.plotly}
\alias{rename.plotly}
\alias{transmute.plotly}
\alias{group_by_.plotly}
\alias{mutate_.plotly}
\alias{do_.plotly}
\alias{summarise_.plotly}
\alias{arrange_.plotly}
\alias{select_.plotly}
\alias{filter_.plotly}
\alias{distinct_.plotly}
\alias{slice_.plotly}
\alias{rename_.plotly}
\alias{transmute_.plotly}
\title{Obtain data associated with a plotly graph}
\usage{
plotly_data(p, id = p$x$cur_data)
\method{groups}{plotly}(x)
\method{ungroup}{plotly}(x, ...)
\method{group_by}{plotly}(.data, ...)
\method{mutate}{plotly}(.data, ...)
\method{do}{plotly}(.data, ...)
\method{summarise}{plotly}(.data, ...)
\method{arrange}{plotly}(.data, ...)
\method{select}{plotly}(.data, ...)
\method{filter}{plotly}(.data, ...)
\method{distinct}{plotly}(.data, ...)
\method{slice}{plotly}(.data, ...)
\method{rename}{plotly}(.data, ...)
\method{transmute}{plotly}(.data, ...)
\method{group_by_}{plotly}(.data, ...)
\method{mutate_}{plotly}(.data, ...)
\method{do_}{plotly}(.data, ...)
\method{summarise_}{plotly}(.data, ...)
\method{arrange_}{plotly}(.data, ...)
\method{select_}{plotly}(.data, ...)
\method{filter_}{plotly}(.data, ...)
\method{distinct_}{plotly}(.data, ...)
\method{slice_}{plotly}(.data, ...)
\method{rename_}{plotly}(.data, ...)
\method{transmute_}{plotly}(.data, ...)
}
\arguments{
\item{p}{a plotly visualization.}
\item{id}{a character string or number referencing an "attribute layer".}
\item{x}{a plotly visualization.}
\item{...}{arguments passed onto the relevant method.}
\item{.data}{a plotly visualization.}
}
\description{
\code{plotly_data()} returns data associated with
a plotly visualization (if there are multiple data frames, by default,
it returns the most recent one).
}
\examples{
\dontshow{if (interactive() || !identical(.Platform$OS.type, "windows")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
# use group_by() to define groups of visual markings
p <- txhousing \%>\%
group_by(city) \%>\%
plot_ly(x = ~date, y = ~sales)
p
# plotly objects preserve data groupings
groups(p)
plotly_data(p)
# dplyr verbs operate on plotly objects as if they were data frames
p <- economics \%>\%
plot_ly(x = ~date, y = ~unemploy / pop) \%>\%
add_lines() \%>\%
mutate(rate = unemploy / pop) \%>\%
filter(rate == max(rate))
plotly_data(p)
add_markers(p)
layout(p, annotations = list(x = ~date, y = ~rate, text = "peak"))
# use group_by() + do() + subplot() for trellis displays
d <- group_by(mpg, drv)
plots <- do(d, p = plot_ly(., x = ~cty, name = ~drv))
subplot(plots[["p"]], nrows = 3, shareX = TRUE)
# arrange displays by their mean
means <- summarise(d, mn = mean(cty, na.rm = TRUE))
means \%>\%
dplyr::left_join(plots) \%>\%
arrange(mn) \%>\%
subplot(nrows = NROW(.), shareX = TRUE)
# more dplyr verbs applied to plotly objects
p <- mtcars \%>\%
plot_ly(x = ~wt, y = ~mpg, name = "scatter trace") \%>\%
add_markers()
p \%>\% slice(1) \%>\% plotly_data()
p \%>\% slice(1) \%>\% add_markers(name = "first observation")
p \%>\% filter(cyl == 4) \%>\% plotly_data()
p \%>\% filter(cyl == 4) \%>\% add_markers(name = "four cylinders")
\dontshow{\}) # examplesIf}
}
|