File: test-cookbook-axes.R

package info (click to toggle)
r-cran-plotly 4.10.4%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 30,636 kB
  • sloc: javascript: 195,272; sh: 24; makefile: 6
file content (198 lines) | stat: -rw-r--r-- 8,678 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198


expect_traces <- function(gg, n.traces, name) {
  stopifnot(is.numeric(n.traces))
  L <- expect_doppelganger_built(gg, paste0("cookbook-axes-", name))
  all.traces <- L$data
  no.data <- sapply(all.traces, function(tr) {
    is.null(tr[["x"]]) && is.null(tr[["y"]])
  })
  has.data <- all.traces[!no.data]
  expect_equivalent(length(has.data), n.traces)
  list(data = has.data, layout = L$layout)
}

bp <- ggplot(PlantGrowth, aes(x = group, y = weight)) +
  geom_boxplot()

# Reverse the order of a discrete-valued axis
# Get the levels of the factor
flevels <- levels(PlantGrowth$group)
# "ctrl" "trt1" "trt2"
# Reverse the order
flevels <- rev(flevels)
# "trt2" "trt1" "ctrl"
bp.flevels <- bp + scale_x_discrete(limits = flevels)

test_that("factor levels determine tick order", {
  info <- expect_traces(bp.flevels, 1, "flevels")
  expect_equivalent(info$layout$xaxis$ticktext, c("trt2", "trt1", "ctrl"))
})

## These two do the same thing; all data points outside the graphing
## range are dropped, resulting in a misleading box plot.
bp.ylim.hide <- bp + ylim(5, 7.5)
test_that("ylim hides points", {
  info <- expect_warning(expect_traces(bp.ylim.hide, 1, "ylim.hide"), 
                         regexp = "non-finite")
})

bp.scale.hide <- bp + scale_y_continuous(limits = c(5, 7.5))
test_that("scale_y(limits) hides points", {
  info <- expect_warning(expect_traces(bp.scale.hide, 1, "scale.hide"), 
                         regexp = "non-finite")
  expect_equivalent(range(info$layout$yaxis$tickvals), c(5, 7.5))
  y <- unlist(lapply(info$data, "[[", "y"))
  expect_true(all(5 <= y & y <= 7.5, na.rm = TRUE))
})

bp.coord <- bp + coord_cartesian(ylim = c(5, 7.5))
test_that("Using coord_cartesian zooms into the area", {
  info <- expect_traces(bp.coord, 1, "coord-ylim")
  expect_equivalent(range(info$layout$yaxis$tickvals), c(5, 7.5))
  y <- unlist(lapply(info$data, "[[", "y"))
  expect_false(all(5 <= y & y <= 7.5))
})

# Create some noisy exponentially-distributed data
dat <- data.frame(
  xval = c(0.26932812,-0.05341404,0.36977717,0.91504712,0.46329006,0.37956526, 0.93290644,0.75558976,0.67633497,0.48655293,0.79478162,0.55109982, 0.51681398,0.81073512,0.49406579,0.93919618,0.90472008,0.98732256, 0.94379876,0.95790909,0.54614241,1.13356941,1.13299144,1.18159277, 1.16428407,1.22955005,1.21030897,1.23314811,1.53822718,1.53674330, 1.80020468,1.40774011,1.74573515,1.26651625,2.06607711,1.50237263, 1.38480531,1.83625381,2.35275649,1.99004291,2.80396442,2.20863240, 2.42998876,2.12801180,2.26290348,2.38185989,2.14936036,2.66587947, 2.64586596,2.44240603,2.39266452,3.11831215,2.70258927,2.65529134, 2.65634690,2.95984290,2.71058076,2.87919480,3.07739358,2.66841935, 3.10792706,3.17134285,3.98070271,3.55497279,3.36831009,3.31390892, 3.32753965,2.86981968,3.22741000,3.78806438,3.74434536,3.56928928, 3.83783177,3.24485807,4.05766233,4.13619455,4.26888054,3.47546258, 3.93045819,3.77620080,4.66676431,3.88059240,4.54694485,4.03915767, 4.25556093,4.39251819,4.42692029,4.23262929,4.44890758,4.84981161, 4.51104252,4.33004508,5.06350705,4.89714069,4.21599077,4.55457578, 5.04044393,4.89111297,5.03105215,4.64113164), 
  yval = c(1.177512e+01,7.303113e+00,6.109053e+00,2.545169e+01,3.366341e+01,1.042255e+01,2.703767e+01,1.178223e+01,4.495965e+01,1.614609e+01,4.003015e+01,1.038442e+02,4.024992e+01,4.163942e+01,9.108197e+01,3.116299e+01,2.558871e+02,7.482977e+01,2.502789e+01,5.923683e+01,3.967814e+01,9.207318e+01,1.298618e+02,1.138197e+02,1.804303e+02,3.363494e+02,3.197204e+02,4.968737e+02,1.783433e+02,4.765546e+02,4.486885e+02,6.736079e+02,4.289288e+02,3.433946e+02,5.658634e+02,4.667053e+02,5.257803e+02,3.401038e+02,6.131335e+02,5.928647e+02,7.838524e+02,7.987915e+02,3.348470e+03,1.704767e+03,1.264169e+03,2.690011e+03,2.738240e+03,1.663862e+03,5.377442e+03,3.883820e+03,6.673624e+03,1.857346e+03,6.683962e+03,1.213027e+03,1.742885e+03,2.146094e+03,4.597174e+03,4.357154e+03,8.413851e+03,8.194194e+03,7.076611e+03,1.554628e+04,6.984783e+03,1.027392e+04,1.158795e+04,9.193111e+03,3.226748e+04,3.955445e+04,2.978953e+04,1.926420e+04,7.610544e+04,2.129694e+04,1.438764e+04,7.908876e+04,2.676003e+04,1.791758e+05,3.978871e+04,9.411120e+04,4.486940e+04,1.270526e+05,1.587331e+05,1.616173e+05,3.351522e+05,3.001782e+05,2.527824e+05,2.745851e+05,3.446376e+05,1.544497e+05,1.318314e+05,8.334336e+05,2.464391e+05,8.694818e+05,2.747323e+05,6.373497e+05,2.918690e+05,9.505114e+05,7.835278e+05,3.775567e+05,1.795523e+06,1.568159e+06)
)

sp <- ggplot(dat, aes(xval, yval)) + geom_point()

test_that("A scatterplot with regular (linear) axis scaling", {
  info <- expect_traces(sp, 1, "linear-axes")
})

library(scales)
sp.log2.scale <- sp + scale_y_continuous(trans = log2_trans())

test_that("log2 scaling of the y axis (with visually-equal spacing)", {
  info <- expect_traces(sp.log2.scale, 1, "log2-scale")
})

sp.log2.coord <- sp + coord_trans(y = "log2")

test_that("log2 coordinate transformation with visually-diminishing spacing", {
  info <- expect_traces(sp.log2.coord, 1, "log2-coord")
})

sp.labels <- sp +
  scale_y_continuous(trans = log2_trans(),
                     breaks = trans_breaks("log2", function(x) 2^x),
                     labels = trans_format("log2", math_format(2^.x)))

test_that("log2 transform with labels", {
  info <- expect_traces(sp.labels, 1, "log2-labels")
})

sp.log10 <- sp + scale_y_log10()

test_that("scale_y_log10", {
  info <- expect_traces(sp.log10, 1, "scale_y_log10")
})

sp.log10.labels <- sp +
  scale_y_log10(breaks = trans_breaks("log10", function(x) 10^x),
                labels = trans_format("log10", math_format(10^.x)))

test_that("log10 with exponents on tick labels", {
  info <- expect_traces(sp.log10.labels, 1, "scale_y_log10-labels")
})

no.x.title <- bp +
  theme(axis.title.x = element_blank()) +   # Remove x-axis label
  ylab("Weight (Kg)")                    # Set y-axis label

test_that("coord_fixed(ratio)", {
  info <- expect_traces(no.x.title, 1, "no-x-title")
  expect_identical(info$layout$xaxis$title$text, "")
})

# Also possible to set the axis label with the scale
# Note that vertical space is still reserved for x"s label

bp.scale.name <- bp + scale_x_discrete(name="") +
  scale_y_continuous(name="Weight (Kg)")

test_that("scale(name)", {
  info <- expect_traces(bp.scale.name, 1, "scale-name")
})

# Change font options:
# X-axis label: bold, red, and 20 points
# X-axis tick marks: rotate 90 degrees CCW, move to the left a bit (using vjust,
#   since the labels are rotated), and 16 points

bp.fonts <- bp +
  theme(
    axis.title.x = element_text(face = "bold", colour = "#990000", size = 20),
    axis.text.x  = element_text(angle = 90, vjust = 0.5, size = 16)
  )

test_that("element_text face, colour, size, angle, vjust, size", {
  info <- expect_traces(bp.fonts, 1, "fonts")
  expect_equivalent(info$layout$xaxis$tickangle, -90)
  expect_match(info$layout$xaxis$title$text, "<b>", fixed = TRUE)
  expect_match(info$layout$xaxis$title$text, "</b>", fixed = TRUE)
})

# Label formatters
library(scales)   # Need the scales package

label.funs <- bp +
  scale_y_continuous(labels = percent) +
  scale_x_discrete(labels = abbreviate)

test_that("In this particular case, x scale has no effect", {
  info <- expect_traces(label.funs, 1, "label-funs")
})

# Self-defined formatting function for times.
timeHMS_formatter <- function(x) {
  h <- floor(x/60)
  m <- floor(x %% 60)
  s <- round(60*(x %% 1))                   # Round to nearest second
  lab <- sprintf("%02d:%02d:%02d", h, m, s) # Format the strings as HH:MM:SS
  lab <- gsub("^00:", "", lab)              # Remove leading 00: if present
  lab <- gsub("^0", "", lab)                # Remove leading 0 if present
}

custom.formatter <- bp + scale_y_continuous(label = timeHMS_formatter)

test_that("custom HMS formatter function", {
  info <- expect_traces(custom.formatter, 1, "custom-formatter")
})

blank.minor.major <- bp +
  theme(panel.grid.minor = element_blank(),
        panel.grid.major = element_blank())

test_that("Hide all the gridlines", {
  info <- expect_traces(blank.minor.major, 1, "blank-minor-major")
})

blank.minor <- bp +
  theme(panel.grid.minor = element_blank())

test_that("Hide just the minor gridlines", {
  info <- expect_traces(blank.minor, 1, "blank-minor")
})

blank.x <- bp +
  theme(panel.grid.minor.x = element_blank(),
        panel.grid.major.x = element_blank())

test_that("Hide all the horizontal gridlines", {
  info <- expect_traces(blank.x, 1, "blank-x")
})

blank.y <- bp +
  theme(panel.grid.minor.y = element_blank(),
        panel.grid.major.y = element_blank())

test_that("Hide all the vertical gridlines", {
  info <- expect_traces(blank.y, 1, "blank-y")
})