1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
test_that("6 different automatic lty converted to plotly's 6 types", {
d <- expand.grid(x=1:6, y=1:6)
gg <- ggplot() +
geom_line(aes(x=x, y=y, group=x, linetype=as.factor(x)), data=d)
expected <-
c("solid",
"dash",
"dot",
"dashdot",
"longdash",
"longdashdot")
info <- expect_doppelganger_built(gg, "linetype-types")
generated <- sapply(info$data[1:6], function(L) L$line$dash)
expect_true(all(generated %in% expected))
expect_true(all(expected %in% generated))
})
test_that("different colored lines become different colored traces", {
## http://stackoverflow.com/questions/2564258/plot-2-graphs-in-same-plot-in-r/19039094#19039094
## original data in a 'wide' format
x <- seq(-2, 2, 0.05)
y1 <- pnorm(x)
y2 <- pnorm(x, 1, 1)
df <- rbind(data.frame(x, variable="y1", value=y1),
data.frame(x, variable="y2", value=y2))
## plot, using the aesthetics argument 'colour'
gg <- ggplot(data = df, aes(x = x, y = value, colour = variable))+
geom_line()+
scale_color_manual(values=c(y1="blue", y2="red"))
info <- expect_doppelganger_built(gg, "linetype-colors")
expect_equivalent(length(info$data), 2)
expect_identical(info$data[[1]]$line$color, toRGB("blue"))
n <- length(x)
expect_identical(info$data[[1]]$y[1:n], y1)
expect_identical(info$data[[1]]$x[1:n], x)
expect_identical(info$data[[2]]$line$color, toRGB("red"))
expect_identical(info$data[[2]]$y[1:n], y2)
expect_identical(info$data[[2]]$x[1:n], x)
})
test_that("Milliseconds are preserved with dynamic ticks", {
d <- data.frame(
t = as.POSIXct("1970-01-01 00:00") + (0:999) / 10,
y = sin((0:999) * 4 * pi / 1000)
)
gg <- ggplot(d, aes(t, y)) + geom_line()
p <- ggplotly(gg, dynamicTicks = TRUE)
j <- plotly_json(p, jsonedit = FALSE)
t2 <- jsonlite::fromJSON(j)$data$x[[1]] %>%
as.POSIXct(format = "%Y-%m-%d %H:%M:%OS", origin = "1970-01-01 00:00:00")
expect_equal(as.numeric(mean(diff(t2))), 0.1, tolerance = 0.01)
expect_doppelganger_built(p, "line-milliseconds")
})
test_that("Translates both dates and datetimes (with dynamic ticks) correctly", {
dates <- seq(
as.Date("2002-01-01"),
by = "1 month",
length.out = 100
)
d <- data.frame(
value = rnorm(100),
date = dates
)
p <- ggplot(d, aes(date, value)) + geom_line()
l <- plotly_build(ggplotly(p, dynamicTicks = TRUE))$x
d2 <- data.frame(
value = rnorm(100),
date = as.POSIXct(dates)
)
p2 <- ggplot(d2, aes(date, value)) + geom_line()
l2 <- plotly_build(ggplotly(p2, dynamicTicks = TRUE))$x
# since these are dynamic ticks, let plotly.js generate the ticks
axisType <- with(l$layout$xaxis, list(type, tickmode, autorange))
expect_equivalent(axisType, list("date", "auto", TRUE))
axisType2 <- with(l2$layout$xaxis, list(type, tickmode, autorange))
expect_equivalent(axisType2, list("date", "auto", TRUE))
# range and data have been reverse transformed
expect_is(l$layout$xaxis$range, "Date")
expect_is(l$data[[1]]$x, "Date")
expect_is(l2$layout$xaxis$range, "POSIXct")
expect_is(l2$data[[1]]$x, "POSIXct")
# check the hovertext
dates1 <- sapply(strsplit(l$data[[1]]$text, br()), "[[", 1)
dates2 <- sapply(strsplit(l2$data[[1]]$text, br()), "[[", 1)
expect_equivalent(paste("date:", d$date), dates1)
expect_equivalent(paste("date:", d2$date), dates2)
})
test_that("geom_linerange() without a y aesthetic translates to a path", {
d <- data.frame(
x = 1:5,
ymax = 1:5,
ymin = 0
)
p <- ggplot(d, aes(x, ymax = ymax, ymin = ymin)) +
geom_linerange()
l <- plotly_build(p)$x
expect_length(l$data, 1)
expect_equivalent(l$data[[1]]$type, "scatter")
expect_equivalent(
l$data[[1]]$x,
c(1, 1, NA, 2, 2, NA, 3, 3, NA, 4, 4, NA, 5, 5)
)
expect_equivalent(
l$data[[1]]$y,
c(0, 1, NA, 0, 2, NA, 0, 3, NA, 0, 4, NA, 0, 5)
)
expect_equivalent(
unlist(l$data[[1]]$text),
c(
'x: 1<br />ymax: 1<br />ymin: 0', 'x: 1<br />ymax: 1<br />ymin: 0', NA,
'x: 2<br />ymax: 2<br />ymin: 0', 'x: 2<br />ymax: 2<br />ymin: 0', NA,
'x: 3<br />ymax: 3<br />ymin: 0', 'x: 3<br />ymax: 3<br />ymin: 0', NA,
'x: 4<br />ymax: 4<br />ymin: 0', 'x: 4<br />ymax: 4<br />ymin: 0', NA,
'x: 5<br />ymax: 5<br />ymin: 0', 'x: 5<br />ymax: 5<br />ymin: 0'
)
)
})
test_that("NA values do not cause a lot of warnings when ploting (#1299)", {
df <- data.frame(x=1:2, y=NA)
p <- plot_ly(df, x=~x, y=~y)
expect_warning(plotly_build(p), "Ignoring")
expect_failure(expect_warning(plotly_build(p), "structure"))
})
|