1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
|
> # test.plotmo.R: regression tests for plotmo
> # Stephen Milborrow, Petaluma Jan 2007
>
> print(R.version.string)
[1] "R version 4.4.1 (2024-06-14 ucrt)"
>
> source("test.prolog.R")
> library(earth)
Loading required package: Formula
Loading required package: plotmo
Loading required package: plotrix
> options(warn=1) # print warnings as they occur
> data(etitanic)
> make.space.for.caption <- function(caption="CAPTION")
+ {
+ oma <- par("oma")
+ needed <- 3
+ # adjust for newlines in caption
+ newlines <- grep("\n", caption)
+ if(length(newlines) > 0)
+ needed <- needed + .5 * newlines # .5 seems enough although 1 in theory
+ if(!is.null(caption) && any(nchar(caption)) && oma[3] <= needed) {
+ oma[3] <- needed
+ par(oma=oma)
+ }
+ }
> dopar <- function(nrows, ncols, caption = "")
+ {
+ cat(" ", caption, "\n")
+ make.space.for.caption(caption)
+ par(mfrow=c(nrows, ncols))
+ par(mar = c(3, 3, 1.7, 0.5))
+ par(mgp = c(1.6, 0.6, 0))
+ par(cex = 0.7)
+ }
> example(plotmo)
plotmo> if (require(rpart)) {
plotmo+ data(kyphosis)
plotmo+ rpart.model <- rpart(Kyphosis~., data=kyphosis)
plotmo+ # pass type="prob" to plotmo's internal calls to predict.rpart, and
plotmo+ # select the column named "present" from the matrix returned by predict.rpart
plotmo+ plotmo(rpart.model, type="prob", nresponse="present")
plotmo+ }
Loading required package: rpart
plotmo grid: Age Number Start
87 4 13
plotmo> if (require(earth)) {
plotmo+ data(ozone1)
plotmo+ earth.model <- earth(O3 ~ ., data=ozone1, degree=2)
plotmo+ plotmo(earth.model)
plotmo+ # plotmo(earth.model, pmethod="partdep") # partial dependence plots
plotmo+ }
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
> caption <- "basic earth test of plotmo"
> a <- earth(O3 ~ ., data=ozone1, degree=2)
> plotmo(a, degree1=2, degree2=4, caption=caption, trace=-1)
>
> caption <- "test 5 x 5 layout"
> dopar(1,1,caption)
test 5 x 5 layout
> a <- earth(O3 ~ ., data=ozone1, nk=51, pmethod="n", degree=2)
> plotmo(a, caption=caption, trace=1)
stats::predict(earth.object, NULL, type="response")
stats::fitted(object=earth.object)
got model response from model.frame(O3 ~ vh + wind + humidity + temp + ib...,
data=call$data, na.action="na.fail")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
>
> caption <- "test 4 x 4 layout with ylab"
> dopar(1,1,caption)
test 4 x 4 layout with ylab
> a <- earth(O3 ~ ., data=ozone1, nk=30, pmethod="n", degree=2)
> plotmo(a, caption=caption, trace=2)
plotmo trace 2: plotmo(object=a, caption=caption, trace=2)
--get.model.env for object with class earth
object call is earth(formula=O3~., data=ozone1, pmethod="n", degree=2, nk=30)
using the environment saved in $terms of the earth model: R_GlobalEnv
--plotmo_prolog for earth object 'a'
--plotmo_x for earth object
get.object.x:
object$x is NULL (and it has no colnames)
object call is earth(formula=O3~., data=ozone1, pmethod="n", degree=2, nk=30)
get.x.from.model.frame:
formula(object) is O3 ~ vh + wind + humidity + temp + ibh + dpg + ibt + vis ...
naked formula is the same
formula is valid, now looking for data for the model.frame
object$model is NULL (and it has no colnames)
object$data is NULL (and it has no colnames)
argument 2 of the call is 'data'
eval(call$data, R_GlobalEnv)
call$data is usable and has column names O3 vh wind humidity temp ibh dpg ibt vis doy
na.action(object) is "na.fail"
stats::model.frame(O3 ~ vh + wind + humidity + temp + ib..., data=call$data, na.action="na.fail")
x=model.frame[,-1] is usable and has column names vh wind humidity temp ibh dpg ibt vis doy
plotmo_x returned[330,9]:
vh wind humidity temp ibh dpg ibt vis doy
1 5710 4 28 40 2693 -25 87 250 33
2 5700 3 37 45 590 -24 128 100 34
3 5760 3 51 54 1450 25 139 60 35
... 5720 4 69 35 1568 15 121 60 36
330 5550 4 85 39 5000 8 44 100 390
----Metadata: plotmo_predict with nresponse=NULL and newdata=NULL
calling predict.earth with NULL newdata
stats::predict(earth.object, NULL, type="response")
predict returned[330,1]:
O3
1 1.240608
2 3.596894
3 7.464276
... 5.282731
330 3.228830
predict after processing with nresponse=NULL is [330,1]:
O3
1 1.240608
2 3.596894
3 7.464276
... 5.282731
330 3.228830
----Metadata: plotmo_fitted with nresponse=NULL
stats::fitted(object=earth.object)
fitted(object) returned[330,1]:
O3
1 1.240608
2 3.596894
3 7.464276
... 5.282731
330 3.228830
fitted(object) after processing with nresponse=NULL is [330,1]:
O3
1 1.240608
2 3.596894
3 7.464276
... 5.282731
330 3.228830
----Metadata: plotmo_y with nresponse=NULL
--plotmo_y with nresponse=NULL for earth object
get.object.y:
object$y is NULL (and it has no colnames)
object call is earth(formula=O3~., data=ozone1, pmethod="n", degree=2, nk=30)
get.y.from.model.frame:
formula(object) is O3 ~ vh + wind + humidity + temp + ibh + dpg + ibt + vis ...
formula is valid, now looking for data for the model.frame
object$model is NULL (and it has no colnames)
object$data is NULL (and it has no colnames)
argument 2 of the call is 'data'
eval(call$data, R_GlobalEnv)
call$data is usable and has column names O3 vh wind humidity temp ibh dpg ibt vis doy
na.action(object) is "na.fail"
stats::model.frame(O3 ~ vh + wind + humidity + temp + ib..., data=call$data, na.action="na.fail")
y=model.frame[,1] is usable and has column name O3
plotmo_y returned[330,1]:
O3
1 3
2 5
3 5
... 6
330 1
plotmo_y after processing with nresponse=NULL is [330,1]:
O3
1 3
2 5
3 5
... 6
330 1
converted nresponse=NA to nresponse=1
nresponse=1 (was NA) ncol(fitted) 1 ncol(predict) 1 ncol(y) 1
----Metadata: plotmo_y with nresponse=1
--plotmo_y with nresponse=1 for earth object
get.object.y:
object$y is NULL (and it has no colnames)
object call is earth(formula=O3~., data=ozone1, pmethod="n", degree=2, nk=30)
get.y.from.model.frame:
formula(object) is O3 ~ vh + wind + humidity + temp + ibh + dpg + ibt + vis ...
formula is valid, now looking for data for the model.frame
object$model is NULL (and it has no colnames)
object$data is NULL (and it has no colnames)
argument 2 of the call is 'data'
eval(call$data, R_GlobalEnv)
call$data is usable and has column names O3 vh wind humidity temp ibh dpg ibt vis doy
na.action(object) is "na.fail"
stats::model.frame(O3 ~ vh + wind + humidity + temp + ib..., data=call$data, na.action="na.fail")
y=model.frame[,1] is usable and has column name O3
got model response from model.frame(O3 ~ vh + wind + humidity + temp + ib...,
data=call$data, na.action="na.fail")
plotmo_y returned[330,1]:
O3
1 3
2 5
3 5
... 6
330 1
plotmo_y after processing with nresponse=1 is [330,1]:
O3
1 3
2 5
3 5
... 6
330 1
got response name "O3" from yhat
resp.levs is NULL
----Metadata: done
number of x values: vh 53 wind 11 humidity 65 temp 63 ibh 196 dpg 128 ibt 193...
----plotmo_singles for earth object
singles: 4 temp, 5 ibh, 7 ibt, 8 vis, 9 doy
----plotmo_pairs for earth object
pairs:
[,1] [,2]
[1,] "1 vh" "4 temp"
[2,] "1 vh" "9 doy"
[3,] "2 wind" "8 vis"
[4,] "3 humidity" "4 temp"
[5,] "4 temp" "5 ibh"
[6,] "4 temp" "6 dpg"
[7,] "4 temp" "9 doy"
[8,] "5 ibh" "6 dpg"
[9,] "7 ibt" "8 vis"
graphics::par(mfrow=c(4,4), mgp=c(1.5,0.4,0), tcl=-0.3, font.main=2,
mar=c(3,2,1.2,0.8), oma=c(0,0,3,0), cex.main=1.1, cex.lab=1,
cex.axis=1, cex=0.66)
----Figuring out ylim
--get.ylim.by.dummy.plots
--plot.degree1(draw.plot=FALSE)
degree1 plot1 (pmethod "plotmo") variable temp
newdata[50,9]:
vh wind humidity temp ibh dpg ibt vis doy
1 5760 5 64 25.00000 2112.5 24 167.5 120 205.5
2 5760 5 64 26.38776 2112.5 24 167.5 120 205.5
3 5760 5 64 27.77551 2112.5 24 167.5 120 205.5
... 5760 5 64 29.16327 2112.5 24 167.5 120 205.5
50 5760 5 64 93.00000 2112.5 24 167.5 120 205.5
stats::predict(earth.object, data.frame[50,9], type="response")
predict returned[50,1]:
O3
1 8.724965
2 8.813294
3 8.901624
... 8.989953
50 18.716007
predict after processing with nresponse=1 is [50,1]:
O3
1 8.724965
2 8.813294
3 8.901624
... 8.989953
50 18.716007
Reducing trace level for subsequent degree1 plots
degree1 plot2 (pmethod "plotmo") variable ibh
degree1 plot3 (pmethod "plotmo") variable ibt
degree1 plot4 (pmethod "plotmo") variable vis
degree1 plot5 (pmethod "plotmo") variable doy
--plot.degree2(draw.plot=FALSE)
degree2 plot1 (pmethod "plotmo") variables vh:temp
newdata[400,9]:
vh wind humidity temp ibh dpg ibt vis doy
1 5320.000 5 64 25 2112.5 24 167.5 120 205.5
2 5353.158 5 64 25 2112.5 24 167.5 120 205.5
3 5386.316 5 64 25 2112.5 24 167.5 120 205.5
... 5419.474 5 64 25 2112.5 24 167.5 120 205.5
400 5950.000 5 64 93 2112.5 24 167.5 120 205.5
stats::predict(earth.object, data.frame[400,9], type="response")
predict returned[400,1]:
O3
1 10.41649
2 10.28902
3 10.16155
... 10.03408
400 27.17075
predict after processing with nresponse=1 is [400,1]:
O3
1 10.41649
2 10.28902
3 10.16155
... 10.03408
400 27.17075
Reducing trace level for subsequent degree2 plots
degree2 plot2 (pmethod "plotmo") variables vh:doy
degree2 plot3 (pmethod "plotmo") variables wind:vis
degree2 plot4 (pmethod "plotmo") variables humidity:temp
degree2 plot5 (pmethod "plotmo") variables temp:ibh
degree2 plot6 (pmethod "plotmo") variables temp:dpg
degree2 plot7 (pmethod "plotmo") variables temp:doy
degree2 plot8 (pmethod "plotmo") variables ibh:dpg
degree2 plot9 (pmethod "plotmo") variables ibt:vis
--done get.ylim.by.dummy.plots
ylim c(-33.06, 31.48) clip TRUE
--plot.degree1(draw.plot=TRUE)
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
graphics::plot.default(x=c(25,26.39,27.7...), y=c(8.725,8.813,8...), type="n",
main="1 temp", xlab="", ylab="", xaxt="s", yaxt="s",
xlim=c(25,93), ylim=c(-33.06,31.48))
--plot.degree2(draw.plot=TRUE)
persp(vh:temp) theta -35
persp(vh:doy) theta -35
persp(wind:vis) theta 145
persp(humidity:temp) theta -35
persp(temp:ibh) theta 235
persp(temp:dpg) theta 235
persp(temp:doy) theta 235
persp(ibh:dpg) theta 235
persp(ibt:vis) theta 235
>
> caption <- "test 3 x 3 layout"
> dopar(1,1,caption)
test 3 x 3 layout
> a <- earth(O3 ~ ., data=ozone1, nk=16, pmethod="n", degree=2)
> plotmo(a, caption=caption, trace=3)
plotmo trace 3: plotmo(object=a, caption=caption, trace=3)
--get.model.env for object with class earth
object call is earth(formula=O3~., data=ozone1, pmethod="n", degree=2, nk=16)
using the environment saved in $terms of the earth model: R_GlobalEnv
--plotmo_prolog for earth object 'a'
--plotmo_x for earth object
get.object.x:
object$x is NULL (and it has no colnames)
object call is earth(formula=O3~., data=ozone1, pmethod="n", degree=2, nk=16)
get.x.from.model.frame:
formula(object) is O3 ~ vh + wind + humidity + temp + ibh + dpg + ibt + vis ...
naked formula is the same
formula is valid, now looking for data for the model.frame
object$model is NULL (and it has no colnames)
object$data is NULL (and it has no colnames)
argument 2 of the call is 'data'
eval(call$data, R_GlobalEnv)
call$data is usable and has column names O3 vh wind humidity temp ibh dpg ibt vis doy
na.action(object) is "na.fail"
model.env is R_GlobalEnv
data[330,10]:
O3 vh wind humidity temp ibh dpg ibt vis doy
1 3 5710 4 28 40 2693 -25 87 250 33
2 5 5700 3 37 45 590 -24 128 100 34
3 5 5760 3 51 54 1450 25 139 60 35
... 6 5720 4 69 35 1568 15 121 60 36
330 1 5550 4 85 39 5000 8 44 100 390
stats::model.frame(O3 ~ vh + wind + humidity + temp + ib..., data=call$data, na.action="na.fail")
model.frame returned[330,10]:
O3 vh wind humidity temp ibh dpg ibt vis doy
1 3 5710 4 28 40 2693 -25 87 250 33
2 5 5700 3 37 45 590 -24 128 100 34
3 5 5760 3 51 54 1450 25 139 60 35
... 6 5720 4 69 35 1568 15 121 60 36
330 1 5550 4 85 39 5000 8 44 100 390
x=model.frame[,-1] is usable and has column names vh wind humidity temp ibh dpg ibt vis doy
plotmo_x returned[330,9]:
vh wind humidity temp ibh dpg ibt vis doy
1 5710 4 28 40 2693 -25 87 250 33
2 5700 3 37 45 590 -24 128 100 34
3 5760 3 51 54 1450 25 139 60 35
... 5720 4 69 35 1568 15 121 60 36
330 5550 4 85 39 5000 8 44 100 390
----Metadata: plotmo_predict with nresponse=NULL and newdata=NULL
calling predict.earth with NULL newdata
stats::predict(earth.object, NULL, type="response")
predict returned[330,1]:
O3
1 1.255037
2 4.164931
3 7.585888
... 4.443360
330 1.685101
predict after processing with nresponse=NULL is [330,1]:
O3
1 1.255037
2 4.164931
3 7.585888
... 4.443360
330 1.685101
----Metadata: plotmo_fitted with nresponse=NULL
stats::fitted(object=earth.object)
fitted(object) returned[330,1]:
O3
1 1.255037
2 4.164931
3 7.585888
... 4.443360
330 1.685101
fitted(object) after processing with nresponse=NULL is [330,1]:
O3
1 1.255037
2 4.164931
3 7.585888
... 4.443360
330 1.685101
----Metadata: plotmo_y with nresponse=NULL
--plotmo_y with nresponse=NULL for earth object
get.object.y:
object$y is NULL (and it has no colnames)
object call is earth(formula=O3~., data=ozone1, pmethod="n", degree=2, nk=16)
get.y.from.model.frame:
formula(object) is O3 ~ vh + wind + humidity + temp + ibh + dpg + ibt + vis ...
formula is valid, now looking for data for the model.frame
object$model is NULL (and it has no colnames)
object$data is NULL (and it has no colnames)
argument 2 of the call is 'data'
eval(call$data, R_GlobalEnv)
call$data is usable and has column names O3 vh wind humidity temp ibh dpg ibt vis doy
na.action(object) is "na.fail"
model.env is R_GlobalEnv
data[330,10]:
O3 vh wind humidity temp ibh dpg ibt vis doy
1 3 5710 4 28 40 2693 -25 87 250 33
2 5 5700 3 37 45 590 -24 128 100 34
3 5 5760 3 51 54 1450 25 139 60 35
... 6 5720 4 69 35 1568 15 121 60 36
330 1 5550 4 85 39 5000 8 44 100 390
stats::model.frame(O3 ~ vh + wind + humidity + temp + ib..., data=call$data, na.action="na.fail")
model.frame returned[330,10]:
O3 vh wind humidity temp ibh dpg ibt vis doy
1 3 5710 4 28 40 2693 -25 87 250 33
2 5 5700 3 37 45 590 -24 128 100 34
3 5 5760 3 51 54 1450 25 139 60 35
... 6 5720 4 69 35 1568 15 121 60 36
330 1 5550 4 85 39 5000 8 44 100 390
y=model.frame[,1] is usable and has column name O3
plotmo_y returned[330,1]:
O3
1 3
2 5
3 5
... 6
330 1
plotmo_y after processing with nresponse=NULL is [330,1]:
O3
1 3
2 5
3 5
... 6
330 1
converted nresponse=NA to nresponse=1
nresponse=1 (was NA) ncol(fitted) 1 ncol(predict) 1 ncol(y) 1
----Metadata: plotmo_y with nresponse=1
--plotmo_y with nresponse=1 for earth object
get.object.y:
object$y is NULL (and it has no colnames)
object call is earth(formula=O3~., data=ozone1, pmethod="n", degree=2, nk=16)
get.y.from.model.frame:
formula(object) is O3 ~ vh + wind + humidity + temp + ibh + dpg + ibt + vis ...
formula is valid, now looking for data for the model.frame
object$model is NULL (and it has no colnames)
object$data is NULL (and it has no colnames)
argument 2 of the call is 'data'
eval(call$data, R_GlobalEnv)
call$data is usable and has column names O3 vh wind humidity temp ibh dpg ibt vis doy
na.action(object) is "na.fail"
model.env is R_GlobalEnv
data[330,10]:
O3 vh wind humidity temp ibh dpg ibt vis doy
1 3 5710 4 28 40 2693 -25 87 250 33
2 5 5700 3 37 45 590 -24 128 100 34
3 5 5760 3 51 54 1450 25 139 60 35
... 6 5720 4 69 35 1568 15 121 60 36
330 1 5550 4 85 39 5000 8 44 100 390
stats::model.frame(O3 ~ vh + wind + humidity + temp + ib..., data=call$data, na.action="na.fail")
model.frame returned[330,10]:
O3 vh wind humidity temp ibh dpg ibt vis doy
1 3 5710 4 28 40 2693 -25 87 250 33
2 5 5700 3 37 45 590 -24 128 100 34
3 5 5760 3 51 54 1450 25 139 60 35
... 6 5720 4 69 35 1568 15 121 60 36
330 1 5550 4 85 39 5000 8 44 100 390
y=model.frame[,1] is usable and has column name O3
got model response from model.frame(O3 ~ vh + wind + humidity + temp + ib...,
data=call$data, na.action="na.fail")
plotmo_y returned[330,1]:
O3
1 3
2 5
3 5
... 6
330 1
plotmo_y after processing with nresponse=1 is [330,1]:
O3
1 3
2 5
3 5
... 6
330 1
got response name "O3" from yhat
resp.levs is NULL
----Metadata: done
number of x values: vh 53 wind 11 humidity 65 temp 63 ibh 196 dpg 128 ibt 193...
----plotmo_singles for earth object
singles: 4 temp, 5 ibh, 8 vis, 9 doy
----plotmo_pairs for earth object
pairs:
[,1] [,2]
[1,] "2 wind" "8 vis"
[2,] "3 humidity" "4 temp"
[3,] "4 temp" "6 dpg"
do.par invoked call.dots
TRACE do.par called call.dots(par, DROP="*", KEEP="PREFIX,PAR.ARGS",
TRACE=if(trace>=2)trace-1e...), SCALAR=TRUE,
def.mfrow=c(nrows,nrows), def.mgp=mgp, def.tcl=-0.3,
def.font.main=def.font.main, def.mar=mar,
def.oma=def.oma, def.cex.main=def.cex.main,
def.cex.lab=cex.lab, def.cex.axis=cex.lab,
force.cex=cex)
PREFIX par.
DROP .*
KEEP >STANDARDPREFIXES|^force\.|^def\.|^drop\.
>PREFIX|^par\.
>CALLARGS|^def\.mfrow$|^def\.mgp$|^def\.tcl$|^def\.font\.main$|^def\.mar$|^def\.oma$|^def\.cex\.main$|^def\.cex\.lab$|^def\.cex\.axis$|^force\.cex$
>EXPLICIT
>PAR_ARGS|^adj$|^ann$|^ask$|^bg$|^bty$|^cex$|^cex\.axis$|^cex\.lab$|^cex\.main$|^cex\.sub$|^col\.axis$|^col\.lab$|^col\.main$|^col\.sub$|^crt$|^err$|^family$|^fg$|^fig$|^fin$|^font$|^font\.axis$|^font\.lab$|^font\.main$|^font\.sub$|^lab$|^las$|^lend$|^lheight$|^ljoin$|^lmitre$|^lty$|^mai$|^mar$|^mex$|^mfcol$|^mfg$|^mfrow$|^mgp$|^mkh$|^new$|^oma$|^omd$|^omi$|^pch$|^pin$|^plt$|^ps$|^pty$|^srt$|^tck$|^tcl$|^usr$|^xaxp$|^xaxs$|^xaxt$|^xlog$|^xpd$|^yaxp$|^yaxs$|^yaxt$|^ylbias$|^ylog$
input dotnames def.mfrow def.mgp def.tcl def.font.main def.mar def.oma def.cex.main def.cex.lab def.cex.axis force.cex
after DROP and KEEP def.mfrow def.mgp def.tcl def.font.main def.mar def.oma def.cex.main def.cex.lab def.cex.axis force.cex
return dotnames mfrow mgp tcl font.main mar oma cex.main cex.lab cex.axis cex
graphics::par(mfrow=c(3,3), mgp=c(1.5,0.4,0), tcl=-0.3, font.main=2,
mar=c(3,2,1.2,0.8), oma=c(0,0,3,0), cex.main=1.2, cex.lab=1,
cex.axis=1, cex=0.66)
----Figuring out ylim
--get.ylim.by.dummy.plots
--plot.degree1(draw.plot=FALSE)
degree1 plot1 (pmethod "plotmo") variable temp
newdata[50,9]:
vh wind humidity temp ibh dpg ibt vis doy
1 5760 5 64 25.00000 2112.5 24 167.5 120 205.5
2 5760 5 64 26.38776 2112.5 24 167.5 120 205.5
3 5760 5 64 27.77551 2112.5 24 167.5 120 205.5
... 5760 5 64 29.16327 2112.5 24 167.5 120 205.5
50 5760 5 64 93.00000 2112.5 24 167.5 120 205.5
stats::predict(earth.object, data.frame[50,9], type="response")
predict returned[50,1]:
O3
1 5.311674
2 5.527233
3 5.742791
... 5.958350
50 29.012915
predict after processing with nresponse=1 is [50,1]:
O3
1 5.311674
2 5.527233
3 5.742791
... 5.958350
50 29.012915
degree1 plot2 (pmethod "plotmo") variable ibh
newdata[50,9]:
vh wind humidity temp ibh dpg ibt vis doy
1 5760 5 64 62 111.0000 24 167.5 120 205.5
2 5760 5 64 62 210.7755 24 167.5 120 205.5
3 5760 5 64 62 310.5510 24 167.5 120 205.5
... 5760 5 64 62 410.3265 24 167.5 120 205.5
50 5760 5 64 62 5000.0000 24 167.5 120 205.5
stats::predict(earth.object, data.frame[50,9], type="response")
predict returned[50,1]:
O3
1 10.870828
2 11.135522
3 11.400215
... 11.664908
50 9.845279
predict after processing with nresponse=1 is [50,1]:
O3
1 10.870828
2 11.135522
3 11.400215
... 11.664908
50 9.845279
degree1 plot3 (pmethod "plotmo") variable vis
newdata[50,9]:
vh wind humidity temp ibh dpg ibt vis doy
1 5760 5 64 62 2112.5 24 167.5 0.000000 205.5
2 5760 5 64 62 2112.5 24 167.5 7.142857 205.5
3 5760 5 64 62 2112.5 24 167.5 14.285714 205.5
... 5760 5 64 62 2112.5 24 167.5 21.428571 205.5
50 5760 5 64 62 2112.5 24 167.5 350.000000 205.5
stats::predict(earth.object, data.frame[50,9], type="response")
predict returned[50,1]:
O3
1 14.86257
2 14.72553
3 14.58850
... 14.45147
50 11.88484
predict after processing with nresponse=1 is [50,1]:
O3
1 14.86257
2 14.72553
3 14.58850
... 14.45147
50 11.88484
degree1 plot4 (pmethod "plotmo") variable doy
newdata[50,9]:
vh wind humidity temp ibh dpg ibt vis doy
1 5760 5 64 62 2112.5 24 167.5 120 33.00000
2 5760 5 64 62 2112.5 24 167.5 120 40.28571
3 5760 5 64 62 2112.5 24 167.5 120 47.57143
... 5760 5 64 62 2112.5 24 167.5 120 54.85714
50 5760 5 64 62 2112.5 24 167.5 120 390.00000
stats::predict(earth.object, data.frame[50,9], type="response")
predict returned[50,1]:
O3
1 7.968080
2 8.746490
3 9.524900
... 10.303310
50 8.957033
predict after processing with nresponse=1 is [50,1]:
O3
1 7.968080
2 8.746490
3 9.524900
... 10.303310
50 8.957033
--plot.degree2(draw.plot=FALSE)
degree2 plot1 (pmethod "plotmo") variables wind:vis
newdata[400,9]:
vh wind humidity temp ibh dpg ibt vis doy
1 5760 0.0000000 64 62 2112.5 24 167.5 0 205.5
2 5760 0.5789474 64 62 2112.5 24 167.5 0 205.5
3 5760 1.1578947 64 62 2112.5 24 167.5 0 205.5
... 5760 1.7368421 64 62 2112.5 24 167.5 0 205.5
400 5760 11.0000000 64 62 2112.5 24 167.5 350 205.5
stats::predict(earth.object, data.frame[400,9], type="response")
predict returned[400,1]:
O3
1 16.19942
2 16.04463
3 15.88983
... 15.73504
400 11.88484
predict after processing with nresponse=1 is [400,1]:
O3
1 16.19942
2 16.04463
3 15.88983
... 15.73504
400 11.88484
degree2 plot2 (pmethod "plotmo") variables humidity:temp
newdata[400,9]:
vh wind humidity temp ibh dpg ibt vis doy
1 5760 5 19.00000 25 2112.5 24 167.5 120 205.5
2 5760 5 22.89474 25 2112.5 24 167.5 120 205.5
3 5760 5 26.78947 25 2112.5 24 167.5 120 205.5
... 5760 5 30.68421 25 2112.5 24 167.5 120 205.5
400 5760 5 93.00000 93 2112.5 24 167.5 120 205.5
stats::predict(earth.object, data.frame[400,9], type="response")
predict returned[400,1]:
O3
1 5.311674
2 5.311674
3 5.311674
... 5.311674
400 32.296021
predict after processing with nresponse=1 is [400,1]:
O3
1 5.311674
2 5.311674
3 5.311674
... 5.311674
400 32.296021
degree2 plot3 (pmethod "plotmo") variables temp:dpg
newdata[400,9]:
vh wind humidity temp ibh dpg ibt vis doy
1 5760 5 64 25.00000 2112.5 -69 167.5 120 205.5
2 5760 5 64 28.57895 2112.5 -69 167.5 120 205.5
3 5760 5 64 32.15789 2112.5 -69 167.5 120 205.5
... 5760 5 64 35.73684 2112.5 -69 167.5 120 205.5
400 5760 5 64 93.00000 2112.5 107 167.5 120 205.5
stats::predict(earth.object, data.frame[400,9], type="response")
predict returned[400,1]:
O3
1 5.311674
2 5.867588
3 6.423503
... 6.979417
400 -6.671880
predict after processing with nresponse=1 is [400,1]:
O3
1 5.311674
2 5.867588
3 6.423503
... 6.979417
400 -6.671880
--done get.ylim.by.dummy.plots
ylim c(-6.672, 40.23) clip TRUE
--plot.degree1(draw.plot=TRUE)
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
draw.degree1 invoked call.dots
TRACE draw.degree1 called call.plot(plot.default, PREFIX="degree1.",
TRACE=if(isingle==1&&trace...),
force.x=xframe[,ipred], force.y=yhat, force.type="n",
force.main=main, force.xlab=xlab, force.ylab=ylab,
force.xlim=xlim, force.ylim=ylim,
def.xaxt=if(xaxis.is.levs)"n"...),
def.yaxt=if(yaxis.is.levs)"n"...))
PREFIX degree1.
DROP .*
KEEP >STANDARDPREFIXES|^force\.|^def\.|^drop\.
>PREFIX|^degree1\.
>CALLARGS|^force\.x$|^force\.y$|^force\.type$|^force\.main$|^force\.xlab$|^force\.ylab$|^force\.xlim$|^force\.ylim$|^def\.xaxt$|^def\.yaxt$
>EXPLICIT
>PLOT_ARGS|^add$|^adj$|^bty$|^cex$|^cex\.axis$|^cex\.lab$|^cex\.main$|^cex\.sub$|^col$|^col\.axis$|^col\.lab$|^col\.main$|^col\.sub$|^crt$|^family$|^font$|^font$|^font\.axis$|^font\.lab$|^font\.main$|^font\.sub$|^lend$|^ljoin$|^lmitre$|^lty$|^lwd$|^main$|^pch$|^srt$|^xaxp$|^xaxs$|^xaxt$|^xlab$|^xlim$|^xlog$|^xpd$|^yaxp$|^yaxs$|^yaxt$|^ylab$|^ylim$|^ylog$
input dotnames force.x force.y force.type force.main force.xlab force.ylab force.xlim force.ylim def.xaxt def.yaxt
after DROP and KEEP force.x force.y force.type force.main force.xlab force.ylab force.xlim force.ylim def.xaxt def.yaxt
return dotnames x y type main xlab ylab xaxt yaxt xlim ylim
graphics::plot.default(x=c(25,26.39,27.7...), y=c(5.312,5.527,5...), type="n",
main="1 temp", xlab="", ylab="", xaxt="s", yaxt="s",
xlim=c(25,93), ylim=c(-6.67,40.23))
--plot.degree2(draw.plot=TRUE)
persp(wind:vis) theta 145
TRACE plot.persp called deprefix(persp, FNAME="persp", KEEP="PREFIX,PLOT.ARGS",
FORMALS=persp.def.formals,
TRACE=if(ipair==1&&trace>=...), force.x=x1grid,
force.y=x2grid, force.z=yhat,
force.xlim=range(x1grid), force.ylim=range(x2grid),
force.zlim=if(is.null(ylim))yli...), force.xlab=xlab,
force.ylab=ylab, force.theta=theta, force.phi=30,
force.d=1, force.main=main2, def.cex.lab=cex.lab,
def.cex.axis=cex.lab, def.zlab=zlab,
def.ticktype="simple", def.nticks=def.nticks,
def.cex=cex1, force.col="lightblue", def.border=NULL,
def.shade=0.5)
PREFIX persp.
DROP NULL
KEEP >STANDARDPREFIXES|^force\.|^def\.|^drop\.
>PREFIX|^persp\.
>CALLARGS|^force\.x$|^force\.y$|^force\.z$|^force\.xlim$|^force\.ylim$|^force\.zlim$|^force\.xlab$|^force\.ylab$|^force\.theta$|^force\.phi$|^force\.d$|^force\.main$|^def\.cex\.lab$|^def\.cex\.axis$|^def\.zlab$|^def\.ticktype$|^def\.nticks$|^def\.cex$|^force\.col$|^def\.border$|^def\.shade$
>EXPLICIT
>PLOT_ARGS|^add$|^adj$|^bty$|^cex$|^cex\.axis$|^cex\.lab$|^cex\.main$|^cex\.sub$|^col$|^col\.axis$|^col\.lab$|^col\.main$|^col\.sub$|^crt$|^family$|^font$|^font$|^font\.axis$|^font\.lab$|^font\.main$|^font\.sub$|^lend$|^ljoin$|^lmitre$|^lty$|^lwd$|^main$|^pch$|^srt$|^xaxp$|^xaxs$|^xaxt$|^xlab$|^xlim$|^xlog$|^xpd$|^yaxp$|^yaxs$|^yaxt$|^ylab$|^ylim$|^ylog$
input dotnames force.x force.y force.z force.xlim force.ylim force.zlim force.xlab force.ylab force.theta force.phi force.d force.main def.cex.lab def.cex.axis def.zlab def.ticktype def.nticks def.cex force.col def.border def.shade
after DROP and KEEP force.x force.y force.z force.xlim force.ylim force.zlim force.xlab force.ylab force.theta force.phi force.d force.main def.cex.lab def.cex.axis def.zlab def.ticktype def.nticks def.cex force.col def.shade
return dotnames x y main xlab ylab cex.lab cex.axis zlab ticktype nticks cex shade z xlim ylim zlim theta phi d col
persp(humidity:temp) theta -35
persp(temp:dpg) theta 235
>
> caption <- "test 2 x 2 layout"
> dopar(1,1,caption)
test 2 x 2 layout
> a <- earth(O3 ~ ., data=ozone1, nk=9, pmethod="n", degree=2)
> plotmo(a, caption=caption)
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
>
> caption <- "test 1 x 1 layout"
> dopar(1,1,caption)
test 1 x 1 layout
> a <- earth(O3 ~ ., data=ozone1, nk=4, pmethod="n", degree=2)
> plotmo(a, caption=caption)
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
>
> caption <- "test plotmo basic params"
> a <- earth(O3 ~ ., data=ozone1, degree=2)
> dopar(3,2,caption)
test plotmo basic params
> plotmo(a, do.par=FALSE, degree1=1, nrug=-1, degree2=F, caption=caption,
+ main="test main", xlab="test xlab", ylab="test ylab")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
> plotmo(a, do.par=FALSE, degree1=F, degree2=4, grid.func=mean, persp.col="white", ngrid2=10, persp.phi=40)
> set.seed(2016)
> plotmo(a, do.par=FALSE, degree1=1, degree1.lty=2, degree1.lwd=4, degree1.col=2, nrug=TRUE, degree2=F, main="nrug=300")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
> plotmo(a, do.par=FALSE, degree1=1, nrug=-1, degree2=F, main="nrug=TRUE")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
> set.seed(2016)
> plotmo(a, do.par=FALSE, degree1=1, nrug=10, ngrid1=50, degree2=F, main="ngrid1=50 nrug=10")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
> plotmo(a, do.par=FALSE, degree1=NA, degree2=1, persp.phi=60) # graph args
>
> caption <- "test plotmo xlim and ylim"
> a <- earth(O3 ~ ., data=ozone1, degree=2)
> dopar(5,3,caption)
test plotmo xlim and ylim
> plotmo(a, do.par=FALSE, degree1=2:3, degree2=4, caption=caption, xlab="ylim=default")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
> plotmo(a, do.par=FALSE, degree1=2:3, degree2=4, ylim=NA, xlab="ylim=NA")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
> plotmo(a, do.par=FALSE, degree1=2:3, degree2=4, ylim=c(0,20), xlab="ylim=c(0,20)")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
> plotmo(a, do.par=FALSE, degree1=2:3, degree2=4, xlim=c(190,250), xlab="xlim=c(190,250)")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
> plotmo(a, do.par=FALSE, degree1=2:3, degree2=4, xlim=c(190,250), ylim=c(11,18), xlab="xlim=c(190,250), ylim=c(11,18)")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
>
> # check various types of predictors with grid.func and ndiscrete
>
> varied.type.data <- data.frame(
+ y = 1:13,
+ num = c(1, 3, 2, 3, 4, 5, 6, 4, 5, 6.5, 3, 6, 5), # 7 unique values (but one is non integral)
+ int = c(1L, 1L, 3L, 3L, 4L, 4L, 3L, 5L, 3L, 6L, 7L, 8L, 10L), # 8 unique values
+ bool = c(F, F, F, F, F, T, T, T, T, T, T, T, T),
+ date = as.Date(
+ c("2018-08-01", "2018-08-02", "2018-08-03",
+ "2018-08-04", "2018-08-05", "2018-08-06",
+ "2018-08-07", "2018-08-08", "2018-08-08",
+ "2018-08-08", "2018-08-10", "2018-08-11", "2018-08-11")),
+ ord = ordered(c("ord3", "ord3", "ord3",
+ "ord1", "ord2", "ord3",
+ "ord1", "ord2", "ord3",
+ "ord1", "ord1", "ord1", "ord1"),
+ levels=c("ord1", "ord3", "ord2")),
+ fac = as.factor(c("fac1", "fac1", "fac1",
+ "fac2", "fac2", "fac2",
+ "fac3", "fac3", "fac3",
+ "fac1", "fac2", "fac3", "fac3")),
+ str = c("str1", "str1", "str1", # will be treated like a factor
+ "str2", "str2", "str2",
+ "str3", "str3", "str3",
+ "str3", "str3", "str3", "str3"))
>
> varied.type.lm <- lm(y ~ ., data = varied.type.data)
> print(summary(varied.type.lm))
Call:
lm(formula = y ~ ., data = varied.type.data)
Residuals:
1 2 3 4 5 6 7
9.619e-02 1.673e-01 -2.635e-01 1.297e-02 -1.297e-02 -6.592e-17 -1.029e-01
8 9 10 11 12 13
1.297e-02 5.898e-17 -8.674e-17 5.204e-17 5.772e-02 3.220e-02
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -7192.3724 6018.6749 -1.195 0.3546
num 0.2618 0.1919 1.364 0.3057
int 0.6437 0.2279 2.824 0.1058
boolTRUE -1.7185 0.5305 -3.240 0.0835 .
date 0.4053 0.3392 1.195 0.3547
ord.L -0.2014 0.1726 -1.167 0.3637
ord.Q -1.5481 0.4045 -3.827 0.0620 .
facfac2 0.4621 1.1289 0.409 0.7219
facfac3 -0.4299 0.5784 -0.743 0.5348
strstr2 1.3480 0.8570 1.573 0.2564
strstr3 5.0732 1.2534 4.048 0.0560 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2471 on 2 degrees of freedom
Multiple R-squared: 0.9993, Adjusted R-squared: 0.996
F-statistic: 297.9 on 10 and 2 DF, p-value: 0.003351
> set.seed(2018)
> plotres(varied.type.lm, info=TRUE)
> plotmo(varied.type.lm, pmethod="apartdep", all2=TRUE, ticktype="d", col.response="red", caption="varied.type.lm\npmethod=\"apartdep\" default grid func")
calculating apartdep for num
calculating apartdep for int
calculating apartdep for bool
calculating apartdep for date
calculating apartdep for ord
calculating apartdep for fac
calculating apartdep for str
calculating apartdep for num:int 01234567890
calculating apartdep for num:bool 01234567890
calculating apartdep for num:date 01234567890
calculating apartdep for num:ord 01234567890
calculating apartdep for num:fac 01234567890
calculating apartdep for num:str 01234567890
calculating apartdep for int:bool 01234567890
calculating apartdep for int:date 01234567890
calculating apartdep for int:ord 01234567890
calculating apartdep for int:fac 01234567890
calculating apartdep for int:str 01234567890
calculating apartdep for bool:date 0123456790
calculating apartdep for bool:ord 0123456790
calculating apartdep for bool:fac 0123456790
calculating apartdep for bool:str 0123456790
calculating apartdep for date:ord 01234567890
calculating apartdep for date:fac 01234567890
calculating apartdep for date:str 01234567890
calculating apartdep for ord:fac 01234567890
calculating apartdep for ord:str 01234567890
calculating apartdep for fac:str 01234567890
> plotmo(varied.type.lm, all2=TRUE, ticktype="d", col.response="red", caption="varied.type.lm\ndefault grid func")
plotmo grid: num int bool date ord fac str
4 4 TRUE 2018-08-07 ord1 fac3 str3
> plotmo(varied.type.lm, all2=TRUE, ndiscre=1, caption="varied.type.lm\nndiscrete=1")
plotmo grid: num int bool date ord fac str
4 4 TRUE 2018-08-07 ord1 fac3 str3
> plotmo(varied.type.lm, all2=TRUE, ndiscr=2, caption="varied.type.lm\nndiscrete=2")
plotmo grid: num int bool date ord fac str
4 4 TRUE 2018-08-07 ord1 fac3 str3
> plotmo(varied.type.lm, all2=TRUE, ndis=100, caption="varied.type.lm\nndiscrete=100")
plotmo grid: num int bool date ord fac str
4 4 TRUE 2018-08-07 ord1 fac3 str3
> cat("grid.func=median:\n")
grid.func=median:
> plotmo(varied.type.lm, all2=TRUE, grid.func=median, caption="varied.type.lm\ngrid.func=median")
Warning: grid.func failed for ord, so will use the most common value of ord
Warning: grid.func failed for fac, so will use the most common value of fac
Warning: grid.func failed for str, so will use the most common value of str
Warning: grid.func failed for ord, so will use the most common value of ord
Warning: grid.func failed for fac, so will use the most common value of fac
Warning: grid.func failed for str, so will use the most common value of str
plotmo grid: num int bool date ord fac str
4 4 TRUE 2018-08-07 ord1 fac3 str3
> cat("grid.func=quantile:\n")
grid.func=quantile:
> plotmo(varied.type.lm, all2=TRUE, grid.func=function(x, ...) quantile(x, 0.5), caption="varied.type.lm\ngrid.func=function(x, ...) quantile(x, 0.5)")
Warning: grid.func failed for date, so will use the default grid.func for date
Warning: grid.func failed for ord, so will use the most common value of ord
Warning: grid.func failed for fac, so will use the most common value of fac
Warning: grid.func failed for str, so will use the most common value of str
Warning: grid.func failed for date, so will use the default grid.func for date
Warning: grid.func failed for ord, so will use the most common value of ord
Warning: grid.func failed for fac, so will use the most common value of fac
Warning: grid.func failed for str, so will use the most common value of str
plotmo grid: num int bool date ord fac str
4 4 TRUE 2018-08-07 ord1 fac3 str3
> cat("grid.func=mean:\n")
grid.func=mean:
> plotmo(varied.type.lm, all2=TRUE, grid.func=mean, caption="varied.type.lm\ngrid.func=mean")
Warning in mean.default(x, na.rm = TRUE) :
argument is not numeric or logical: returning NA
Warning: grid.func returned NA for ord, so will use the default grid.func for ord
Warning in mean.default(x, na.rm = TRUE) :
argument is not numeric or logical: returning NA
Warning: grid.func returned NA for fac, so will use the default grid.func for fac
Warning in mean.default(x, na.rm = TRUE) :
argument is not numeric or logical: returning NA
Warning: grid.func returned NA for str, so will use the default grid.func for str
Warning in mean.default(x, na.rm = TRUE) :
argument is not numeric or logical: returning NA
Warning: grid.func returned NA for ord, so will use the default grid.func for ord
Warning in mean.default(x, na.rm = TRUE) :
argument is not numeric or logical: returning NA
Warning: grid.func returned NA for fac, so will use the default grid.func for fac
Warning in mean.default(x, na.rm = TRUE) :
argument is not numeric or logical: returning NA
Warning: grid.func returned NA for str, so will use the default grid.func for str
plotmo grid: num int bool date ord fac str
4.115385 4 TRUE 2018-08-06 ord1 fac3 str3
>
> varied.type.earth <- earth(y ~ ., data = varied.type.data, thresh=0, penalty=-1, trace=1)
x[13,10] with colnames num int boolTRUE date ord.L ord.Q facfac2 facfac3 strstr2...
y[13,1] with colname y, and values 1, 2, 3, 4, 5, 6, 7, 8, 9, 10...
Forward pass term 1, 2, 4, 6, 8, 10, 12, 14, 16, 18
Reached maximum RSq 1.0000 at 19 terms, 13 terms used (RSq 1.0000)
After forward pass GRSq 1.000 RSq 1.000
Prune backward penalty -1 nprune null: selected 13 of 13 terms, and 9 of 10 preds
After pruning pass GRSq 1 RSq 1
> print(summary(varied.type.earth))
Call: earth(formula=y~., data=varied.type.data, trace=1, thresh=0, penalty=-1)
coefficients
(Intercept) 9.5964912
boolTRUE -2.0473684
ord.L 0.4986964
ord.Q 0.0859470
facfac2 -4.4157895
facfac3 -3.1526316
strstr2 3.2526316
h(4-num) 1.4105263
h(num-4) -0.3157895
h(4-int) 2.1157895
h(int-4) 0.3421053
h(17749-date) -3.8210526
h(date-17749) 1.4368421
Selected 13 of 13 terms, and 9 of 10 predictors
Termination condition: Reached maximum RSq 1.0000 at 13 terms
Importance: date, facfac2, facfac3, int, strstr2, boolTRUE, num, ord.L, ...
Number of terms at each degree of interaction: 1 12 (additive model)
GCV 0 RSS 0 GRSq 1 RSq 1
> set.seed(2018)
> plotres(varied.type.earth, info=TRUE)
Warning in cor(rank(x), rank(y)) : the standard deviation is zero
Warning: draw.density.along.the.bottom: cannot determine density
> plotmo(varied.type.earth, all1=TRUE, all2=TRUE, persp.ticktype="d", col.response="red")
plotmo grid: num int bool date ord fac str
4 4 TRUE 2018-08-07 ord1 fac3 str3
>
> # term.plot calls predict.earth with an se parameter, even with termplot(se=FALSE)
>
> caption <- "basic earth test against termplot"
> dopar(4,4,caption)
basic earth test against termplot
> make.space.for.caption("test caption1")
> a <- earth(O3 ~ ., data=ozone1, degree=2)
> plotmo(a, do.par=FALSE, ylim=NA, caption=caption, degree2=FALSE)
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
> cat("Ignore warning: predict.earth ignored argument \"se.fit\"\n")
Ignore warning: predict.earth ignored argument "se.fit"
> termplot(a)
Warning: predict.earth ignored argument 'se.fit'
>
> caption <- "test change order of earth predictors and cex"
> dopar(4,4,caption)
test change order of earth predictors and cex
> # minspan=1 to force two degree2 graphs for the test (wasn't necessary in old versions of earth)
> a <- earth(doy ~ humidity + temp + wind, data=ozone1, degree=2, minspan=1)
> plotmo(a, do.par=FALSE, ylim=NA, caption=caption, degree2=c(1,2), cex=1.2)
plotmo grid: humidity temp wind
64 62 5
> termplot(a)
Warning: predict.earth ignored argument 'se.fit'
>
> caption <- "test all1=TRUE"
> a <- earth(doy ~ humidity + temp + wind, data=ozone1, degree=2)
> plotmo(a, caption=caption, all1=TRUE, persp.ticktype="d", persp.nticks=2)
plotmo grid: humidity temp wind
64 62 5
> caption <- "test all2=TRUE"
> print(summary(a))
Call: earth(formula=doy~humidity+temp+wind, data=ozone1, degree=2)
coefficients
(Intercept) 150.868918
h(humidity-28) 1.614397
h(49-temp) -6.984397
h(3-wind) 50.527668
h(28-humidity) * h(temp-53) 8.123127
h(28-humidity) * h(53-temp) 1.520105
h(28-humidity) * h(temp-45) 5.390040
h(28-humidity) * h(temp-50) -12.953206
h(41-humidity) * h(wind-3) -0.996454
Selected 9 of 18 terms, and 3 of 3 predictors
Termination condition: Reached nk 21
Importance: wind, temp, humidity
Number of terms at each degree of interaction: 1 3 5
GCV 8954.829 RSS 2590958 GRSq 0.1805267 RSq 0.2771303
> plotmo(a, caption=caption, all2=TRUE)
plotmo grid: humidity temp wind
64 62 5
>
> oz <- ozone1[150:200,c("O3","temp","humidity","ibh")]
> a.glob <- earth(O3~temp+humidity, data=oz, degree=2)
> ad.glob <- earth(oz[,2:3], oz[,1], degree=2)
> func1 <- function()
+ {
+ caption <- "test environments and finding the correct data"
+ dopar(4,4,caption)
+ set.seed(2016)
+
+ plotmo(a.glob, do.par=FALSE, main="a.glob oz",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20, trace=2)
+ mtext(caption, outer=TRUE, font=2, line=1.5, cex=1)
+ plotmo(ad.glob, do.par=FALSE, main="ad.glob oz",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pch.response=20, trace=2) # pch.response test backcompat
+
+ a <- earth(O3~temp+humidity, data=oz, degree=2)
+ plotmo(a, do.par=FALSE, main="a oz",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20)
+
+ ad <- earth(oz[,2:3], oz[,1], degree=2)
+ plotmo(ad, do.par=FALSE, main="ad oz",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20)
+
+ oz.org <- oz
+ oz10 <- 10 * oz # multiply by 10 so we can see by the axis labels if right data is being used
+ oz <- oz10 # oz is now local to this function, but multiplied by 10
+ a.oz10 <- earth(O3~temp+humidity, data=oz, degree=2)
+ a.oz10.keep <- earth(O3~temp+humidity, data=oz, degree=2, keepxy=TRUE)
+ plotmo(a.oz10, do.par=FALSE, main="a oz10",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20)
+
+ ad.oz10 <- earth(oz[,2:3], oz[,1], degree=2)
+ ad.oz10.keep <- earth(oz[,2:3], oz[,1], degree=2, keepxy=TRUE)
+ plotmo(ad.oz10, do.par=FALSE, main="ad oz10",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20)
+
+ func2 <- function() {
+ a.func <- earth(O3 ~ temp + humidity, data=oz10, degree=2)
+ plotmo(a.func, do.par=FALSE, main="a.func oz10",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20)
+
+ ad.func <- earth(oz10[,2:3], oz10[,1], degree=2)
+ plotmo(ad.func, do.par=FALSE, main="ad.func oz10",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20)
+
+ caption <- "test environments and finding the correct data, continued"
+ dopar(4,4,caption)
+
+ oz <- .1 * oz.org
+ a.func <- earth(O3~temp+ humidity , data=oz, degree=2)
+ plotmo(a.func, do.par=FALSE, main="a.func oz.1",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20)
+
+ ad.func <- earth(oz[,2:3], oz[,1], degree=2)
+ plotmo(ad.func, do.par=FALSE, main="ad.func oz.1",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20)
+
+ plotmo(a.oz10.keep, do.par=FALSE, main="func1:a.oz10.keep",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20)
+
+ plotmo(ad.oz10.keep, do.par=FALSE, main="func1:ad.oz10.keep",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20)
+
+ cat("Expect error msg: formal argument \"do.par\" matched by multiple actual arguments\n")
+ expect.err(try(plotmo(a.oz10, do.par=FALSE, main="func1:a.oz10",
+ degree1=1, all2=1, degree2=1, type2="im",
+ col.response=3, pt.pch=20, do.par=FALSE)))
+ }
+ func2()
+
+ y <- 3:11
+ x1 <- c(1,3,2,4,5,6,6,6,6)
+ x2 <- c(2,3,4,5,6,7,8,9,10)
+ frame <- data.frame(y=y, x1=x1, x2=x2)
+ foo <- function()
+ {
+ lm.18.out <- lm(y~x1+x2, model=FALSE)
+ x1[2] <- 18
+ y[3] <- 19
+ frame <- data.frame(y=y, x1=x1, x2=x2)
+ list(lm.18.out = lm.18.out,
+ lm.18 = lm(y~x1+x2),
+ lm.18.keep = lm(y~x1+x2, x=TRUE, y=TRUE),
+ lm.18.frame = lm(y~x1+x2, data=frame))
+ }
+ temp <- foo()
+ lm.18.out <- temp$lm.18.out
+ lm.18 <- temp$lm.18
+ lm.18.keep <- temp$lm.18.keep
+ lm.18.frame <- temp$lm.18.frame
+
+ # following should all use the x1 and y inside foo
+
+ cat("==lm.18.out\n")
+ plotmo(lm.18.out, main="lm.18.out",
+ do.par=FALSE, degree1=1, clip=FALSE, ylim=c(0,20),
+ col.response=2, pt.pch=20)
+
+ cat("==lm.18\n")
+ plotmo(lm.18, main="lm.18",
+ do.par=FALSE, degree1=1, clip=FALSE, ylim=c(0,20),
+ col.response=2, pt.pch=20)
+
+ cat("==lm.18.keep\n")
+ plotmo(lm.18.keep, main="lm.18.keep", trace=2,
+ do.par=FALSE, degree1=1, clip=FALSE, ylim=c(0,20),
+ col.response=2, pt.pch=20)
+
+ cat("==lm.18.frame\n")
+ plotmo(lm.18.frame, main="lm.18.frame",
+ do.par=FALSE, degree1=1, clip=FALSE, ylim=c(0,20),
+ col.response=2, pt.pch=20)
+ }
> func1()
test environments and finding the correct data
plotmo trace 2: plotmo(object=a.glob, type2="im", degree1=1, degree2=1, all2=1,
do.par=FALSE, trace=2, main="a.glob oz", col.response=3,
pt.pch=20)
--get.model.env for object with class earth
object call is earth(formula=O3~temp+humidity, data=oz, degree=2)
using the environment saved in $terms of the earth model: R_GlobalEnv
--plotmo_prolog for earth object 'a.glob'
--plotmo_x for earth object
get.object.x:
object$x is NULL (and it has no colnames)
object call is earth(formula=O3~temp+humidity, data=oz, degree=2)
get.x.from.model.frame:
formula(object) is O3 ~ temp + humidity
naked formula is the same
formula is valid, now looking for data for the model.frame
object$model is NULL (and it has no colnames)
object$data is NULL (and it has no colnames)
argument 2 of the call is 'data'
eval(call$data, R_GlobalEnv)
call$data is usable and has column names O3 temp humidity ibh
na.action(object) is "na.fail"
stats::model.frame(O3 ~ temp + humidity, data=call$data, na.action="na.fail")
x=model.frame[,-1] is usable and has column names temp humidity
plotmo_x returned[51,2]:
temp humidity
150 48 81
151 59 63
152 67 58
... 66 68
200 79 65
----Metadata: plotmo_predict with nresponse=NULL and newdata=NULL
calling predict.earth with NULL newdata
stats::predict(earth.object, NULL, type="response")
predict returned[51,1]:
O3
1 7.990058
2 11.446254
3 13.959851
... 13.645652
51 18.207402
predict after processing with nresponse=NULL is [51,1]:
O3
1 7.990058
2 11.446254
3 13.959851
... 13.645652
51 18.207402
----Metadata: plotmo_fitted with nresponse=NULL
stats::fitted(object=earth.object)
fitted(object) returned[51,1]:
O3
1 7.990058
2 11.446254
3 13.959851
... 13.645652
51 18.207402
fitted(object) after processing with nresponse=NULL is [51,1]:
O3
1 7.990058
2 11.446254
3 13.959851
... 13.645652
51 18.207402
----Metadata: plotmo_y with nresponse=NULL
--plotmo_y with nresponse=NULL for earth object
get.object.y:
object$y is NULL (and it has no colnames)
object call is earth(formula=O3~temp+humidity, data=oz, degree=2)
get.y.from.model.frame:
formula(object) is O3 ~ temp + humidity
formula is valid, now looking for data for the model.frame
object$model is NULL (and it has no colnames)
object$data is NULL (and it has no colnames)
argument 2 of the call is 'data'
eval(call$data, R_GlobalEnv)
call$data is usable and has column names O3 temp humidity ibh
na.action(object) is "na.fail"
stats::model.frame(O3 ~ temp + humidity, data=call$data, na.action="na.fail")
y=model.frame[,1] is usable and has column name O3
plotmo_y returned[51,1]:
O3
150 2
151 12
152 22
... 17
200 14
plotmo_y after processing with nresponse=NULL is [51,1]:
O3
150 2
151 12
152 22
... 17
200 14
converted nresponse=NA to nresponse=1
nresponse=1 (was NA) ncol(fitted) 1 ncol(predict) 1 ncol(y) 1
----Metadata: plotmo_y with nresponse=1
--plotmo_y with nresponse=1 for earth object
get.object.y:
object$y is NULL (and it has no colnames)
object call is earth(formula=O3~temp+humidity, data=oz, degree=2)
get.y.from.model.frame:
formula(object) is O3 ~ temp + humidity
formula is valid, now looking for data for the model.frame
object$model is NULL (and it has no colnames)
object$data is NULL (and it has no colnames)
argument 2 of the call is 'data'
eval(call$data, R_GlobalEnv)
call$data is usable and has column names O3 temp humidity ibh
na.action(object) is "na.fail"
stats::model.frame(O3 ~ temp + humidity, data=call$data, na.action="na.fail")
y=model.frame[,1] is usable and has column name O3
got model response from model.frame(O3 ~ temp + humidity,
data=call$data, na.action="na.fail")
plotmo_y returned[51,1]:
O3
150 2
151 12
152 22
... 17
200 14
plotmo_y after processing with nresponse=1 is [51,1]:
O3
150 2
151 12
152 22
... 17
200 14
got response name "O3" from yhat
resp.levs is NULL
----Metadata: done
number of x values: temp 27 humidity 27
----plotmo_singles for earth object
singles: 1 temp
----plotmo_pairs for earth object
pairs:
[,1] [,2]
[1,] "1 temp" "2 humidity"
----Figuring out ylim
--get.ylim.by.dummy.plots
--plot.degree1(draw.plot=FALSE)
degree1 plot1 (pmethod "plotmo") variable temp
newdata[50,2]:
temp humidity
1 48.00000 68
2 48.91837 68
3 49.83673 68
... 50.75510 68
50 93.00000 68
stats::predict(earth.object, data.frame[50,2], type="response")
predict returned[50,1]:
O3
1 7.990058
2 8.278609
3 8.567159
... 8.855710
50 29.834221
predict after processing with nresponse=1 is [50,1]:
O3
1 7.990058
2 8.278609
3 8.567159
... 8.855710
50 29.834221
--plot.degree2(draw.plot=FALSE)
degree2 plot1 (pmethod "plotmo") variables temp:humidity
newdata[400,2]:
temp humidity
1 48.00000 33
2 50.36842 33
3 52.73684 33
... 55.10526 33
400 93.00000 90
stats::predict(earth.object, data.frame[400,2], type="response")
predict returned[400,1]:
O3
1 7.990058
2 8.734215
3 9.478372
... 10.222529
400 33.851866
predict after processing with nresponse=1 is [400,1]:
O3
1 7.990058
2 8.734215
3 9.478372
... 10.222529
400 33.851866
--done get.ylim.by.dummy.plots
ylim c(1.936, 33.94) clip TRUE
--plot.degree1(draw.plot=TRUE)
plotmo grid: temp humidity
80 68
graphics::plot.default(x=c(48,48.92,49.8...), y=c(7.99,8.279,8...), type="n",
main="a.glob oz", xlab="", ylab="", xaxt="s", yaxt="s",
xlim=c(47.98,93.08), ylim=c(1.94,33.94))
--plot.degree2(draw.plot=TRUE)
plotmo trace 2: plotmo(object=ad.glob, type2="im", degree1=1, degree2=1,
all2=1, do.par=FALSE, trace=2, main="ad.glob oz",
col.response=3, pch.response=20)
--get.model.env for object with class earth
object call is earth(x=oz[, 2:3], y=oz[, 1], degree=2)
assuming the environment of the earth model is that of plotmo's caller: env(caption)
--plotmo_prolog for earth object 'ad.glob'
--plotmo_x for earth object
get.object.x:
object$x is NULL (and it has no colnames)
object call is earth(x=oz[, 2:3], y=oz[, 1], degree=2)
get.x.from.model.frame:
terms(object) did not return the terms, will look for the formula elsewhere
no formula in getCall(object)
get.data.from.object.call.field:
eval(getCall(object)$x, env(caption))
getCall(object)$x is usable and has column names temp humidity
plotmo_x returned[51,2]:
temp humidity
150 48 81
151 59 63
152 67 58
... 66 68
200 79 65
----Metadata: plotmo_predict with nresponse=NULL and newdata=NULL
calling predict.earth with NULL newdata
stats::predict(earth.object, NULL, type="response")
predict returned[51,1]:
oz[, 1]
1 7.990058
2 11.446254
3 13.959851
... 13.645652
51 18.207402
predict after processing with nresponse=NULL is [51,1]:
oz[, 1]
1 7.990058
2 11.446254
3 13.959851
... 13.645652
51 18.207402
----Metadata: plotmo_fitted with nresponse=NULL
stats::fitted(object=earth.object)
fitted(object) returned[51,1]:
oz[, 1]
1 7.990058
2 11.446254
3 13.959851
... 13.645652
51 18.207402
fitted(object) after processing with nresponse=NULL is [51,1]:
oz[, 1]
1 7.990058
2 11.446254
3 13.959851
... 13.645652
51 18.207402
----Metadata: plotmo_y with nresponse=NULL
--plotmo_y with nresponse=NULL for earth object
get.object.y:
object$y is NULL (and it has no colnames)
object call is earth(x=oz[, 2:3], y=oz[, 1], degree=2)
get.y.from.model.frame:
terms(object) did not return the terms, will look for the formula elsewhere
no formula in getCall(object)
get.data.from.object.call.field:
eval(getCall(object)$y, env(caption))
getCall(object)$y is usable but without colnames so we will keep on searching
names(call) is "" "x" "y" "degree"
the name of argument 2 is "y" so we will not process it with argn
object$y is NULL
call$y is usable but without colnames but we will use it anyway
colname was NULL now "y"
plotmo_y returned[51,1]:
y
1 2
2 12
3 22
... 17
51 14
plotmo_y after processing with nresponse=NULL is [51,1]:
y
1 2
2 12
3 22
... 17
51 14
converted nresponse=NA to nresponse=1
nresponse=1 (was NA) ncol(fitted) 1 ncol(predict) 1 ncol(y) 1
----Metadata: plotmo_y with nresponse=1
--plotmo_y with nresponse=1 for earth object
get.object.y:
object$y is NULL (and it has no colnames)
object call is earth(x=oz[, 2:3], y=oz[, 1], degree=2)
get.y.from.model.frame:
terms(object) did not return the terms, will look for the formula elsewhere
no formula in getCall(object)
get.data.from.object.call.field:
eval(getCall(object)$y, env(caption))
getCall(object)$y is usable but without colnames so we will keep on searching
names(call) is "" "x" "y" "degree"
the name of argument 2 is "y" so we will not process it with argn
object$y is NULL
call$y is usable but without colnames but we will use it anyway
got model response from getCall(object)$y
colname was NULL now "y"
plotmo_y returned[51,1]:
y
1 2
2 12
3 22
... 17
51 14
plotmo_y after processing with nresponse=1 is [51,1]:
y
1 2
2 12
3 22
... 17
51 14
got response name "oz[, 1]" from yhat
resp.levs is NULL
----Metadata: done
number of x values: temp 27 humidity 27
----plotmo_singles for earth object
singles: 1 temp
----plotmo_pairs for earth object
pairs:
[,1] [,2]
[1,] "1 temp" "2 humidity"
----Figuring out ylim
--get.ylim.by.dummy.plots
--plot.degree1(draw.plot=FALSE)
degree1 plot1 (pmethod "plotmo") variable temp
newdata[50,2]:
temp humidity
1 48.00000 68
2 48.91837 68
3 49.83673 68
... 50.75510 68
50 93.00000 68
stats::predict(earth.object, data.frame[50,2], type="response")
predict returned[50,1]:
oz[, 1]
1 7.990058
2 8.278609
3 8.567159
... 8.855710
50 29.834221
predict after processing with nresponse=1 is [50,1]:
oz[, 1]
1 7.990058
2 8.278609
3 8.567159
... 8.855710
50 29.834221
--plot.degree2(draw.plot=FALSE)
degree2 plot1 (pmethod "plotmo") variables temp:humidity
newdata[400,2]:
temp humidity
1 48.00000 33
2 50.36842 33
3 52.73684 33
... 55.10526 33
400 93.00000 90
stats::predict(earth.object, data.frame[400,2], type="response")
predict returned[400,1]:
oz[, 1]
1 7.990058
2 8.734215
3 9.478372
... 10.222529
400 33.851866
predict after processing with nresponse=1 is [400,1]:
oz[, 1]
1 7.990058
2 8.734215
3 9.478372
... 10.222529
400 33.851866
--done get.ylim.by.dummy.plots
ylim c(1.931, 34) clip TRUE
--plot.degree1(draw.plot=TRUE)
plotmo grid: temp humidity
80 68
graphics::plot.default(x=c(48,48.92,49.8...), y=c(7.99,8.279,8...), type="n",
main="ad.glob oz", xlab="", ylab="", xaxt="s", yaxt="s",
xlim=c(48,93), ylim=c(1.93,34))
--plot.degree2(draw.plot=TRUE)
plotmo grid: temp humidity
80 68
plotmo grid: temp humidity
80 68
plotmo grid: temp humidity
800 680
plotmo grid: temp humidity
800 680
plotmo grid: temp humidity
800 680
plotmo grid: temp humidity
800 680
test environments and finding the correct data, continued
plotmo grid: temp humidity
8 6.8
plotmo grid: temp humidity
8 6.8
plotmo grid: temp humidity
800 680
plotmo grid: temp humidity
800 680
Expect error msg: formal argument "do.par" matched by multiple actual arguments
Error in plotmo(a.oz10, do.par = FALSE, main = "func1:a.oz10", degree1 = 1, :
formal argument "do.par" matched by multiple actual arguments
Got expected error from try(plotmo(a.oz10, do.par = FALSE, main = "func1:a.oz10", degree1 = 1, all2 = 1, degree2 = 1, type2 = "im", col.response = 3, pt.pch = 20, do.par = FALSE))
==lm.18.out
plotmo grid: x1 x2
6 6
==lm.18
plotmo grid: x1 x2
6 6
==lm.18.keep
plotmo trace 2: plotmo(object=lm.18.keep, degree1=1, do.par=FALSE, clip=FALSE,
ylim=c(0,20), trace=2, main="lm.18.keep",
col.response=2, pt.pch=20)
--get.model.env for object with class lm
object call is lm(formula=y~x1+x2, x=TRUE, y=TRUE)
using the environment saved in $terms of the lm model: env(frame, lm.18.out, x1, y)
--plotmo_prolog for lm object 'lm.18.keep'
--plotmo_x for lm object
get.object.x:
object$x is usable and has column names (Intercept) x1 x2
dropped "(Intercept)" column from x
plotmo_x returned[9,2]:
x1 x2
1 1 2
2 18 3
3 2 4
... 4 5
9 6 10
----Metadata: plotmo_predict with nresponse=NULL and newdata=NULL
calling predict.lm with NULL newdata
stats::predict(lm.object, NULL, type="response")
predict returned[9,1] with no column names:
1 8.098674
2 3.323243
3 8.792796
... 8.674176
9 10.564707
predict after processing with nresponse=NULL is [9,1] with no column names:
1 8.098674
2 3.323243
3 8.792796
... 8.674176
9 10.564707
----Metadata: plotmo_fitted with nresponse=NULL
stats::fitted(object=lm.object)
fitted(object) returned[9,1] with no column names:
1 8.098674
2 3.323243
3 8.792796
... 8.674176
9 10.564707
fitted(object) after processing with nresponse=NULL is [9,1] with no column names:
1 8.098674
2 3.323243
3 8.792796
... 8.674176
9 10.564707
----Metadata: plotmo_y with nresponse=NULL
--plotmo_y with nresponse=NULL for lm object
get.object.y:
object$y is usable but without colnames so we will keep on searching
object call is lm(formula=y~x1+x2, x=TRUE, y=TRUE)
get.y.from.model.frame:
formula(object) is y ~ x1 + x2
formula is valid, now looking for data for the model.frame
object$model is usable and has column names y x1 x2
y=model.frame[,1] is usable and has column name y
plotmo_y returned[9,1]:
y
1 3
2 4
3 19
... 6
9 11
plotmo_y after processing with nresponse=NULL is [9,1]:
y
1 3
2 4
3 19
... 6
9 11
converted nresponse=NA to nresponse=1
nresponse=1 (was NA) ncol(fitted) 1 ncol(predict) 1 ncol(y) 1
----Metadata: plotmo_y with nresponse=1
--plotmo_y with nresponse=1 for lm object
get.object.y:
object$y is usable but without colnames so we will keep on searching
object call is lm(formula=y~x1+x2, x=TRUE, y=TRUE)
get.y.from.model.frame:
formula(object) is y ~ x1 + x2
formula is valid, now looking for data for the model.frame
object$model is usable and has column names y x1 x2
y=model.frame[,1] is usable and has column name y
got model response from object$model
plotmo_y returned[9,1]:
y
1 3
2 4
3 19
... 6
9 11
plotmo_y after processing with nresponse=1 is [9,1]:
y
1 3
2 4
3 19
... 6
9 11
got response name "y" from yfull
resp.levs is NULL
----Metadata: done
number of x values: x1 6 x2 9
----plotmo_singles for lm object
singles: 1 x1
----plotmo_pairs for lm object
formula(object) returned y ~ x1 + x2
formula.vars "x1" "x2"
term.labels "x1" "x2"
plotmo_pairs_from_term_labels
term.labels: "x1" "x2" "x1" "x2"
pred.names: "x1" "x2"
considering x1
considering x2
considering x1
considering x2
no pairs
----Figuring out ylim
ylim c(0, 20) clip FALSE
--plot.degree1(draw.plot=TRUE)
plotmo grid: x1 x2
6 6
degree1 plot1 (pmethod "plotmo") variable x1
newdata[50,2]:
x1 x2
1 1.000000 6
2 1.346939 6
3 1.693878 6
... 2.040816 6
50 18.000000 6
stats::predict(lm.object, data.frame[50,2], type="response")
predict returned[50,1] with no column names:
1 10.107826
2 10.000117
3 9.892409
... 9.784700
50 4.830107
predict after processing with nresponse=1 is [50,1]:
predict
1 10.107826
2 10.000117
3 9.892409
... 9.784700
50 4.830107
graphics::plot.default(x=c(1,1.347,1.694...), y=c(10.11,10,9.89...), type="n",
main="lm.18.keep", xlab="", ylab="", xaxt="s", yaxt="s",
xlim=c(1,18.04), ylim=c(0,20))
==lm.18.frame
plotmo grid: x1 x2
6 6
>
> caption <- "test earth formula versus x,y model"
> # dopar(4,4,caption)
> # mtext(caption, outer=TRUE, font=2, line=1.5, cex=1)
> a <- earth(O3 ~ ., data=ozone1, degree=2)
> plotmo(a, caption="test earth formula versus xy model (formula)")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
> a <- earth(ozone1[, -1], ozone1[,1], degree=2)
> plotmo(a, caption="test earth formula versus xy model (xy)")
plotmo grid: vh wind humidity temp ibh dpg ibt vis doy
5760 5 64 62 2112.5 24 167.5 120 205.5
>
> # single predictor
> caption <- "test earth(O3~wind, data=ozone1, degree=2), single predictor"
> dopar(2,2,caption)
test earth(O3~wind, data=ozone1, degree=2), single predictor
> a <- earth(O3~wind, data=ozone1, degree=2)
> plotmo(a)
>
> caption = "se=2, earth(doy~humidity+temp+wind, data=ozone1) versus termplot (expect no se lines)"
> dopar(3,3,caption)
se=2, earth(doy~humidity+temp+wind, data=ozone1) versus termplot (expect no se lines)
> mtext(caption, outer=TRUE, font=2, line=1.5, cex=1)
> # minspan=1 to force two degree2 graphs for the test (wasn't necessary in old versions of earth)
> a <- earth(doy~humidity + temp + wind, data=ozone1, degree=2, minspan=1)
> cat("Ignore warning: predict.earth ignored argument \"se\"\n")
Ignore warning: predict.earth ignored argument "se"
> termplot(a)
Warning: predict.earth ignored argument 'se.fit'
> plotmo(a, do.par=FALSE, ylim=NA, degree2=c(1:2), clip=FALSE, caption=caption)
plotmo grid: humidity temp wind
64 62 5
>
> # test fix to bug reported by Joe Retzer, FIXED Dec 7, 2007
> N <- 650
> set.seed(2007)
> q_4 <- runif(N, -1, 1)
> q_2102 <- runif(N, -1, 1)
> q_2104 <- runif(N, -1, 1)
> q_3105 <- runif(N, -1, 1)
> q_3106 <- runif(N, -1, 1)
> q_4104 <- runif(N, -1, 1)
> q_6101 <- runif(N, -1, 1)
> q_6103 <- runif(N, -1, 1)
> q_7104 <- runif(N, -1, 1)
> q_3109 <- runif(N, -1, 1)
> q_4103 <- runif(N, -1, 1)
> q_2111 <- runif(N, -1, 1)
> q_3107 <- runif(N, -1, 1)
> q_3101 <- runif(N, -1, 1)
> q_3104 <- runif(N, -1, 1)
> q_7107 <- runif(N, -1, 1)
> depIndex <- sin(1.0 * q_4 + rnorm(650, sd=.8)) + sin(1.8 * q_2102 + rnorm(650, sd=.8)) + sin(1.3 * q_2104 + rnorm(650, sd=.8)) + sin(1.4 * q_3105 + rnorm(650, sd=.8)) +
+ sin(1.5 * q_3106 + rnorm(650, sd=.8)) + sin(1.6 * q_4104 + rnorm(650, sd=.8)) + sin(1.8 * q_6101 + rnorm(650, sd=.8)) + sin(1.8 * q_6103 + rnorm(650, sd=.8)) +
+ sin(1.9 * q_7104 + rnorm(650, sd=.8)) + sin(2.0 * q_3109 + rnorm(650, sd=.8))
>
> regDatCWD <- as.data.frame(cbind(depIndex, q_4, q_2102, q_2104, q_3105, q_3106, q_4104, q_6101, q_6103, q_7104, q_3109, q_4103, q_2111, q_3107, q_3101, q_3104, q_7107))
> cat("--plotmo(earthobj5)--\n")
--plotmo(earthobj5)--
> earthobj5 <- earth(depIndex ~ q_4+q_2102+q_2104+q_3105+q_3106+q_4104+q_6101+q_6103+q_7104+q_3109+q_4103+q_2111+q_3107+q_3101+q_3104+q_7107, data=regDatCWD)
> print(summary(earthobj5, digits = 2))
Call: earth(formula=depIndex~q_4+q_2102+q_2104+q_3105+q_3106+q_4104+q_...),
data=regDatCWD)
coefficients
(Intercept) 1.79
h(0.782075-q_4) -0.97
h(q_4-0.782075) -5.36
h(q_2102- -0.664223) 1.19
h(q_2104- -0.954733) 0.85
h(0.83147-q_3105) -0.77
h(0.492009-q_3106) -0.93
h(q_4104- -0.671276) 1.02
h(0.483685-q_6101) -1.10
h(0.914724-q_6103) -1.12
h(0.545206-q_7104) -1.19
h(-0.157173-q_3109) -0.96
h(q_3109- -0.157173) 1.03
Selected 13 of 21 terms, and 10 of 16 predictors
Termination condition: RSq changed by less than 0.001 at 21 terms
Importance: q_6103, q_4104, q_2102, q_7104, q_3109, q_6101, q_2104, q_4, ...
Number of terms at each degree of interaction: 1 12 (additive model)
GCV 2.5 RSS 1509 GRSq 0.53 RSq 0.57
> plotmo(earthobj5)
plotmo grid: q_4 q_2102 q_2104 q_3105 q_3106 q_4104
0.05726625 0.01725001 0.004659335 -0.01826179 -0.00913319 0.01401429
q_6101 q_6103 q_7104 q_3109 q_4103 q_2111
-0.04790454 0.03681165 0.01827148 -0.09899272 -0.0623349 0.01007481
q_3107 q_3101 q_3104 q_7107
-0.02481171 -0.07733527 -0.003053319 0.02821214
>
> # long predictor names
>
> a.rather.long.in.fact.very.long.name.q_4 <- q_4
> a.rather.long.in.fact.very.long.name.q_2102 <- q_2102
> a.rather.long.in.fact.very.long.name.q_2104 <- q_2104
> a.rather.long.in.fact.very.long.name.q_3105 <- q_3105
> a.rather.long.in.fact.very.long.name.q_3106 <- q_3106
> a.rather.long.in.fact.very.long.name.q_4104 <- q_4104
> a.rather.long.in.fact.very.long.name.q_6101 <- q_6101
> a.rather.long.in.fact.very.long.name.q_6103 <- q_6103
> a.rather.long.in.fact.very.long.name.q_7104 <- q_7104
> a.rather.long.in.fact.very.long.name.q_3109 <- q_3109
> a.rather.long.in.fact.very.long.name.q_4103 <- q_4103
> a.rather.long.in.fact.very.long.name.q_2111 <- q_2111
> a.rather.long.in.fact.very.long.name.q_3107 <- q_3107
> a.rather.long.in.fact.very.long.name.q_3101 <- q_3101
> a.rather.long.in.fact.very.long.name.q_3104 <- q_3104
> a.rather.long.in.fact.very.long.name.q_7107 <- q_7107
> a.rather.long.in.fact.very.long.name.for.the.response <- depIndex
> a.rather.long.in.fact.very.long.name.for.the.dataframe <-
+ as.data.frame(cbind(
+ a.rather.long.in.fact.very.long.name.for.the.response,
+ a.rather.long.in.fact.very.long.name.q_4,
+ a.rather.long.in.fact.very.long.name.q_2102,
+ a.rather.long.in.fact.very.long.name.q_2104,
+ a.rather.long.in.fact.very.long.name.q_3105,
+ a.rather.long.in.fact.very.long.name.q_3106,
+ a.rather.long.in.fact.very.long.name.q_4104,
+ a.rather.long.in.fact.very.long.name.q_6101,
+ a.rather.long.in.fact.very.long.name.q_6103,
+ a.rather.long.in.fact.very.long.name.q_7104,
+ a.rather.long.in.fact.very.long.name.q_3109,
+ a.rather.long.in.fact.very.long.name.q_4103,
+ a.rather.long.in.fact.very.long.name.q_2111,
+ a.rather.long.in.fact.very.long.name.q_3107,
+ a.rather.long.in.fact.very.long.name.q_3101,
+ a.rather.long.in.fact.very.long.name.q_3104,
+ a.rather.long.in.fact.very.long.name.q_7107))
>
> cat("--a.rather.long.in.fact.very.long.name.for.the...A--\n")
--a.rather.long.in.fact.very.long.name.for.the...A--
> a.rather.long.in.fact.very.long.name.for.the.modelA <-
+ earth(a.rather.long.in.fact.very.long.name.for.the.response ~
+ a.rather.long.in.fact.very.long.name.q_4 +
+ a.rather.long.in.fact.very.long.name.q_2102 +
+ a.rather.long.in.fact.very.long.name.q_2104 +
+ a.rather.long.in.fact.very.long.name.q_3105 +
+ a.rather.long.in.fact.very.long.name.q_3106 +
+ a.rather.long.in.fact.very.long.name.q_4104 +
+ a.rather.long.in.fact.very.long.name.q_6101 +
+ a.rather.long.in.fact.very.long.name.q_6103 +
+ a.rather.long.in.fact.very.long.name.q_7104 +
+ a.rather.long.in.fact.very.long.name.q_3109 +
+ a.rather.long.in.fact.very.long.name.q_4103 +
+ a.rather.long.in.fact.very.long.name.q_2111 +
+ a.rather.long.in.fact.very.long.name.q_3107 +
+ a.rather.long.in.fact.very.long.name.q_3101 +
+ a.rather.long.in.fact.very.long.name.q_3104 +
+ a.rather.long.in.fact.very.long.name.q_7107,
+ data = a.rather.long.in.fact.very.long.name.for.the.dataframe)
> print(summary(a.rather.long.in.fact.very.long.name.for.the.modelA, digits = 2))
Call: earth(formula=a.rather.long.in.fact.very.long.name.for.the.respo...),
data=a.rather.long.in.fact.very.long.name.for.the.da...)
coefficients
(Intercept) 1.79
h(0.782075-a.rather.long.in.fact.very.long.name.q_4) -0.97
h(a.rather.long.in.fact.very.long.name.q_4-0.782075) -5.36
h(a.rather.long.in.fact.very.long.name.q_2102- -0.664223) 1.19
h(a.rather.long.in.fact.very.long.name.q_2104- -0.954733) 0.85
h(0.83147-a.rather.long.in.fact.very.long.name.q_3105) -0.77
h(0.492009-a.rather.long.in.fact.very.long.name.q_3106) -0.93
h(a.rather.long.in.fact.very.long.name.q_4104- -0.671276) 1.02
h(0.483685-a.rather.long.in.fact.very.long.name.q_6101) -1.10
h(0.914724-a.rather.long.in.fact.very.long.name.q_6103) -1.12
h(0.545206-a.rather.long.in.fact.very.long.name.q_7104) -1.19
h(-0.157173-a.rather.long.in.fact.very.long.name.q_3109) -0.96
h(a.rather.long.in.fact.very.long.name.q_3109- -0.157173) 1.03
Selected 13 of 21 terms, and 10 of 16 predictors
Termination condition: RSq changed by less than 0.001 at 21 terms
Importance: a.rather.long.in.fact.very.long.name.q_6103, ...
Number of terms at each degree of interaction: 1 12 (additive model)
GCV 2.5 RSS 1509 GRSq 0.53 RSq 0.57
> plot(a.rather.long.in.fact.very.long.name.for.the.modelA)
> plotmo(a.rather.long.in.fact.very.long.name.for.the.modelA)
plotmo grid: a.rather.long.in.fact.very.long.name.q_4
0.05726625
a.rather.long.in.fact.very.long.name.q_2102
0.01725001
a.rather.long.in.fact.very.long.name.q_2104
0.004659335
a.rather.long.in.fact.very.long.name.q_3105
-0.01826179
a.rather.long.in.fact.very.long.name.q_3106
-0.00913319
a.rather.long.in.fact.very.long.name.q_4104
0.01401429
a.rather.long.in.fact.very.long.name.q_6101
-0.04790454
a.rather.long.in.fact.very.long.name.q_6103
0.03681165
a.rather.long.in.fact.very.long.name.q_7104
0.01827148
a.rather.long.in.fact.very.long.name.q_3109
-0.09899272
a.rather.long.in.fact.very.long.name.q_4103
-0.0623349
a.rather.long.in.fact.very.long.name.q_2111
0.01007481
a.rather.long.in.fact.very.long.name.q_3107
-0.02481171
a.rather.long.in.fact.very.long.name.q_3101
-0.07733527
a.rather.long.in.fact.very.long.name.q_3104
-0.003053319
a.rather.long.in.fact.very.long.name.q_7107
0.02821214
>
> cat("--a.rather.long.in.fact.very.long.name.for.the...C--\n")
--a.rather.long.in.fact.very.long.name.for.the...C--
> a.rather.long.in.fact.very.long.name.for.the.modelC <-
+ earth(x = a.rather.long.in.fact.very.long.name.for.the.dataframe[,-1],
+ y = a.rather.long.in.fact.very.long.name.for.the.response,
+ degree = 3)
> print(summary(a.rather.long.in.fact.very.long.name.for.the.modelC, digits = 2))
Call: earth(x=a.rather.long.in.fact.very.long.name.for.the.dataf...),
y=a.rather.long.in.fact.very.long.name.for.the.re..., degree=3)
coefficients
(Intercept) 1.72
h(0.782075-a.rather.long.in.fact.very.long.name.q_4) -1.02
h(a.rather.long.in.fact.very.long.name.q_4-0.782075) -10.33
h(a.rather.long.in.fact.very.long.name.q_2102- -0.664223) 1.27
h(a.rather.long.in.fact.very.long.name.q_2104- -0.954733) 0.82
h(0.83147-a.rather.long.in.fact.very.long.name.q_3105) -1.00
h(0.492009-a.rather.long.in.fact.very.long.name.q_3106) -0.90
h(a.rather.long.in.fact.very.long.name.q_4104- -0.671276) 1.01
h(0.483685-a.rather.long.in.fact.very.long.name.q_6101) -1.09
h(0.914724-a.rather.long.in.fact.very.long.name.q_6103) -1.18
h(0.545206-a.rather.long.in.fact.very.long.name.q_7104) -1.62
h(-0.157173-a.rather.long.in.fact.very.long.name.q_3109) -1.81
h(a.rather.long.in.fact.very.long.name.q_3109- -0.157173) 1.15
h(-0.664223-a.rather.long.in.fact.very.long.name.q_2102) * h(a.rather.long.in.fact.very.long.name.q_3106- -0.148502) 3.71
h(0.83147-a.rather.long.in.fact.very.long.name.q_3105) * h(a.rather.long.in.fact.very.long.name.q_7107- -0.748278) 0.31
h(0.914724-a.rather.long.in.fact.very.long.name.q_6103) * h(-0.713314-a.rather.long.in.fact.very.long.name.q_3107) 2.90
h(0.545206-a.rather.long.in.fact.very.long.name.q_7104) * h(a.rather.long.in.fact.very.long.name.q_2111- -0.544753) 0.61
h(-0.157173-a.rather.long.in.fact.very.long.name.q_3109) * h(0.700096-a.rather.long.in.fact.very.long.name.q_2111) 1.33
h(a.rather.long.in.fact.very.long.name.q_4-0.82106) * h(0.545206-a.rather.long.in.fact.very.long.name.q_7104) * h(a.rather.long.in.fact.very.long.name.q_2111- -0.544753) 15.97
Selected 19 of 33 terms, and 13 of 16 predictors
Termination condition: Reached nk 33
Importance: a.rather.long.in.fact.very.long.name.q_6103, ...
Number of terms at each degree of interaction: 1 12 5 1
GCV 2.4 RSS 1374 GRSq 0.54 RSq 0.6
> plot(a.rather.long.in.fact.very.long.name.for.the.modelC)
> plotmo(a.rather.long.in.fact.very.long.name.for.the.modelC)
plotmo grid: a.rather.long.in.fact.very.long.name.q_4
0.05726625
a.rather.long.in.fact.very.long.name.q_2102
0.01725001
a.rather.long.in.fact.very.long.name.q_2104
0.004659335
a.rather.long.in.fact.very.long.name.q_3105
-0.01826179
a.rather.long.in.fact.very.long.name.q_3106
-0.00913319
a.rather.long.in.fact.very.long.name.q_4104
0.01401429
a.rather.long.in.fact.very.long.name.q_6101
-0.04790454
a.rather.long.in.fact.very.long.name.q_6103
0.03681165
a.rather.long.in.fact.very.long.name.q_7104
0.01827148
a.rather.long.in.fact.very.long.name.q_3109
-0.09899272
a.rather.long.in.fact.very.long.name.q_4103
-0.0623349
a.rather.long.in.fact.very.long.name.q_2111
0.01007481
a.rather.long.in.fact.very.long.name.q_3107
-0.02481171
a.rather.long.in.fact.very.long.name.q_3101
-0.07733527
a.rather.long.in.fact.very.long.name.q_3104
-0.003053319
a.rather.long.in.fact.very.long.name.q_7107
0.02821214
>
> a <- earth(survived ~ pclass+sex+age, data=etitanic, degree=2)
> print(summary(a))
Call: earth(formula=survived~pclass+sex+age, data=etitanic, degree=2)
coefficients
(Intercept) 0.92939850
pclass3rd -0.45571429
pclass2nd * sexmale -0.27354805
pclass3rd * sexmale 0.18991361
sexmale * h(age-16) 0.05497748
sexmale * h(age-25) -0.01885057
sexmale * h(age-2) -0.04217428
Selected 7 of 14 terms, and 4 of 4 predictors
Termination condition: Reached nk 21
Importance: sexmale, pclass3rd, pclass2nd, age
Number of terms at each degree of interaction: 1 1 5
GCV 0.1442766 RSS 146.3318 GRSq 0.4039126 RSq 0.4209023
> plotmo(a, caption="plotmo with facs: pclass+sex+age")
plotmo grid: pclass sex age
3rd male 28
> plotmo(a, caption="plotmo with facs: pclass+sex+age, all1=T, grid.col=\"gray\"", all1=T, grid.col="gray")
plotmo grid: pclass sex age
3rd male 28
> plotmo(a, caption="plotmo with facs: pclass+sex+age, all2=T, col.grid=\"green\"", all2=T, col.grid="green")
plotmo grid: pclass sex age
3rd male 28
> plotmo(a, caption="plotmo with facs: pclass+sex+age, all1=T, all2=T, grid=2", all1=T, all2=T, grid.col=2)
plotmo grid: pclass sex age
3rd male 28
> plotmo(a, clip=FALSE, degree2=FALSE, caption="plotmo (no degree2) with facs: pclass+sex+age")
plotmo grid: pclass sex age
3rd male 28
> plotmo(a, clip=FALSE, grid.levels=list(pclass="2n", sex="ma"),
+ caption="plotmo with grid.levels: pclass+sex+age")
plotmo grid: pclass sex age
2nd male 28
> # in above tests, all degree2 terms use facs
> # now build a model with some degree2 term that use facs, some that don't
> a <- earth(survived ~ pclass+age+sibsp, data=etitanic, degree=2)
> print(summary(a))
Call: earth(formula=survived~pclass+age+sibsp, data=etitanic, degree=2)
coefficients
(Intercept) 1.20590993
pclass2nd -0.27484540
pclass3rd -0.45765086
h(age-5) -0.03561187
h(age-18) 0.03022469
h(18-age) * h(sibsp-2) -0.04797511
h(18-age) * h(sibsp-3) 0.04721023
Selected 7 of 17 terms, and 4 of 4 predictors
Termination condition: Reached nk 21
Importance: pclass3rd, age, pclass2nd, sibsp
Number of terms at each degree of interaction: 1 4 2
GCV 0.2040487 RSS 206.9554 GRSq 0.1569604 RSq 0.1809888
> plotmo(a, caption="plotmo with mixed fac and non-fac degree2 terms", persp.border=NA)
plotmo grid: pclass age sibsp
3rd 28 0
> plotmo(a, caption="plotmo with mixed fac and non-fac degree2 terms and grid.levels",
+ grid.levels=list(pclass="2n", age=20), # test partial matching of grid levels, and numeric preds
+ persp.ticktype="d", persp.nticks=2)
plotmo grid: pclass age sibsp
2nd 20 0
>
> # check detection of illegal grid.levels argument
> expect.err(try(plotmo(a, grid.levels=list(pcla="1", pclass="2"))), 'illegal grid.levels argument ("pcla" and "pclass" both match "pclass")')
Error : illegal grid.levels argument ("pcla" and "pclass" both match "pclass")
Got expected error from try(plotmo(a, grid.levels = list(pcla = "1", pclass = "2")))
> expect.err(try(plotmo(a, grid.levels=list(pclass="1", pcla="2"))), 'illegal grid.levels argument ("pclass" and "pcla" both match "pclass")')
Error : illegal grid.levels argument ("pclass" and "pcla" both match "pclass")
Got expected error from try(plotmo(a, grid.levels = list(pclass = "1", pcla = "2")))
> expect.err(try(plotmo(a, grid.levels=list(pcla="nonesuch"))), 'illegal level "nonesuch" for "pclass" in grid.levels (allowed levels are "1st" "2nd" "3rd")')
Error : illegal level "nonesuch" for "pclass" in grid.levels (allowed levels are "1st" "2nd" "3rd")
Got expected error from try(plotmo(a, grid.levels = list(pcla = "nonesuch")))
> expect.err(try(plotmo(a, grid.levels=list(pcla="1sx"))), 'illegal level "1sx" for "pclass" in grid.levels (allowed levels are "1st" "2nd" "3rd")')
Error : illegal level "1sx" for "pclass" in grid.levels (allowed levels are "1st" "2nd" "3rd")
Got expected error from try(plotmo(a, grid.levels = list(pcla = "1sx")))
> expect.err(try(plotmo(a, grid.levels=list(pcla=1))), 'illegal level for "pclass" in grid.levels (specify factor levels with a string)')
Error : illegal level for "pclass" in grid.levels (specify factor levels with a string)
Got expected error from try(plotmo(a, grid.levels = list(pcla = 1)))
> expect.err(try(plotmo(a, grid.levels=list(pcla=c("ab", "cd")))), "length(pclass) in grid.levels is not 1")
Error : length(pclass) in grid.levels is not 1
Got expected error from try(plotmo(a, grid.levels = list(pcla = c("ab", "cd"))))
> expect.err(try(plotmo(a, grid.levels=list(pcla=NA))), 'pclass in grid.levels is NA')
Error : pclass in grid.levels is NA
Got expected error from try(plotmo(a, grid.levels = list(pcla = NA)))
> expect.err(try(plotmo(a, grid.levels=list(pcla=Inf))), 'pclass in grid.levels is infinite')
Error : pclass in grid.levels is infinite
Got expected error from try(plotmo(a, grid.levels = list(pcla = Inf)))
> expect.err(try(plotmo(a, grid.levels=list(pcla=9))), 'illegal level for "pclass" in grid.levels (specify factor levels with a string)')
Error : illegal level for "pclass" in grid.levels (specify factor levels with a string)
Got expected error from try(plotmo(a, grid.levels = list(pcla = 9)))
> options(warn=2)
> expect.err(try(plotmo(a, grid.levels=list(age="ab"))), 'grid.levels returned class \"character\" for age, so will use the default grid.func for age')
Error : (converted from warning) grid.levels returned class "character" for age, so will use the default grid.func for age
Got expected error from try(plotmo(a, grid.levels = list(age = "ab")))
> options(warn=1)
> expect.err(try(plotmo(a, grid.levels=list(age=NA))), 'age in grid.levels is NA')
Error : age in grid.levels is NA
Got expected error from try(plotmo(a, grid.levels = list(age = NA)))
> expect.err(try(plotmo(a, grid.levels=list(age=Inf))), 'age in grid.levels is infinite')
Error : age in grid.levels is infinite
Got expected error from try(plotmo(a, grid.levels = list(age = Inf)))
> expect.err(try(plotmo(a, grid.lev=list(age=list(1,2)))), 'length(age) in grid.levels is not 1')
Error : length(age) in grid.levels is not 1
Got expected error from try(plotmo(a, grid.lev = list(age = list(1, 2))))
>
> # more-or-less repeat above, but with glm models
> a <- earth(survived ~ pclass+age+sibsp, data=etitanic, degree=2, glm=list(family=binomial))
> print(summary(a))
Call: earth(formula=survived~pclass+age+sibsp, data=etitanic,
glm=list(family=binomial), degree=2)
GLM coefficients
survived
(Intercept) 3.4306891
pclass2nd -1.2012524
pclass3rd -2.0973424
h(age-5) -0.1769427
h(age-18) 0.1502007
h(18-age) * h(sibsp-2) -0.2887477
h(18-age) * h(sibsp-3) 0.2820357
GLM (family binomial, link logit):
nulldev df dev df devratio AIC iters converged
1414.62 1045 1212.21 1039 0.143 1226 5 1
Earth selected 7 of 17 terms, and 4 of 4 predictors
Termination condition: Reached nk 21
Importance: pclass3rd, age, pclass2nd, sibsp
Number of terms at each degree of interaction: 1 4 2
Earth GCV 0.2040487 RSS 206.9554 GRSq 0.1569604 RSq 0.1809888
> plotmo(a, ylim=c(0, 1), caption="plotmo glm with mixed fac and non-fac degree2 terms")
plotmo grid: pclass age sibsp
3rd 28 0
> plotmo(a, ylim=c(0, 1), caption="plotmo glm with mixed fac and non-fac degree2 terms and grid.levels",
+ grid.levels=list(pcl="2nd")) # test partial matching of variable name in grid levels
plotmo grid: pclass age sibsp
2nd 28 0
> plotmo(a, type="earth", ylim=c(0, 1), caption="type=\"earth\" plotmo glm with mixed fac and non-fac degree2 terms")
plotmo grid: pclass age sibsp
3rd 28 0
> plotmo(a, type="link", ylim=c(0, 1), clip=FALSE, caption="type=\"link\" plotmo glm with mixed fac and non-fac degree2 terms")
plotmo grid: pclass age sibsp
3rd 28 0
> plotmo(a, type="class", ylim=c(0, 1), caption="type=\"class\" plotmo glm with mixed fac and non-fac degree2 terms")
plotmo grid: pclass age sibsp
3rd 28 0
> plotmo(a, ylim=c(0, 1), caption="default type (\"response\")\nplotmo glm with mixed fac and non-fac degree2 terms")
plotmo grid: pclass age sibsp
3rd 28 0
> # now with different type2s
> set.seed(2016)
> plotmo(a, do.par=FALSE, type2="persp", persp.theta=-20, degree1=FALSE, grid.levels=list(pclass="2nd"))
> mtext("different type2s", outer=TRUE, font=2, line=1.5, cex=1)
> plotmo(a, do.par=FALSE, type2="contour", degree1=FALSE, grid.levels=list(pclass="2nd"))
> plotmo(a, do.par=FALSE, type2="image", degree1=FALSE, grid.levels=list(pclass="2nd"),
+ col.response=as.numeric(etitanic$survived)+2, pt.pch=20)
> plotmo(a, do.par=FALSE, type="earth", type2="image", degree1=FALSE,
+ grid.levels=list(pclass="2"))
>
> # grid.levels with partdep
>
> set.seed(2018)
> x1 <- (1:11) + runif(11)
> x2 <- (1:11) + runif(11)
> x3 <- as.integer((1:11) + runif(11))
> x4 <- runif(11) > .5 # logical
> y <- x1 - x2 + x3 + x4
> data <- data.frame(y=y, x1=x1, x2=x2, x3=x3, x4=x4)
> lm.x1.x2.x3 <- lm(y ~ x1 + x2 + x3 + x4 + x1*x2 + x1*x3, data=data)
> cat("summary(lm.x1.x2.x3):\n")
summary(lm.x1.x2.x3):
> print(summary(lm.x1.x2.x3))
Warning in summary.lm(lm.x1.x2.x3) :
essentially perfect fit: summary may be unreliable
Call:
lm(formula = y ~ x1 + x2 + x3 + x4 + x1 * x2 + x1 * x3, data = data)
Residuals:
1 2 3 4 5 6 7
4.445e-17 -2.215e-16 9.227e-18 2.871e-16 2.251e-16 -9.376e-17 -5.566e-16
8 9 10 11
1.746e-17 2.252e-16 3.073e-16 -2.440e-16
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.142e-15 1.549e-15 1.383e+00 0.239
x1 1.000e+00 6.608e-16 1.513e+15 <2e-16 ***
x2 -1.000e+00 1.816e-15 -5.507e+14 <2e-16 ***
x3 1.000e+00 1.818e-15 5.502e+14 <2e-16 ***
x4TRUE 1.000e+00 3.109e-16 3.216e+15 <2e-16 ***
x1:x2 3.625e-16 2.328e-16 1.557e+00 0.195
x1:x3 -3.314e-16 2.274e-16 -1.458e+00 0.219
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.207e-16 on 4 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 1.326e+32 on 6 and 4 DF, p-value: < 2.2e-16
> par(mfrow = c(5, 6), mar = c(2, 3, 2, 1), mgp = c(1.5, 0.5, 0), cex = 0.6, oma=c(0,0,8,0))
> plotmo(lm.x1.x2.x3, do.par=0, ylim=c(0,16), pt.col=2,
+ caption="row1 default\nrow2 grid.levels=list(x3=15)\nrow3 partdep\nrow4 partdetp grid.levels=list(x3=15)")
plotmo grid: x1 x2 x3 x4
6.301049 6.270736 6 TRUE
> plotmo(lm.x1.x2.x3, do.par=0, ylim=c(0,16), pt.col=2, grid.levels=list(x3=15))
plotmo grid: x1 x2 x3 x4
6.301049 6.270736 15 TRUE
> plotmo(lm.x1.x2.x3, do.par=0, ylim=c(0,16), pt.col=2, pmethod="partdep")
calculating partdep for x1
calculating partdep for x2
calculating partdep for x3
calculating partdep for x4
calculating partdep for x1:x2 01234567890
calculating partdep for x1:x3 01234567890
> plotmo(lm.x1.x2.x3, do.par=0, ylim=c(0,16), pt.col=2, pmethod="partdep", grid.levels=list(x3=15))
calculating partdep for x1
calculating partdep for x2
calculating partdep for x3
calculating partdep for x4
calculating partdep for x1:x2 01234567890
calculating partdep for x1:x3 01234567890
>
> # check auto type convert in grid.levels
> plotmo(lm.x1.x2.x3, degree1="x1", degree2=0, main="x1 (x2=5L))", ylim=c(0,16), do.par=0, pmethod="partdep", grid.levels=list(x2=15L)) # integer to numeric
calculating partdep for x1
> plotmo(lm.x1.x2.x3, degree1="x1", degree2=0, main="x1 (x3=5))", ylim=c(0,16), do.par=0, pmethod="partdep", grid.levels=list(x3=15)) # numeric to integer
calculating partdep for x1
> plotmo(lm.x1.x2.x3, degree1="x1", degree2=0, main="x1 (x4=1))", ylim=c(0,16), do.par=0, pmethod="partdep", grid.levels=list(x4=1)) # numeric to logical
calculating partdep for x1
> expect.err(try(plotmo(lm.x1.x2.x3, degree1="x1", degree2=0, main="x1 (x4=1))", ylim=c(0,16), do.par=0, pmethod="partdep", grid.levels=list(x4="x"))), "expected a logical value in grid.levels for x4") # char to logical
Error : expected a logical value in grid.levels for x4
Got expected error from try(plotmo(lm.x1.x2.x3, degree1 = "x1", degree2 = 0, main = "x1 (x4=1))", ylim = c(0, 16), do.par = 0, pmethod = "partdep", grid.levels = list(x4 = "x")))
> expect.err(try(plotmo(lm.x1.x2.x3, degree1="x2", do.par=0, pmethod="partdep", grid.levels=list(x1="1"))), "the class \"character\" of \"x1\" in grid.levels does not match its class \"numeric\" in the input data")
Warning: grid.levels returned class "character" for x1, so will use the default grid.func for x1
Error : the class "character" of "x1" in grid.levels does not match its class "numeric" in the input data
Got expected error from try(plotmo(lm.x1.x2.x3, degree1 = "x2", do.par = 0, pmethod = "partdep", grid.levels = list(x1 = "1")))
> par(org.par)
>
> # test vector main
>
> a20 <- earth(O3 ~ humidity + temp + doy, data=ozone1, degree=2, glm=list(family=Gamma))
>
> dopar(2, 2)
> plotmo(a20, nrug=-1)
plotmo grid: humidity temp doy
64 62 205.5
>
> set.seed(2016)
> plotmo(a20, nrug=10, caption="Test plotmo with a vector main (and npoints=200)",
+ main=c("Humidity", "Temperature", "Day of year", "Humidity: Temperature", "Temperature: Day of Year"),
+ col.response="darkgray", pt.pch=".", cex.response=3, npoints=200) # cex.response tests back compat
plotmo grid: humidity temp doy
64 62 205.5
>
> cat("Expect warning below (missing double titles)\n")
Expect warning below (missing double titles)
> plotmo(a20, nrug=-1, caption="Test plotmo with a vector main (and plain smooth)",
+ main=c("Humidity", "Temperature", "Day of year", "Humidity: Temperature", "Temp: Doy"),
+ smooth.col="indianred")
plotmo grid: humidity temp doy
64 62 205.5
>
> cat("Expect warning below (missing single titles)\n")
Expect warning below (missing single titles)
> plotmo(a20, nrug=-1, caption="Test plotmo with a vector main (and smooth args)",
+ main=c("Humidity", "Temperature"),
+ smooth.col="indianred", smooth.lwd=2, smooth.lty=2, smooth.f=.1,
+ col.response="gray", npoints=500)
plotmo grid: humidity temp doy
64 62 205.5
>
> plotmo(a20, nrug=-1, caption="Test plotmo with pt.pch=paste(1:nrow(ozone1))",
+ type2="im",
+ col.response=2, pt.cex=.8, pt.pch=paste(1:nrow(ozone1)), npoints=100)
plotmo grid: humidity temp doy
64 62 205.5
>
> aflip <- earth(O3~vh + wind + humidity + temp, data=ozone1, degree=2)
>
> # test all1 and all2, with and without degree1 and degree2
> plotmo(aflip, all2=T, caption="all2=T", npoints=TRUE)
plotmo grid: vh wind humidity temp
5760 5 64 62
> plotmo(aflip, all2=T, degree2=c(4, 2), caption="all2=T, degree2=c(4, 2)")
plotmo grid: vh wind humidity temp
5760 5 64 62
> plotmo(aflip, all1=T, caption="all1=T")
plotmo grid: vh wind humidity temp
5760 5 64 62
> plotmo(aflip, all1=T, degree1=c(3,1), degree2=NA, caption="all1=T, degree1=c(3,1), degree2=NA")
plotmo grid: vh wind humidity temp
5760 5 64 62
>
> options(warn=2)
> expect.err(try(plotmo(aflip, no.such.arg=9)), "(converted from warning) predict.earth ignored argument 'no.such.arg'")
stats::predict(earth.object, NULL, type="response", no.such.arg=9)
Error : (converted from warning) predict.earth ignored argument 'no.such.arg'
Got expected error from try(plotmo(aflip, no.such.arg = 9))
> expect.err(try(plotmo(aflip, ycolumn=1)), "(converted from warning) predict.earth ignored argument 'ycolumn'")
stats::predict(earth.object, NULL, type="response", ycolumn=1)
Error : (converted from warning) predict.earth ignored argument 'ycolumn'
Got expected error from try(plotmo(aflip, ycolumn = 1))
> expect.err(try(plotmo(aflip, title="abc")), "(converted from warning) predict.earth ignored argument 'title'")
stats::predict(earth.object, NULL, type="response", title="abc")
Error : (converted from warning) predict.earth ignored argument 'title'
Got expected error from try(plotmo(aflip, title = "abc"))
> expect.err(try(plotmo(aflip, persp.ticktype="d", persp.ntick=3, tic=3, tick=9)), "(converted from warning) predict.earth ignored argument 'tic'")
stats::predict(earth.object, NULL, type="response", tic=3, tick=9)
Error : (converted from warning) predict.earth ignored argument 'tic'
Got expected error from try(plotmo(aflip, persp.ticktype = "d", persp.ntick = 3, tic = 3, tick = 9))
> expect.err(try(plotmo(aflip, persp.ticktype="d", ntick=3, tic=3)), "(converted from warning) predict.earth ignored argument 'ntick'")
stats::predict(earth.object, NULL, type="response", ntick=3, tic=3)
Error : (converted from warning) predict.earth ignored argument 'ntick'
Got expected error from try(plotmo(aflip, persp.ticktype = "d", ntick = 3, tic = 3))
> options(warn=1)
> # expect.err(try(plotmo(aflip, adj1=8, adj2=9))) # Error : plotmo: illegal argument "adj1"
> # expect.err(try(plotmo(aflip, yc=8, x2=9))) # "ycolumn" is no longer legal, use "nresponse" instead
> # expect.err(try(plotmo(aflip, persp.ticktype="d", ntick=3, ti=3))) # Error : "title" is illegal, use "caption" instead ("ti" taken to mean "title")
> # expect.err(try(plotmo(aflip, persp.ticktype="d", ntick=3, title=3))) # Error : "title" is illegal, use "caption" instead
> # expect.err(try(plotmo(aflip, persp.ticktype="d", ntick=3, tit=3, titl=7))) # Error : "title" is illegal, use "caption" instead ("tit" taken to mean "title")
> # expect.err(try(plotmo(aflip, zlab="abc"))) # "zlab" is illegal, use "ylab" instead
> # expect.err(try(plotmo(aflip, z="abc"))) # "zlab" is illegal, use "ylab" instead ("z" taken to mean "zlab")
> expect.err(try(plotmo(aflip, degree1=c(4,1))), "'degree1' is out of range, allowed values are 1 to 2")
Error : 'degree1' is out of range, allowed values are 1 to 2
Got expected error from try(plotmo(aflip, degree1 = c(4, 1)))
> # expect.err(try(plotmo(aflip, none.such=TRUE))) # illegal argument "all1"
> # expect.err(try(plotmo(aflip, ntick=3, type2="im"))) # the ntick argument is illegal for type2="image"
> # expect.err(try(plotmo(aflip, breaks=3, type2="persp"))) # the breaks argument is illegal for type2="persp"
> # expect.err(try(plotmo(aflip, breaks=99, type2="cont"))) # the breaks argument is illegal for type2="contour"
>
> # Test error handling when accessing the original data
>
> lm.bad <- lm.fit(as.matrix(ozone1[,-1]), as.matrix(ozone1[,1]))
> expect.err(try(plotmo(lm.bad)), "'lm.bad' is a plain list, not an S3 model")
Error : 'lm.bad' is a plain list, not an S3 model
Got expected error from try(plotmo(lm.bad))
> expect.err(try(plotmo(99)), "'99' is not an S3 model")
Error : '99' is not an S3 model
Got expected error from try(plotmo(99))
>
> x <- matrix(c(1,3,2,4,5,6,7,8,9,10,
+ 2,3,4,5,6,7,8,9,8,9), ncol=2)
>
> colnames(x) <- c("c1", "c2")
> x1 <- x[,1]
> x2 <- x[,2]
> y <- 3:12
> df <- data.frame(y=y, x1=x1, x2=x2)
> foo1 <- function()
+ {
+ a.foo1 <- lm(y~x1+x2, model=FALSE)
+ x1 <- NULL
+ expect.err(try(plotmo(a.foo1)), "cannot get the original model predictors")
+ }
> foo1()
Looked unsuccessfully for the original predictors in the following places:
(1) object$x: NULL
(2) model.frame: invalid type (NULL) for variable 'x1'
(3) getCall(object)$x: NULL
Error : cannot get the original model predictors
Got expected error from try(plotmo(a.foo1))
> foo2 <- function()
+ {
+ a.foo2 <- lm(y~x1+x2, data=df, model=FALSE)
+ df <- 99 # note that df <- NULL here will not cause an error msg
+ y <- 99 # also needed else model.frame in plotmo will find the global y
+ expect.err(try(plotmo(a.foo2)), "cannot get the original model predictors")
+ }
> foo2()
Looked unsuccessfully for the original predictors in the following places:
(1) object$x: NULL
(2) model.frame: variable lengths differ (found for 'x1')
(3) getCall(object)$x: NULL
Error : cannot get the original model predictors
Got expected error from try(plotmo(a.foo2))
> foo3 <- function()
+ {
+ a.foo3 <- lm(y~x) # lm() builds an lm model for which predict doesn't work
+ expect.err(try(plotmo(a.foo3)), "predict returned the wrong length (got 10 but expected 50)")
+ }
> foo3()
Warning: the variable on the right side of the formula is a matrix or data.frame
plotmo often cannot process such variables
Warning: 'newdata' had 50 rows but variables found have 10 rows
Error : predict returned the wrong length (got 10 but expected 50)
Got expected error from try(plotmo(a.foo3))
> foo3a <- function()
+ {
+ a.foo3a <- lm(y~x) # lm() builds an lm model for which predict doesn't work
+ # this tests "ngrid1 <- ngrid1 + 1" in plotmo.R
+ expect.err(try(plotmo(a.foo3a, ngrid1=nrow(x))), "predict returned the wrong length (got 10 but expected 11)")
+ }
> foo3a()
Warning: the variable on the right side of the formula is a matrix or data.frame
plotmo often cannot process such variables
Warning: 'newdata' had 11 rows but variables found have 10 rows
Error : predict returned the wrong length (got 10 but expected 11)
Got expected error from try(plotmo(a.foo3a, ngrid1 = nrow(x)))
> foo4 <- function()
+ {
+ a.foo4 <- lm(y~x[,1]+x[,2]) # builds an lm model for which predict doesn't work
+ # causes 'newdata' had 8 rows but variables found have 10 rows
+ expect.err(try(plotmo(a.foo4)), "predict returned the wrong length (got 10 but expected 50)")
+ }
> foo4()
Warning: Cannot determine which variables to plot in degree2 plots (use all2=TRUE?)
Confused by variable name "x[, 1]"
Warning: 'newdata' had 50 rows but variables found have 10 rows
Error : predict returned the wrong length (got 10 but expected 50)
Got expected error from try(plotmo(a.foo4))
> foo5 <- function()
+ {
+ a.foo5 <- lm(y~x1+x2, model=FALSE)
+ x1 <- c(1,2,3)
+ # causes Error in model.frame.default: variable lengths differ (found for 'x1')
+ expect.err(try(plotmo(a.foo5)), "cannot get the original model predictors")
+ }
> foo5()
Looked unsuccessfully for the original predictors in the following places:
(1) object$x: NULL
(2) model.frame: variable lengths differ (found for 'x1')
(3) getCall(object)$x: NULL
Error : cannot get the original model predictors
Got expected error from try(plotmo(a.foo5))
> foo6 <- function()
+ {
+ a.foo6 <- lm(y~x1+x2, model=FALSE)
+ y[1] <- NA
+ # Error in na.fail.default: missing values in object
+ expect.err(try(plotmo(a.foo6, col.response=3)), "cannot get the original model predictors")
+ }
> foo6()
Looked unsuccessfully for the original predictors in the following places:
(1) object$x: NULL
(2) model.frame: missing values in object
(3) getCall(object)$x: NULL
Error : cannot get the original model predictors
Got expected error from try(plotmo(a.foo6, col.response = 3))
> foo7 <- function()
+ {
+ a.foo7 <- lm(y~x1+x2, model=FALSE)
+ y[1] <- Inf
+ options <- options("warn")
+ on.exit(options(warn=options$warn))
+ options(warn=2)
+ expect.err(try(plotmo(a.foo7, col.response=3)), "non-finite values returned by plotmo_y")
+ }
> foo7()
Error : (converted from warning) non-finite values returned by plotmo_y
Got expected error from try(plotmo(a.foo7, col.response = 3))
> options(warn=1)
> foo8 <- function()
+ {
+ i <- 1
+ a.foo8 <- lm(y~x[,i]+x[,2])
+ options <- options("warn")
+ on.exit(options(warn=options$warn))
+ options(warn=2)
+ expect.err(try(plotmo(a.foo8)), "Cannot determine which variables to plot in degree2 plots (use all2=TRUE?)")
+ options(warn=options$warn)
+ expect.err(try(plotmo(a.foo8)), "predict returned the wrong length (got 10 but expected 50)")
+ }
> foo8()
Error : (converted from warning) Cannot determine which variables to plot in degree2 plots (use all2=TRUE?)
Confused by variable name "x[, i]"
Got expected error from try(plotmo(a.foo8))
Warning: Cannot determine which variables to plot in degree2 plots (use all2=TRUE?)
Confused by variable name "x[, i]"
Warning: 'newdata' had 50 rows but variables found have 10 rows
Error : predict returned the wrong length (got 10 but expected 50)
Got expected error from try(plotmo(a.foo8))
> options(warn=1)
> foo9 <- function()
+ {
+ my.list <- list(j=2)
+ a.foo9 <- lm(y~x[,1]+x[,my.list$j])
+ expect.err(try(plotmo(a.foo9)), "cannot get the original model predictors")
+ }
> foo9()
Warning: "$" in the formula is not supported by plotmo, will try to get the data elsewhere
formula: x[, 1] + x[, my.list$j]
Looked unsuccessfully for the original predictors in the following places:
(1) object$x: NULL
(2) model.frame: formula(object): "$" in formula is not allowed
(3) getCall(object)$x: NULL
Error : cannot get the original model predictors
Got expected error from try(plotmo(a.foo9))
> foo9a <- function()
+ {
+ df <- data.frame(y=y, x1=x[,1], x2=x[,2])
+ a.foo9a <- lm(y~x1+x2, data=df)
+ par(mfrow = c(2, 2), oma=c(0,0,4,0))
+ set.seed(2018)
+ plotmo(a.foo9a, col.resp=2, do.par=FALSE,
+ caption="top two plots should be identical to bottom two plots")
+ x2 <- rep(99, length(x2))
+ a.foo9b <- lm(y~x1+x2, data=df)
+ x2 <- rep(199, length(x2))
+ plotmo(a.foo9b, col.resp=2, do.par=FALSE)
+ }
> foo9a()
plotmo grid: x1 x2
5.5 6.5
plotmo grid: x1 x2
5.5 6.5
> par(org.par)
>
> foo20.func <- function()
+ {
+ par(mfrow = c(2, 2), oma=c(0,0,4,0))
+ foo20 <- lm(y~x1+x2)
+ set.seed(2018)
+ plotmo(foo20, degree1=1:2, col.resp=2, do.par=FALSE,
+ caption="top two plots should be identical to bottom two plots\nbecause we use saved lm$model")
+ x1 <- 99
+ plotmo(foo20, degree1=1:2, col.resp=2, do.par=FALSE)
+ }
> foo20.func()
plotmo grid: x1 x2
5.5 6.5
plotmo grid: x1 x2
5.5 6.5
> par(org.par)
>
> set.seed(1235)
> tit <- etitanic
> tit <- tit[c(30:80,330:380,630:680), ]
> a <- earth(survived~., data=tit, glm=list(family=binomial), degree=2)
> plotmo(a, grid.levels=list(sex="ma"),
+ caption="smooth: survived, sex=\"m\" jitter=1",
+ smooth.col="indianred", smooth.lwd=2,
+ col.response=as.numeric(tit$survived)+2, pt.pch=".", type2="im",
+ pt.cex=3, jitter=1) # big jitter
plotmo grid: pclass sex age sibsp parch
1st male 29 0 0
> set.seed(1238)
> a <- earth(pclass~., data=tit)
> plotmo(a, type="class", nresponse=1,
+ grid.levels=list(sex="ma"),
+ caption="smooth: pclass, sex=\"m\"", SHOWCALL=TRUE,
+ smooth.col="indianred", smooth.lwd=2,
+ col.response=as.numeric(tit$pclass)+1, type2="im",
+ pt.pch=".", pt.cex=3)
plotmo grid: survived sex age sibsp parch
0 male 29 0 0
> plotmo(a, type="class", nresponse=1,
+ grid.levels=list(sex="ma"),
+ caption="smooth: pclass, sex=\"m\" jitter=.3", SHOWCALL=TRUE,
+ smooth.col="indianred", smooth.lwd=2,
+ col.response=as.numeric(tit$pclass)+1, type2="im",
+ pt.pch="x", jit=.3) # small jitter
plotmo grid: survived sex age sibsp parch
0 male 29 0 0
> plotmo(a, nresponse=1,
+ type="class", grid.levels=list(sex="ma"),
+ caption="smooth: pclass, sex=\"m\"", SHOWCALL=TRUE,
+ smooth.col="indianred", smooth.lwd=2,
+ col.response=as.numeric(tit$pclass)+1, type2="im",
+ pt.pch=paste(1:nrow(tit)))
plotmo grid: survived sex age sibsp parch
0 male 29 0 0
>
> # test the extend argument
>
> plotmo(a, nresponse=1, pt.col=2, degree2=0, SHOWCALL=TRUE,
+ caption="test extend: extend=0 (reference plot)")
plotmo grid: survived sex age sibsp parch
0 male 29 0 0
> plotmo(a, nresponse=1, extend=.5, pt.col=2, SHOWCALL=TRUE,
+ caption="test extend: extend=.5")
plotmo grid: survived sex age sibsp parch
0 male 29 0 0
> plotmo(a, nresponse=1, degree1=0, extend=.2, pt.col=2, SHOWCALL=TRUE) # nothing to plot
Warning: plotmo: nothing to plot
>
> a <- earth(survived~pclass+age, data=etitanic, degree=2)
> # expect warning: extend=.5 not degree2 plots
> plotmo(a, extend=.5, pt.col=2, SHOWCALL=TRUE,
+ caption="test extend: extend=.5")
Warning: extend=0.5: will not plot degree2 plots (extend is not yet implemented for degree2 plots)
plotmo grid: pclass age
3rd 28
>
> # intercept only models
>
> dopar(2, 2, caption = "intercept-only models")
intercept-only models
> set.seed(1)
> x <- 1:10
> y <- runif(length(x))
> earth.intercept.only <- earth(x, y)
> plotmo(earth.intercept.only, do.par=FALSE, main="earth intercept-only model")
> plotmo(earth.intercept.only, do.par=FALSE, col.response=1, pt.pch=20)
> # TODO following draws a plot but it shouldn't (very minor bug because int-only model with a bad degree1 spec)
> plotmo(earth.intercept.only, do.par=FALSE, degree1=3) # expect warning: 'degree1' specified but no degree1 plots
Warning: 'degree1' specified but no degree1 plots (maybe use all1=TRUE?)
> plotmo(earth.intercept.only, do.par=FALSE, degree1=0) # expect warning: plotmo: nothing to plot
Warning: plotmo: nothing to plot
> library(rpart)
> rpart.intercept.only <- rpart(y~x)
> plotmo(rpart.intercept.only, do.par=FALSE, main="rpart.plot intercept-only model")
> plotmo(rpart.intercept.only, do.par=FALSE, degree1=0)
Warning: plotmo: nothing to plot
> par(org.par)
>
> # nrug argument
>
> par(mfrow=c(3,3), mar=c(3,3,3,1), mgp=c(1.5, 0.5, 0))
> mod.nrug <- earth(survived~age, data=etitanic)
> set.seed(2016)
> plotmo(mod.nrug, do.par=0, nrug=-1, main="nrug=-1")
> plotmo(mod.nrug, do.par=0, nrug=TRUE, main="nrug=TRUE")
> plotmo(mod.nrug, do.par=0, nrug=10, rug.col=2, main="nrug=10, rug.col=2")
> plotmo(mod.nrug, do.par=0, nrug=5, rug.col=2, rug.lwd=2, main="nrug=5, rug.col=2, rug.lwd=2")
> plotmo(mod.nrug, do.par=0, nrug="density", main="nrug=\"density\"")
> plotmo(mod.nrug, do.par=0, nrug="density", density.col=2, density.lwd=2, main="nrug=\"density\"\ndensity.col=2, density.lwd=2")
> plotmo(mod.nrug, do.par=0, nrug="density", density.adj=.2, density.col=1, main="nrug=\"density\"\ndensity.adj=.2, density.col=1")
> par(org.par)
>
> # a <- earth(ozone1[,3]~ozone1[,1]+ozone1[,2]+ozone1[,4]+ozone1[,5]+ozone1[,6], data=ozone1)
> # # TODO fails: actual.nrows=330 expected.nrows=50 fitted.nrows=330
> # plotmo(a)
>
> # # TODO following fails in plotmo with
> # # Error : get.earth.x from model.matrix.earth from predict.earth: x has 2 columns, expected 4 to match: 1 2 3 Girth
> # a <- earth(Volume~poly(Height, degree=3)+Girth, data=trees, subset=4:23, linpreds=TRUE)
> # plotmo(a, trace=-1, do.par=FALSE, caption="all three rows should be the same")
>
> source("test.epilog.R")
|