File: test.plotmo3.R

package info (click to toggle)
r-cran-plotmo 3.6.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,388 kB
  • sloc: sh: 13; makefile: 2
file content (479 lines) | stat: -rw-r--r-- 20,540 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# test.plotmo3.R: extra tests for plotmo version 3 and higher

source("test.prolog.R")
library(earth)
data(ozone1)
data(etitanic)
options(warn=1) # print warnings as they occur

# check check.numeric.scalar

xtest <- NA
expect.err(try(plotmo:::check.numeric.scalar(xtest)), "'xtest' is NA")
xtest <- NULL
expect.err(try(plotmo:::check.numeric.scalar(xtest)), "'xtest' is NULL")
expect.err(try(plotmo:::check.numeric.scalar(NA)), "argument is NA")
expect.err(try(plotmo:::check.numeric.scalar(NULL)), "argument is NULL")
expect.err(try(plotmo:::check.numeric.scalar(try)), "'try' must be numeric (whereas its current class is \"function\")")
expect.err(try(plotmo:::check.numeric.scalar('try')), "\"try\" must be numeric (whereas its current class is \"character\")")
expect.err(try(plotmo:::check.numeric.scalar(NULL)), "argument is NULL")
expect.err(try(plotmo:::check.numeric.scalar(1234, min=2, max=3)), "argument=1234 but it should be between 2 and 3")
expect.err(try(plotmo:::check.numeric.scalar(0.1234, min=2, max=3)), "argument=0.1234 but it should be between 2 and 3")

expect.err(try(plotmo:::check.numeric.scalar(.1234, min=2, max=3)), "argument=0.1234 but it should be between 2 and 3")
expect.err(try(plotmo:::check.numeric.scalar(+1234, min=2, max=3)), "argument=1234 but it should be between 2 and 3")
expect.err(try(plotmo:::check.numeric.scalar(-1234, min=2, max=3)), "argument=-1234 but it should be between 2 and 3")
expect.err(try(plotmo:::check.numeric.scalar(+.1234, min=2, max=3)), "argument=0.1234 but it should be between 2 and 3")
expect.err(try(plotmo:::check.numeric.scalar(-.1234, min=2, max=3)), "argument=-0.1234 but it should be between 2 and 3")
expect.err(try(plotmo:::check.numeric.scalar("", min=0, max=3)), "\"\" must be numeric (whereas its current class is \"character\"")

x.numeric.scalar <- 1234
expect.err(try(plotmo:::check.numeric.scalar(x.numeric.scalar, min=0, max=3)), "x.numeric.scalar=1234 but it should be between 0 and 3")
stopifnot(identical(plotmo:::check.numeric.scalar(x.numeric.scalar, min=2, max=1235), 1234))
stopifnot(identical(plotmo:::check.numeric.scalar(1234, min=2, max=1235), 1234))

# check check.integer.scalar

xtest <- NA
expect.err(try(plotmo:::check.integer.scalar(xtest)), "'xtest' is NA")
xtest <- NULL
expect.err(try(plotmo:::check.integer.scalar(xtest)), "'xtest' is NULL")
expect.err(try(plotmo:::check.integer.scalar(NA)), "argument is NA")
expect.err(try(plotmo:::check.integer.scalar(NA, null.ok=TRUE)), "argument is NA")
expect.err(try(plotmo:::check.integer.scalar(NULL)), "argument is NULL")
expect.err(try(plotmo:::check.integer.scalar(xtest, na.ok=TRUE)), "'xtest' is NULL")
expect.err(try(plotmo:::check.integer.scalar("xyz", na.ok=TRUE)), "\"xyz\" is a string but it should be an integer, or NA, or TRUE or FALSE")
expect.err(try(plotmo:::check.integer.scalar("TRUE", na.ok=TRUE)), "\"TRUE\" is a string but it should be an integer, or NA, or TRUE or FALSE")
stopifnot(identical(plotmo:::check.integer.scalar(TRUE), TRUE))
stopifnot(identical(plotmo:::check.integer.scalar(NA, na.ok=TRUE), NA))
x.integer.scalar <- 1234L
expect.err(try(plotmo:::check.integer.scalar(x.integer.scalar, min=0, max=3)), "x.integer.scalar=1234 but it should be between 0 and 3")
stopifnot(identical(plotmo:::check.integer.scalar(x.integer.scalar, min=2, max=1235), 1234L))
stopifnot(identical(plotmo:::check.integer.scalar(1234, min=2, max=1235), 1234))
stopifnot(identical(plotmo:::check.integer.scalar(x.integer.scalar, min=2, max=1235), 1234L))
stopifnot(identical(plotmo:::check.integer.scalar(1234, min=2, max=1235), 1234))
xtest <- 1.234
expect.err(try(plotmo:::check.integer.scalar(xtest, min=0, max=3)), "xtest=1.234 but it should be an integer, or TRUE or FALSE")

# check check.vec
xtest <- "x"
expect.err(try(plotmo:::check.vec(xtest, "xtest", na.ok=TRUE)), "'xtest' is not numeric")
xtest <- as.double(NA)
print(plotmo:::check.vec(xtest, "xtest", na.ok=TRUE))
xtest <- as.double(1:3)
print(plotmo:::check.vec(xtest, "xtest", na.ok=TRUE))
xtest <- c(1,2,3,1/0,5,6,7)
expect.err(try(plotmo:::check.vec(xtest, "xtest", na.ok=TRUE)), "non-finite value in xtest")
xtest <- c(1,2,3,NA,5,6,7)
expect.err(try(plotmo:::check.vec(xtest, "xtest")), "NA in xtest")
xtest <- c(1,2,3)
expect.err(try(plotmo:::check.vec(xtest, "xtest", expected.len=2)), "'xtest' has the wrong length 3, expected 2")
print(plotmo:::check.vec(c(TRUE, FALSE), "c(TRUE, FALSE)"))

plotmo1 <- function(object, ..., trace=0, SHOWCALL=TRUE, caption=NULL) {
    if(is.null(caption))
        caption <- paste(deparse(substitute(object)), collapse=" ")
    call <- match.call(expand.dots=TRUE)
    call <- strip.space(paste(deparse(substitute(call)), collapse=" "))
    printf("%s\n", call)
    plotmo(object, trace=trace, SHOWCALL=SHOWCALL, caption=caption, ...)
}
plotres1 <- function(object, ..., trace=0, SHOWCALL=TRUE, caption=NULL) {
    if(is.null(caption))
        caption <- paste(deparse(substitute(object)), collapse=" ")
    call <- match.call(expand.dots=TRUE)
    call <- strip.space(paste(deparse(substitute(call)), collapse=" "))
    printf("%s\n", call)
    plotres(object, trace=trace, SHOWCALL=SHOWCALL, caption=caption, ...)
}
# basic tests of plotmo on abbreviated titanic data

get.tita <- function()
{
    tita <- etitanic
    pclass <- as.character(tita$pclass)
    # change the order of the factors so not alphabetical
    pclass[pclass == "1st"] <- "first"
    pclass[pclass == "2nd"] <- "class2"
    pclass[pclass == "3rd"] <- "classthird"
    tita$pclass <- factor(pclass, levels=c("class2", "classthird", "first"))
    # log age is so we have a continuous predictor even when model is age~.
    set.seed(2015)
    tita$logage <- log(tita$age) + rnorm(nrow(tita))
    tita$parch <- NULL
    # by=12 gives us a small fast model with an additive and a interaction term
    tita[seq(1, nrow(etitanic), by=12), ]
}
tita <- get.tita()

mod.lm.age <- lm(age~., data=tita)
plotmo1(mod.lm.age)
plotmo1(mod.lm.age, level=.95)
plotmo1(mod.lm.age, level=.95, col.resp=3)

sexn <- as.numeric(tita$sex)
mod.lm.sexn <- lm(sexn~.-sex, data=tita)
plotmo1(mod.lm.sexn)
plotmo1(mod.lm.sexn, level=.95)

set.seed(2020)
mod.earth.age <- earth(age~., data=tita, degree=2, nfold=3, ncross=3, varmod.method="lm")
plotmo1(mod.earth.age)
plotmo1(mod.earth.age, level=.9, degree2=0)

# tita[,4] is age
set.seed(2020)
mod.earth.tita.age <- earth(tita[,-4], tita[,4], degree=2, nfold=3, ncross=3, trace=.5, varmod.method="lm")
cat("\nsummary(mod.earth.tita.age)\n")
print(summary(mod.earth.tita.age))
plotmo1(mod.earth.tita.age)
plotmo1(mod.earth.tita.age, level=.9, degree2=0)

set.seed(2020)
a.earth.sex <- earth(sex~., data=tita, degree=2, nfold=3, ncross=3, varmod.method="lm")
plotmo1(a.earth.sex)
plotmo1(a.earth.sex, level=.9)
plotmo1(a.earth.sex, type="class")
expect.err(try(plotmo1(a.earth.sex, level=.9, degree2=0, type="class")), "predicted values are strings")

# tita[,3] is sex
set.seed(2020)
mod.earth.tita <- earth(tita[,-3], tita[,3], degree=2, nfold=3, ncross=3, varmod.method="lm")
plotmo1(mod.earth.tita)
plotmo1(mod.earth.tita, level=.9, degree2=0)
plotmo1(mod.earth.tita, type="class")
expect.err(try(plotmo1(mod.earth.tita, level=.9, degree2=0, type="class")), "predicted values are strings")

set.seed(2020)
mod.earth.sex <- earth(sex~., data=tita, degree=2, nfold=3, ncross=3, varmod.method="earth", glm=list(family=binomial))
plotmo1(mod.earth.sex)
plotmo1(mod.earth.sex, type="link")
plotmo1(mod.earth.sex, type="class")
plotmo1(mod.earth.sex, level=.9, type="earth")

# tita[,3] is sex
set.seed(2020)
mod.earth.tita <- earth(tita[,-3], tita[,3], degree=2, nfold=3, ncross=3, varmod.method="earth", glm=list(family=binomial))
plotmo1(mod.earth.tita)
plotmo1(mod.earth.tita, type="link")
plotmo1(mod.earth.tita, type="class")
plotmo1(mod.earth.tita, level=.9, type="earth")

# check factor handling when factors are not ordered alphabetically
tita.orgpclass <- etitanic[seq(1, nrow(etitanic), by=12), ]
tita  <- get.tita()
tita$logage <- NULL
tita.orgpclass$parch <- NULL
stopifnot(names(tita.orgpclass) == names(tita))
a.tita.orgpclass <- earth(pclass~., degree=2, data=tita.orgpclass)
a.tita           <- earth(pclass~., degree=2, data=tita)
options(warn=2) # treat warnings as errors
expect.err(try(plotmo(a.tita)), "Defaulting to nresponse=1, see above messages")
options(warn=1)
# following two graphs should be identical
plotmo1(a.tita.orgpclass, nresponse="1st",   all1=T, col.resp=3, type2="im")
plotmo1(a.tita,           nresponse="first", all1=T, col.resp=3, type2="im")
# following two graphs should be identical
plotmo1(a.tita.orgpclass, nresponse="2nd",    all1=T)
plotmo1(a.tita,           nresponse="class2", all1=T)

tita  <- get.tita()
mod.earth.pclass <- earth(pclass~., data=tita, degree=2)
options(warn=2) # treat warnings as errors
expect.err(try(plotmo1(mod.earth.pclass)), "Defaulting to nresponse=1, see above messages")
options(warn=1)
plotmo1(mod.earth.pclass, nresponse="fi")
plotmo1(mod.earth.pclass, nresponse="first")
plotmo1(mod.earth.pclass, nresponse=3)
plotmo1(mod.earth.pclass, type="class")
plotmo1(mod.earth.pclass, nresponse=1,
       type="class", grid.levels=list(sex="fem"),
       smooth.col="indianred", smooth.lwd=2,
       pt.col=as.numeric(tita$pclass)+1,
       pt.pch=1)

# tita[,1] is pclass
mod.earth.tita <- earth(tita[,-1], tita[,1], degree=2)
options(warn=2) # treat warnings as errors
expect.err(try(plotmo1(mod.earth.tita)), "Defaulting to nresponse=1, see above messages")
options(warn=1)
plotmo1(mod.earth.tita, nresponse="first")
plotmo1(mod.earth.tita, type="class")

mod.earth.pclass2 <- earth(pclass~., data=tita, degree=2, glm=list(family=binomial))
# expect.err(try(plotmo1(mod.earth.pclass2)), "nresponse is not specified")
plotmo1(mod.earth.pclass2, nresponse=3)
plotmo1(mod.earth.pclass2, type="link", nresponse=3)
plotmo1(mod.earth.pclass2, type="class")

# tita[,1] is pclass
mod.earth.tita <- earth(tita[,-1], tita[,1], degree=2, glm=list(family=binomial))
plotmo1(mod.earth.tita, nresponse=3)
plotmo1(mod.earth.tita, type="link", nresponse=3)
plotmo1(mod.earth.tita, type="class")

# plotmo vignette examples

# use a small set of variables for illustration
printf("library(earth)\n")
library(earth) # for ozone1 data
data(ozone1)
oz <- ozone1[, c("O3", "humidity", "temp", "ibt")]

lm.model.vignette <- lm(O3 ~ humidity + temp*ibt, data=oz) # linear model
plotmo1(lm.model.vignette, pt.col="gray", nrug=-1)
plotmo1(lm.model.vignette, level=.9)

printf("library(mda)\n")
library(mda)
mars.model.vignette1 <- mars(oz[,-1], oz[,1], degree=2)
plotmo1(mars.model.vignette1)
plotres1(mars.model.vignette1)
mars.model.vignette2 <- mars(oz[,-1,drop=FALSE], oz[,1,drop=FALSE], degree=2)
plotmo1(mars.model.vignette2)
# TODO causes Error in lm.fit(object$x, y, singular.ok = FALSE) : (list) object cannot be coerced to type 'double'
#      although still works
#      the error is mars.to.earth try(hatvalues.lm.fit(lm.fit(object$x, y, singular.ok=FALSE)))
plotres1(mars.model.vignette2, trace=1)

printf("library(rpart)\n")
library(rpart)                                          # rpart
rpart.model.vignette <- rpart(O3 ~ ., data=oz)
plotmo1(rpart.model.vignette, all2=TRUE)
expect.err(try(plotmo1(rpart.model.vignette, level=.9)), "the level argument is not supported for \"rpart\" objects")

# commented out because is slow and already tested in test.non.earth.R
# printf("library(randomForest)\n")
# library(randomForest)                                   # randomForest
# rf.model.vignette <- randomForest(O3~., data=oz)
# plotmo1(rf.model.vignette)
# partialPlot(rf.model.vignette, oz, temp) # compare to partial-dependence plot

printf("library(gbm)\n")
library(gbm)                                            # gbm
set.seed(2016)
gbm.model.vignette <- gbm(O3~., data=oz, dist="gaussian", inter=2, n.trees=100)
# commented out following because they always take the whole page
# plot(gbm.model.vignette, i.var=2) # compare to partial-dependence plots
# plot(gbm.model.vignette, i.var=c(2,3))
set.seed(2016)
plotmo1(gbm.model.vignette, caption="gbm.model.vignette")

# commented out because is slow and already tested elsewhere
# printf("library(mgcv)\n")
# library(mgcv)                                           # gam
# gam.model.vignette <- gam(O3 ~ s(humidity)+s(temp)+s(ibt)+s(temp,ibt), data=oz)
# plotmo1(gam.model.vignette, level=.95, all2=TRUE)

printf("library(nnet)\n")
library(nnet)                                           # nnet
set.seed(4)
nnet.model.vignette <- nnet(O3~., data=scale(oz), size=2, decay=0.01, trace=FALSE)
plotmo1(nnet.model.vignette, type="raw", all2=T)

printf("library(MASS)\n")
library(MASS)                                           # qda
lcush <- data.frame(Type=as.numeric(Cushings$Type),log(Cushings[,1:2]))
lcush <- lcush[1:21,]
qda.model.vignette <- qda(Type~., data=lcush)
plotmo1(qda.model.vignette, type="class", all2=TRUE,
       type2="contour", ngrid2=100, contour.nlevels=2, contour.drawlabels=FALSE,
       pt.col=as.numeric(lcush$Type)+1,
       pt.pch=as.character(lcush$Type))

# miscellaneous other examples

tita <- get.tita()

mod.glm.sex <- glm(sex~., data=tita, family=binomial)
plotmo1(mod.glm.sex, pt.col=as.numeric(tita$pclass)+1)

# tita[,4] is age, tita[,1] is pclass
printf("library(lars)\n")
library(lars)
set.seed(2015)
xmat <- as.matrix(tita[,c(2,5,6)])
mod.lars.xmat <- lars(xmat, tita[,4])
par(mfrow=c(2,2))
plot(mod.lars.xmat)
plotmo1(mod.lars.xmat, nresponse=4, do.par=F)
plotres(mod.lars.xmat, trace=0, nresponse=4)

if(0) { # TODO fails with R-3.4.2: object '.QP_qpgen2' not found
    printf("library(cosso)\n")
    library(cosso)
    set.seed(2016)
    cosso <- cosso(xmat,tita[,4],family="Gaussian")
    # TODO tell maintainer of cosso that you have to do this
    class(cosso) <- "cosso"
    set.seed(2016)
    plotmo1(cosso)
    set.seed(2016)
    plotres(cosso)
}
# examples from James, Witten, et al. ISLR book
# I tested all models in their scripts manually.
# All worked except for exceptions below.

printf("library(pls)\n")
library(pls)
printf("library(ISLR)\n")
library(ISLR)
Hitters=na.omit(Hitters)

set.seed(1)
x <- model.matrix(Salary~.,Hitters)[,-1]
y <- Hitters$Salary
train=sample(1:nrow(x), nrow(x)/2)
pcr.fit1=pcr(Salary~., data=Hitters,subset=train,scale=TRUE, validation="CV")
plotmo1(pcr.fit1, nresponse=10)

# set.seed(1)
# x <- model.matrix(Salary~.,Hitters)[,-1]
# y <- Hitters$Salary
# train=sample(1:nrow(x), nrow(x)/2)
# pcr.fit2=pcr(y~x,scale=TRUE,ncomp=7)
# # TODO following gives Error: predictions returned the wrong length (got 263 but expected 50)
# plotmo1(pcr.fit2, nresponse=5)

library(splines)
fit.lm2=lm(wage~bs(age,knots=c(25,40,60)),data=Wage)
par(mfrow=c(1,2),mar=c(4.5,4.5,1,1),oma=c(0,0,4,0))
agelims=range(Wage$age)
age.grid=seq(from=agelims[1],to=agelims[2])
pred=predict(fit.lm2,newdata=list(age=age.grid),se=T)
plot(Wage$age,Wage$wage,col="gray", ylim=c(0,320))
lines(age.grid,pred$fit,lwd=2)
lines(age.grid,pred$fit+2*pred$se,lty="dashed")
lines(age.grid,pred$fit-2*pred$se,lty="dashed")
fit.lm2=lm(wage~bs(age,knots=c(25,40,60)),data=Wage,model=F) # TODO delete
plotmo1(fit.lm2, col.resp=2, do.par=F, level=.95, ylim=c(0,320),
        nrug=TRUE, caption="fit.lm2", ylab="wage")

fit.glm2 <- glm(I(wage>250)~poly(age,4),data=Wage,family=binomial)
par(mfrow=c(1,2),mar=c(4.5,4.5,1,1),oma=c(0,0,4,0))
agelims=range(Wage$age)
age.grid=seq(from=agelims[1],to=agelims[2])
# their plot
preds=predict(fit.glm2,newdata=list(age=age.grid),se=T)
pfit=exp(preds$fit)/(1+exp(preds$fit))
se.bands.logit = cbind(preds$fit+2*preds$se.fit, preds$fit-2*preds$se.fit)
se.bands = exp(se.bands.logit)/(1+exp(se.bands.logit))
preds=predict(fit.glm2,newdata=list(age=age.grid),type="response",se=T)
plot(Wage$age,I(Wage$wage>250),xlim=agelims,type="n",ylim=c(0,.2))
points(jitter(Wage$age), I((Wage$wage>250)/5),cex=.5,pch="|",col="darkgrey")
lines(age.grid,pfit,lwd=2, col="blue")
matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)
# plotmo plot, side by side
# TODO Warning: the level argument may not be properly supported on glm objects built with weights
plotmo1(fit.glm2, level=.95, degree1.col="blue", ylim=c(0,.2), do.par=FALSE, nrug=-1, caption="fit.glm2", ylab="I(wage > 250)")

# Test deparsing of the formula in plotmo.pairs.default
# TODO Height is included in the plots even though formula says -Height
Height2 <- trees$Height^2
a <- lm(Volume~(Girth*Height2)-Height, data=trees, x=TRUE, model=FALSE)
plotmo(a)

# test "the variable on the right side of the formula is a matrix or data.frame"
# TODO would like to solve this problem

options(warn=2)
data(gasoline, package="pls")
earth.octane <- earth(octane ~ NIR, data=gasoline)
print(summary(earth.octane)) # ok
plotres(earth.octane) # ok
expect.err(try(plotmo(earth.octane)), "the variable on the right side of the formula is a matrix or data.frame")
options(warn=1)

# TODO May 2020 'ElemStatLearn' is not available (for R version 4.0.0)
# library(ElemStatLearn)
# x <- mixture.example$x
# g <- mixture.example$y
# lm.mixture.example <- lm(g ~ x)
# options(warn=2)
# expect.err(try(plotmo(lm.mixture.example)), "the variable on the right side of the formula is a matrix or data.frame")
# options(warn=1)

# test variable names with $ are not supported

a <- earth(O3~ozone1$doy, data=ozone1)
expect.err(try(plotmo(a)), "cannot get the original model predictors")

a <- earth(O3~ozone1$doy + temp, data=ozone1)
expect.err(try(plotmo(a)), "cannot get the original model predictors")

a <- lm(O3~ozone1$doy, data=ozone1)
expect.err(try(plotmo(a)), "cannot get the original model predictors")

a <- lm(O3~ozone1$doy + temp, data=ozone1)
expect.err(try(plotmo(a)), "cannot get the original model predictors")

#--- test interaction of w1. and non w1 args -------------------------------------

par(mfrow=c(4,3), mar=c(3, 3, 4, 1), mgp=c(2, 0.6, 0))

mod78 <- earth(Volume ~ ., data = trees)
par(mfrow=c(3,4), mar=c(3, 3, 3, 1), mgp=c(2, 0.6, 0))

# multiple which, earth model
plotres(mod78, cex.main=1,
        ylim=c(-.5, .8),    xlim=c(-2, 7),    col=2:3, do.par=FALSE,
        w1.main=c("ylim=c(-.5, .8)\nxlim=c(-2, 7) col=2:3"))

# multiple which, earth model
plotres(mod78, cex.main=.7,
        w1.ylim=c(-.5, .8), w1.xlim=c(-2, 7), col=2:3, do.par=FALSE,
        ylim=c(-10,10), xlim=c(-30, 100),
        w1.main=c("w1.ylim=c(-.5, .8) w1.xlim=c(-2, 7)\nylim=c(-10,10), xlim=c(-30, 100)"))
par(org.par)

par(mfrow=c(3,4), mar=c(3, 3, 3, 1), mgp=c(2, 0.6, 0))

# which=1, earth model

plotres(mod78, which=1, cex.main=.8,
        col=2:3,
        main="which=1, no other ylim args",
        w1.main="which=1, no other ylim args")

plotres(mod78, which=1, cex.main=.8,
        col=2:3, w1.ylim=c(.3,.98), w1.xlim=c(-2, 7),
        main="w1.ylim=c(.3,.98)\nw1.xlim=c(-2, 7)")

plotres(mod78, which=1, cex.main=.8,
        col=2:3, ylim=c(.3,.98),    xlim=c(-2, 7),
        main="ylim=c(.3,.98)\nxlim=c(-2, 7)")  # ylim gets passed to modsel

plotres(mod78, which=1, cex.main=.75,
        col=2:3, w1.ylim=c(.3,.98), ylim=c(-.5,.5),
        w1.xlim=c(-2, 7), xlim=c(-90, 90),
        main="w1.ylim=c(.3,.98), ylim=c(-.5,.5)\nw1.xlim=c(-2, 7), xlim=c(-90, 90)") # ignore ylim

# which=3, earth model
plotres(mod78, which=3, cex.main=1,
        col=2:3,
        main="which=3, no other ylim args")

plotres(mod78, which=3, cex.main=1,
        col=2:3, w1.ylim=c(.3,.98), w1.xlim=c(-2, 7),
        main="w1.ylim=c(.3,.98)\nw1.xlim=c(-2, 7)") # not usual, ignore w1.ylim

plotres(mod78, which=3, cex.main=1,
        col=2:3, ylim=c(-10,10), xlim=c(-90,90),
         main="which=3, ylim=c(-10,10)\nxlim=c(-90,90)")

plotres(mod78, which=3, cex.main=1,
        col=2:3, w1.ylim=c(.3,.98), ylim=c(-10,10), w1.xlim=c(-2, 7), xlim=c(-90,90),
        main="w1.ylim=c(.3,.98) ylim=c(-10,10)\nw1.xlim=c(-2, 7), xlim=c(-90,90)")

par(org.par)

nullarg <- NULL
expect.err(try(plotmo(nullarg)),   "argument 'nullarg' is NULL")
expect.err(try(plotmo(NULL)),      "argument 'NULL' is NULL")
expect.err(try(plotmo(0)),         "'0' is not an S3 model")
expect.err(try(plotmo(list(1,2))), "'list(1, 2)' is a plain list, not an S3 model")
expect.err(try(plotmo(list(1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0))),
               "object is a plain list, not an S3 model")

source("test.epilog.R")