File: plotmo.Rd

package info (click to toggle)
r-cran-plotmo 3.6.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,388 kB
  • sloc: sh: 13; makefile: 2
file content (498 lines) | stat: -rw-r--r-- 19,441 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
\name{plotmo}
\alias{plotmo}
\concept{partial dependence plot}
\title{Plot a model's response over a range of predictor values (the model surface)}
\description{
Plot model surfaces for a wide variety of models.

This function plots the model's response when varying one or two
predictors while holding the other predictors constant (a poor man's
partial-dependence plot).

It can also generate partial-dependence plots (by specifying
\code{pmethod="partdep"}).

Please see the \href{../doc/plotmo-notes.pdf}{plotmo vignette}
(also available \href{http://www.milbo.org/doc/plotmo-notes.pdf}{here}).
}
\usage{
plotmo(object=stop("no 'object' argument"),
    type=NULL, nresponse=NA, pmethod="plotmo",
    pt.col=0, jitter=.5, smooth.col=0, level=0,
    func=NULL, inverse.func=NULL, nrug=0, grid.col=0,
    type2="persp",
    degree1=TRUE, all1=FALSE, degree2=TRUE, all2=FALSE,
    do.par=TRUE, clip=TRUE, ylim=NULL, caption=NULL, trace=0,
    grid.func=NULL, grid.levels=NULL, extend=0,
    ngrid1=50, ngrid2=20, ndiscrete=5, npoints=3000,
    center=FALSE, xflip=FALSE, yflip=FALSE, swapxy=FALSE, int.only.ok=TRUE,
    ...)
}
\arguments{
\item{object}{
The model object.
}
\item{type}{
Type parameter passed to \code{\link{predict}}.
For allowed values see the \code{predict} method for
your \code{object} (such as \code{\link[earth]{predict.earth}}).
By default, \code{plotmo} tries to automatically select a suitable
value for the model in question (usually \code{"response"})
but this will not always be correct.
Use \code{trace=1} to see the \code{type} argument passed to \code{predict}.
}
\item{nresponse}{
Which column to use when \code{predict} returns multiple columns.
This can be a column index, or a column name if the \code{predict}
method for the model returns column names.
The column name may be abbreviated, partial matching is used.
}
\item{pmethod}{
Plotting method.
One of:

\code{"plotmo"} (default)
Classic plotmo plots i.e. the background variables
are fixed at their medians (or first level for factors).

\code{"partdep"} Partial dependence plots, i.e. at each point the effect
of the background variables is averaged.

\code{"apartdep"} Approximate partial dependence plots.
Faster than \code{"partdep"} especially for big datasets.
Like \code{"partdep"} but the background variables are averaged over a
subset of \code{ngrid1} cases (default 50), rather than all cases in
the training data.
The subset is created by selecting
rows at equally spaced intervals from the training data
after sorting the data on the response values
(ties are randomly broken).
% If \code{ngrid1} is greater then the number of cases than all cases
% are used, and \code{"apartdep"} is identical to \code{"partdep"}.
The same background subset of \code{ngrid1} cases is used for both
degree1 and degree2 plots.
}
\item{pt.col}{
The color of response points (or response sites in degree2 plots).
This refers to the response \code{y} in the data
used to build the model.
Note that the displayed points are jittered by default
(see the \code{jitter} argument).
\cr
Default is \code{0}, display no response points.
\cr
This can be a vector, like all such arguments -- for example
\code{pt.col = as.numeric(survived)+2} to color points by their survival class.
\cr
You can modify the plotted points with
\code{pt.pch}, \code{pt.cex}, etc.
(these get passed via \code{plotmo}'s ``\code{...}'' argument).
For example, \code{pt.cex = weights} to size points by their weight.
To label the points, set \code{pt.pch} to a character vector.
}
\item{jitter}{
Applies only if \code{pt.col} is specified.\cr
The default is \code{jitter=.5}, automatically apply some jitter to the points.
Points are jittered horizontally and vertically.\cr
Use \code{jitter=0} to disable this automatic jittering.
Otherwise something like \code{jitter=1}, but the optimum value is data dependent.
}
\item{smooth.col}{
Color of smooth line through the response points.
(The points themselves will not be plotted unless \code{pt.col} is specified.)
Default is \code{0}, no smooth line.
\cr
Example:\preformatted{    mod <- lm(Volume~Height, data=trees)
    plotmo(mod, pt.color=1, smooth.col=2)}
You can adjust the amount of smoothing with \code{smooth.f}.
This gets passed as \code{f} to \code{\link[stats]{lowess}}.
The default is \code{.5}.
Lower values make the line more wiggly.
}
\item{level}{
Draw estimated confidence or prediction interval bands at the given \code{level},
if the predict method for the model supports them.\cr
Default is \code{0}, bands not plotted.
Else a fraction, for example \code{level=.95}.
See \dQuote{\emph{Prediction intervals}} in the \code{plotmo} vignette.
Example:\preformatted{    mod <- lm(log(Volume)~log(Girth), data=trees)
    plotmo(mod, level=.95)}
You can modify the color of the bands with \code{level.shade} and \code{level.shade2}.
}
\item{func}{
Superimpose \code{func(x)} on the plot.
Example:\preformatted{    mod <- lm(Volume~Girth, data=trees)
    estimated.volume <- function(x) .17 * x$Girth^2
    plotmo(mod, pt.col=2, func=estimated.volume)}
The \code{func} is called for each plot with a single argument which
is a dataframe with columns in the same order as the predictors
in the \code{formula} or \code{x} used to build the model.
Use \code{trace=2} to see the column names and first few rows of this dataframe.
}
\item{inverse.func}{
A function applied to the response before plotting.
Useful to transform a transformed response back to the original scale.
Example:\preformatted{    mod <- lm(log(Volume)~., data=trees)
    plotmo(mod, inverse.func=exp)    # exp() is inverse of log()

}
}
\item{nrug}{
Number of ticks in the \code{\link[graphics]{rug}} along the bottom of the plot
\cr
Default is \code{0}, no rug.
\cr
Use \code{nrug=TRUE} for all the points.
\cr
Else specify the number of quantiles
e.g. use \code{nrug=10} for ticks at the 0, 10, 20, ..., 100 percentiles.
\cr
Modify the rug ticks with \code{rug.col}, \code{rug.lwd}, etc.
\cr
The special value \code{nrug="density"} means plot the
density of the points along the bottom.
Modify the \code{\link[stats]{density}} plot with \code{density.adjust} (default is \code{.5}),
\code{density.col}, \code{density.lty}, etc.
}
\item{grid.col}{
Default is \code{0}, no grid.
Else add a background \code{\link[graphics]{grid}}
of the specified color to the degree1 plots.
The special value \code{grid.col=TRUE} is treated as \code{"lightgray"}.
}
\item{type2}{
Degree2 plot type.
One of \code{"\link[graphics]{persp}"} (default),
\code{"\link[graphics]{image}"}, or \code{"\link[graphics]{contour}"}.
You can pass arguments to these functions if necessary by using
\code{persp.}, \code{image.}, or \code{contour.} as a prefix.
Examples:\preformatted{    plotmo(mod, persp.ticktype="detailed", persp.nticks=3)
    plotmo(mod, type2="image")
    plotmo(mod, type2="image", image.col=heat.colors(12))
    plotmo(mod, type2="contour", contour.col=2, contour.labcex=.4)
    }
}
\item{degree1}{
An index vector specifying which subset of degree1 (main effect) plots to include
(after selecting the relevant predictors as described in
\dQuote{\emph{Which variables are plotted?}} in the \code{plotmo} vignette).
\cr
Default is \code{TRUE}, meaning all (the \code{TRUE} gets recycled).
To plot only the third plot use \code{degree1=3}.
For no degree1 plots use \code{degree1=0}.
\cr
\cr
Note that \code{degree1} indexes plots on the page,
not columns of \code{x}.
Probably the easiest way to use this argument (and \code{degree2}) is to
first use the default (and possibly \code{all1=TRUE})
to plot all figures.  This shows how the figures are numbered.
Then replot using \code{degree1} to select the figures you want,
for example \code{degree1=c(1,3,4)}.
\cr
\cr
Can also be a character vector
specifying which variables to plot. Examples:\cr
\code{degree1="wind"}\cr
\code{degree1=c("wind", "vis")}.
\cr
\cr
Variables names are matched with \code{\link[base]{grep}}.
Thus \code{"wind"} will match all variables with \code{"wind"}
anywhere in their name. Use \code{"^wind$"} to match only the variable
named \code{"wind"}.
}
\item{all1}{
Default is \code{FALSE}.
Use \code{TRUE} to plot all predictors,
not just those usually selected by \code{plotmo}.
\cr
The \code{all1} argument increases the number of plots;
the \code{degree1} argument reduces the number of plots.
}
\item{degree2}{
An index vector specifying which subset of degree2 (interaction) plots to include.
\cr
Default is \code{TRUE} meaning all
(after selecting the relevant interaction terms as described in
\dQuote{\emph{Which variables are plotted?}} in the \code{plotmo} vignette).
\cr
\cr
Can also be a character vector specifying which variables to plot
(\code{\link[base]{grep}} is used for matching).
Examples:
\cr
\code{degree2="wind"} plots all degree2 plots
for the \code{wind} variable.
\cr
\code{degree2=c("wind", "vis")} plots just the \code{wind:vis} plot.
}
\item{all2}{
Default is \code{FALSE}.
Use \code{TRUE} to plot all pairs of predictors,
not just those usually selected by \code{plotmo}.
}
\item{do.par}{One of \code{NULL}, \code{FALSE}, \code{TRUE}, or \code{2}, as follows:

\code{do.par=NULL}. Same as \code{do.par=FALSE} if the
number of plots is one; else the same as \code{TRUE}.

\code{do.par=FALSE}. Use the current \code{\link[graphics]{par}} settings.
You can pass additional graphics parameters in the ``\code{...}'' argument.

\code{do.par=TRUE} (default). Start a new page and call \code{\link[graphics]{par}} as
appropriate to display multiple plots on the same page.
This automatically sets parameters like \code{mfrow} and \code{mar}.
You can pass additional graphics parameters in the ``\code{...}'' argument.
% This sets the \emph{overall} look of the display; modify
% \emph{specific} plots by using prefixed arguments as described in the
% documentation for the \dots argument below.

\code{do.par=2}.  Like \code{do.par=TRUE} but don't restore
the \code{\link[graphics]{par}} settings to their original state when \code{plotmo} exits,
so you can add something to the plot.
\cr
}
\item{clip}{
The default is \code{clip=TRUE}, meaning ignore very outlying
predictions  when determining the automatic \code{ylim}.
This keeps \code{ylim} fairly compact while
still covering all or nearly all the data,
even if there are a few crazy predicted values.
See \dQuote{\emph{The \code{ylim} and \code{clip} arguments}} in the \code{plotmo} vignette.
\cr
Use \code{clip=FALSE} for no clipping.
}
\item{ylim}{Three possibilities:
\cr
\code{ylim=NULL} (default). Automatically determine a \code{ylim}
to use across all graphs.
\cr
\code{ylim=NA}. Each graph has its own \code{ylim}.
\cr
\code{ylim=c(ymin,ymax)}. Use the specified limits across all graphs.
\cr
}
\item{caption}{
Overall caption.  By default create the caption automatically.
Use \code{caption=""} for no caption.
(Use \code{main} to set the title of individual plots, can be a vector.)
}
\item{trace}{
Default is \code{0}.
\cr
\code{trace=1} (or \code{TRUE}) for a summary trace (shows how
\code{\link[stats]{predict}} is invoked for the current object).
\cr
\code{trace=2} for detailed tracing.
\cr
\code{trace=-1} inhibits the messages usually issued by \code{plotmo},
like the \code{plotmo grid:},
\code{calculating partdep},
and  \code{nothing to plot} messages.
Error and warning messages will be printed as usual.
\cr
\cr
}
\item{grid.func}{
Function applied to columns of the \code{x} matrix to pin the values of
variables not on the axis of the current plot (the ``background'' variables).\cr
The default is a function which for numeric variables returns the
median and for logical and factors variables returns the value
occurring most often in the training data.\cr
Examples:\preformatted{    plotmo(mod, grid.func=mean)
    grid.func <- function(x, ...) quantile(x)[2] # 25\% quantile
    plotmo(mod, grid.func=grid.func)}
This argument is not related to the \code{grid.col} argument.\cr
This argument can be overridden for specific variables---see \code{grid.levels} below.
}
\item{grid.levels}{
Default is \code{NULL}.
Else a list of variables and their fixed value to be used
when the variable is not on the axis.
Supersedes \code{grid.func} for variables in the list.
Names and values can be abbreviated, partial matching is used.
Example:\preformatted{    plotmo(mod, grid.levels=list(sex="m", age=21))

}
}
\item{extend}{
Amount to extend the horizontal axis in each plot.
The default is \code{0}, do not extend
(i.e. use the range of the variable in the training data).
Else something like \code{extend=.5}, which will extend both the lower
and upper \code{xlim} of each plot by 50\%.\cr
This argument is useful if you want to see how the model performs
on data that is beyond the training data;
for example, you want to see how a time-series model performs on future data.\cr
This argument is currently implemented only for degree1 plots.
Factors and discrete variables (see the \code{ndiscrete} argument)
are not extended.
}
\item{ngrid1}{
Number of equally spaced x values in each degree1 plot.
Default is \code{50}.
Also used as the number of background cases for \code{pmethod="apartdep"}.
}
\item{ngrid2}{
Grid size for degree2 plots (\code{ngrid2 x ngrid2} points are plotted).
Default is \code{20}.
\cr
The default will sometimes be too small for \code{contour} and \code{image} plots.
\cr
With large \code{ngrid2} values, \code{persp} plots look better with
\code{persp.border=NA}.
}
\item{npoints}{
Number of response points to be plotted
(a sample of \code{npoints} points is plotted).
Applies only if \code{pt.col} is specified.
\cr
The default is 3000 (not all, to avoid overplotting on large models).
Use \code{npoints=TRUE} or \code{-1} for all points.
}
\item{ndiscrete}{
Default \code{5} (a somewhat arbitrary value).
Variables with no more than \code{ndiscrete} unique values
are plotted as quantized in plots (a staircase rather than a curve).\cr
Factors are always considered discrete.
Variables with non-integer values are always considered non-discrete.\cr
Use \code{ndiscrete=0} if you want to plot the response for a variable
with just a few integer values as a line or a curve, rather than a
staircase.\cr
}
\item{int.only.ok}{
Plot the model even if it is an intercept-only model (no predictors are
used in the model).
Do this by plotting a single degree1 plot for the first predictor.
\cr
The default is \code{TRUE}.
Use \code{int.only.ok=FALSE} to instead issue an error message for intercept-only models.
}
\item{center}{
Center the plotted response.
Default is \code{FALSE}.
}
\item{xflip}{
Default \code{FALSE}.
Use \code{TRUE} to flip the direction of the \code{x} axis.
This argument (and \code{yflip} and \code{swapxy}) is useful when comparing
to a plot from another source and you want the axes to be the same.
(Note that \code{xflip} and \code{yflip} cannot be used on the \code{persp} plots,
a limitation of the \code{persp} function.)
}
\item{yflip}{
Default \code{FALSE}.
Use \code{TRUE} to flip the direction of the y axis of the degree2 graphs.
}
\item{swapxy}{
Default \code{FALSE}.
Use \code{TRUE} to swap the x and y axes on the degree2 graphs.
\cr
\cr
}
\item{\dots}{
Dot arguments are passed to the predict and plot functions.
Dot argument names, whether prefixed or not, should be specified in full
and not abbreviated.
\cr
\cr
\dQuote{Prefixed} arguments are passed directly to the associated function.
For example the prefixed argument \code{persp.col="pink"} passes
\code{col="pink"} to \code{persp()}, overriding the global
\code{col} setting.
To send an argument to \code{predict} whose name may alias with
\code{plotmo}'s arguments, use \code{predict.} as a prefix.
Example:\preformatted{    plotmo(mod, s=1)           # error:  arg matches multiple formal args
    plotmo(mod, predict.s=1)   # ok now: s=1 will be passed to predict()
}
The prefixes recognized by \code{plotmo} are:\tabular{ll}{
\cr
\code{predict.} \tab passed to the \code{\link[stats]{predict}} method for the model
\cr
\code{degree1.} \tab modifies degree1 plots e.g. \code{degree1.col=3, degree1.lwd=2}
\cr
\code{persp.} \tab arguments passed to \code{\link[graphics]{persp}}
\cr
\code{contour.} \tab arguments passed to \code{\link[graphics]{contour}}
\cr
\code{image.} \tab arguments passed to \code{\link[graphics]{image}}
\cr
\code{pt.} \tab see the \code{pt.col} argument
(arguments passed to \code{\link[graphics]{points}} and \code{\link[graphics]{text}})
\cr
\code{smooth.} \tab see the \code{smooth.col} argument
(arguments passed to \code{\link[graphics]{lines}} and \code{\link[stats]{lowess}})
\cr
\code{level.} \tab see the \code{level} argument
(\code{level.shade}, \code{level.shade2}, and arguments for \code{\link[graphics]{polygon}})
\cr
\code{func.} \tab see the \code{func} argument
(arguments passed to \code{\link[graphics]{lines}})
\cr
\code{rug.} \tab see the \code{nrug} argument
(\code{rug.jitter}, and arguments passed to \code{\link[graphics]{rug}})
\cr
\code{density.} \tab see the \code{nrug} argument
(\code{density.adjust}, and arguments passed to \code{\link[graphics]{lines}})
\cr
\code{grid.} \tab see the \code{grid.col} argument
(arguments passed to \code{\link[graphics]{grid}})
\cr
\code{caption.} \tab see the \code{caption} argument
(arguments passed to \code{\link[graphics]{mtext}})
\cr
\code{par.} \tab arguments passed to \code{\link[graphics]{par}}
(only necessary if a \code{par} argument name clashes
with a \code{plotmo} argument)
\cr
\code{prednames.} \tab Use \code{prednames.abbreviate=FALSE} for
full predictor names in graph axes.
\cr
}
The \code{cex} argument is relative, so
specifying \code{cex=1} is the same as not specifying \code{cex}.

For backwards compatibility, some dot arguments are supported but not
explicitly documented.  For example, the old argument \code{col.response}
is no longer in \code{plotmo}'s formal argument list, but is still
accepted and treated like the new argument \code{pt.col}.
}
}
\note{
In general this function won't work on models that don't save the call
and data with the model in a standard way.
For further discussion please see \dQuote{\emph{Accessing the model
data}} in the \href{../doc/plotmo-notes.pdf}{plotmo vignette}.
Package authors may want to look at
\href{../doc/modguide.pdf}{Guidelines for S3 Regression Models}
(also available \href{http://www.milbo.org/doc/modguide.pdf}{here}).

By default, \code{plotmo} tries to use sensible model-dependent
defaults when calling \code{predict}.
Use \code{trace=1} to see the arguments passed to \code{predict}.
You can change the defaults by using \code{plotmo}'s \code{type} argument,
and by using dot arguments prefixed with
\code{predict.} (see the description of ``\code{...}'' above).
}
\seealso{
Please see the \href{../doc/plotmo-notes.pdf}{plotmo vignette}
(also available \href{http://www.milbo.org/doc/plotmo-notes.pdf}{here}).
}
\examples{
if (require(rpart)) {
    data(kyphosis)
    rpart.model <- rpart(Kyphosis~., data=kyphosis)
    # pass type="prob" to plotmo's internal calls to predict.rpart, and
    # select the column named "present" from the matrix returned by predict.rpart
    plotmo(rpart.model, type="prob", nresponse="present")
}
if (require(earth)) {
    data(ozone1)
    earth.model <- earth(O3 ~ ., data=ozone1, degree=2)
    plotmo(earth.model)
    # plotmo(earth.model, pmethod="partdep") # partial dependence plots
}
}
\keyword{partial dependence}
\keyword{regression}