File: multivari.R

package info (click to toggle)
r-cran-plotrix 3.8-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,588 kB
  • sloc: makefile: 6
file content (245 lines) | stat: -rwxr-xr-x 9,686 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
multivari <- function(var, fac1, fac2, fac3=NULL, fac4=NULL, data, 
                            sort=FALSE, fun=mean, pch=list(15, 16, 17), 
                col=list("black", "blue","red"), col0="black", 
                cex=1, fac.cex=2, xlab.depth=3, legend=FALSE,
                main=paste("multivari chart of", var), add=FALSE, ...){
  ## if fac4 is given, make two separate multivaricharts for fac1 to fac3
  ## on the same y scale
  ## fac4 only allowed if there is also fac3
  ## x a data frame
  ## fac1 to fac4 character strings as names of categorical variables
  ## these are coerced to factor, if they are not factors yet
  ## if sort=FALSE, the order of appearance in unique() is used for level order,
  ##    else levels are ordered in the default way of factor
  ## nfac (calculated) is the number of non-NULL factors
  ## pch and col are lists of length 2 or 3 
  ##    (depending on the number of factors)
  ##    elements can be unique symbol/color specifications
  ##    or vectors of symbol/color specifications for the levels of 
  ##    fac1, fac2, or fac3 resp. (fac4 is in separate charts)
  ##    Usually, one would need to specify a pch vector for the last factor,
  ##    in case of more than two factors.
  ##    line colors are taken from the symbol colors of the previous level
  ##        (try out whether this makes sense)
  ## fac.cex is a factor to enlarge the points versus the text
  ## xlab.depth gives the highest level for which the horizontal axis 
  ##        carries labels for the factor levels
  
  ## Changes Dec 8: 
  ## bug fix: colors and symbols did not work correctly, 
  ##    if some levels do not occur in the data; 
  ##    now, colors and symbols are always picked according to factor levels
  ## added extra space for legend on horizontal axis
  ## added an add option (for adding to otherwise prepared plotting template)
  ## modified initial plot call: 
  ##    more logical choice for x and y, which should not change anything
  ##    added cex.axis=cex and cex.lab=cex, 
  ##    so that y-axis labeling is also affected by cex
  ## added/modified/removed some comment text
  
  stopifnot(is.data.frame(data))
  nc <- ncol(data)
  if (is.numeric(fac1)) {
    stopifnot(fac1 %in% 1:nc)
    fac1 <- names(data)[fac1]
  }
  if (is.numeric(var)){
    stopifnot(var %in% 1:nc)
    var <- names(data)[var]
  }
  if (is.numeric(fac2)){
    stopifnot(fac2 %in% 1:nc)
    fac2 <- names(data)[fac2]
  }
  if (is.numeric(fac3)){
    stopifnot(fac3 %in% 1:nc)
    fac3 <- names(data)[fac3]
  }
  if (is.numeric(fac4)){
     stopifnot(fac4 %in% 1:nc)
    fac4 <- names(data)[fac4]
  }
  stopifnot(is.character(var))
  stopifnot(var %in% names(data))
  stopifnot(is.numeric(data[[var]]))
  fn <- c(fac1, fac2, fac3, fac4)
  if (any(!is.character(fn))) stop("fac1 to fac4 must be character or NULL")
  if (any(!fn %in% names(data))) stop("fac1 to fac4 must be variable names in data")
  ## all factors are columns of data or NULL
  
  ## make non-factors into factors
  ## if (!sort), respect level ordering as encountered in the data
  ## sort does not touch level ordering in factors
  nfac <- 2
  if (!sort){
    if (!is.factor(data[[fac1]])) data[[fac1]] <- factor(data[[fac1]], levels=unique(data[[fac1]]))
    if (!is.factor(data[[fac2]])) data[[fac2]] <- factor(data[[fac2]], levels=unique(data[[fac2]]))
    if (!is.null(fac3)){
      nfac <- 3
      if (!is.factor(data[[fac3]])) data[[fac3]] <- factor(data[[fac3]], levels=unique(data[[fac3]]))
      if (!is.null(fac4)){
        nfac <- 4
        if (!is.factor(data[[fac4]])) data[[fac4]] <- factor(data[[fac4]], levels=unique(data[[fac4]]))
      }
    }
  }
  else{
    if (!is.factor(data[[fac1]])) data[[fac1]] <- factor(data[[fac1]])
    if (!is.factor(data[[fac2]])) data[[fac2]] <- factor(data[[fac2]])
    if (!is.null(fac3)){
      nfac <- 3
      if (!is.factor(data[[fac3]])) data[[fac3]] <- factor(data[[fac3]])
      if (!is.null(fac4)){
        nfac <- 4
        if (!is.factor(data[[fac4]])) data[[fac4]] <- factor(data[[fac4]])
      }
    }
  }
  stopifnot(is.list(col))
  stopifnot(is.list(pch))
  stopifnot(length(col)>=min(3, nfac))
  stopifnot(length(pch)>=min(3, nfac))

  ## the number of observations behind the aggregated values
  aggrn <- as.data.frame(table(data[fn][!is.na(data[[var]]),]))
  aggrn <- aggrn[!aggrn$Freq==0,]
  
  ## for ylim and lowest level
  aggr <- aggregate(data[var], data[fn], fun)
  names(aggr)[nfac+1] <- var
  aggr <- merge(aggr, aggrn, by=fn)
  ylim <- range(aggr[[var]])  ## for all chunks of the chart
  ## now we have the data structure, nfac factors and one value

  if (nfac==4) {
    dat_split <- split(data, data[[fac4]])
  }
  else {
    dat_split <- list(data)
  }
  
  
  npanel <- length(dat_split)
  xlim <- c(0.5, (nlevels(data[[fac1]])+1)*npanel+legend)

  ## within each panel, use x positions 1 to nlevels(dat[[fac1]])
  ## continue from these with x positions at most +/-0.25
  ## and then with x positions at most +/- 0.1
  
  aggrlists <- lapply(dat_split, function(obj){
    hilf <- list(aggregate(obj[var], obj[fac1], fun), 
                 aggregate(obj[var], obj[c(fac1, fac2)], fun))
    if (nfac >= 3) hilf[[3]] <- aggregate(obj[var], obj[c(fac1, fac2, fac3)], fun)
    hilf
  })

  nlevs <- sapply(data[fn], nlevels)
  poscalc <- function(i){
    ## calculate x positions
    ## i is the panel
      pos3 <- NULL
      pos1 <- 1:nlevs[1] + (nlevs[1] + 1) * (i - 1)
      pos2 <- rep(pos1, nlevs[2]) + 
        0.5*rep((0:(nlevs[2]-1) - (nlevs[2]-1)/2)/(nlevs[2] - 1), 
                each=length(pos1))
      if (nfac >= 3) pos3 <- rep(pos2, nlevs[3]) + 
        0.2*rep((0:(nlevs[3]-1) - (nlevs[3]-1)/2)/(nlevs[3] - 1), 
                each=length(pos2))
      ## take care of missing levels 
      ## the number of observations behind the aggregated values
      aggrn1 <- as.data.frame(table(dat_split[[i]][fac1][!is.na(data[[var]]),]))
      pos1 <- pos1[aggrn1$Freq>0]
      aggrn2 <- as.data.frame(table(dat_split[[i]][c(fac1,fac2)][!is.na(data[[var]]),]))
      pos2 <- pos2[aggrn2$Freq>0]
      if (nfac>=3){ 
        aggrn3 <- as.data.frame(table(dat_split[[i]][c(fac1,fac2,fac3)][!is.na(data[[var]]),]))
        pos3 <- pos3[aggrn3$Freq>0]
      }
      mapply(cbind, aggrlists[[i]], list(pos1=pos1,pos2=pos2,pos3=pos3)[1:min(nfac, 3)])
  }
  
    ## functions to draw each element of aggrlists in its place
  linesfun <- function(x, ...){
     lines()
  }

  pch <- as.list(pch)
  col <- as.list(col)
  for (i in 1:min(3, nfac)) 
    if (length(pch[[i]]) < nlevs[i]) pch[[i]] <- rep(pch[[i]],nlevs[i])
  for (i in 1:min(3, nfac)) 
    if (length(col[[i]]) < nlevs[i]) col[[i]] <- rep(col[[i]],nlevs[i])
  ## now, pch and col are lists with a level for each 
  
  calcresults <- lapply(1:npanel, function(obj){ 
      hilf <- poscalc(obj)
      hilf <- lapply(hilf, function(obj) {
        names(obj)[ncol(obj)] <- "x"
        obj
        }
        )
      hilf
    })
  
  ## prepare plot
  if (!add) plot(xlim,ylim,type="n", xaxt="n", xlab="", ylab=var, tcl=0.5,
       xlim=xlim, ylim=ylim, main=main, cex.axis=cex, cex.lab=cex, ...)
  for (i in 1:npanel){
    plotlist <- calcresults[[i]]
      ## last column of each list element holds x-position
      ## last but one column (name var) holds y value
      tit <- ""
      if (nfac==4) tit <- paste(fac4, "=", levels(data[[fac4]])[i])
      for (j in 1:length(plotlist)){
        ## jth hierarchy level
        dd <- plotlist[[j]]
        if (j==1) {
          lines(dd$x, dd[[var]], col=col0, ...)
          points(dd$x, dd[[var]], col=col[[1]][as.numeric(dd[[fac1]])], 
                 pch=pch[[1]][as.numeric(dd[[fac1]])], cex=fac.cex*cex, ...)
          mtext(side=3, at=mean(dd$x), text=tit, line=0, cex=1.5*cex, ...)
          mtext(side=1, at=dd$x, line=0, levels(data[[fac1]]), cex=cex, ...)
          mtext(side=1, at=xlim[2], line=0, fac1, cex=cex, adj=1, ...)
        }
        else {
          ## not first level of hierarchy
          ## hilf contains separate portions for each level of fac1 to facj-1
          hilf <- split(dd, dd[fn[1:(j-1)]])
          if (xlab.depth >= j){
            mtext(side=1, at=dd$x, line=j-1, dd[[fn[j]]], cex=cex, ...)
            mtext(side=1, at=xlim[2], line=j-1, fn[j], cex=cex, adj=1, ...)
          }
          for (ii in 1:length(hilf)){
            dd <- hilf[[ii]]
            ## color from previous hierarchy level
          lines(dd$x, dd[[var]], 
                col=col[[j-1]][as.numeric(dd[[fn[j-1]]])[1]], ...)
            ## point symbol and color from current hierarchy level
          points(dd$x, dd[[var]], cex=fac.cex*cex, 
                col=col[[j]][as.numeric(dd[[fn[j]]])], 
                pch=pch[[j]][as.numeric(dd[[fn[j]]])], ...)
          }
        }
      }
  }
  if (legend){
    ## check whether legend makes sense 
    ##     (col and/or pch for last level defined as vector)
    ## add legend at the bottom right
    pick <- 3
    if (nfac<3) pick <- 2
    if (length(col[[pick]])==1 && length(pch[[pick]])==1)
      warning("no legend created, because symbols are not distinct")
    else{
      lastval <- dd[[var]][which.max(dd$x)]
      lpos <- "bottomright"
      if (lastval < mean(ylim)) lpos <- "topright"
      legend(lpos, legend=levels(data[[fn[pick]]]), 
             pch=pch[[pick]], col=col[[pick]], cex=0.5*fac.cex*cex,
             title=fn[pick])
    }
  }
  invisible(calcresults)
}