File: raw.means.plot.R

package info (click to toggle)
r-cran-plotrix 3.8-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,588 kB
  • sloc: makefile: 6
file content (209 lines) | stat: -rwxr-xr-x 8,389 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

# more explanatory name for the function
raw.means.plot <-function(data, col.offset = 2, col.x = 3, col.value = 4,  na.rm = FALSE,
    avoid.overlap = c("y", "x", "both"), y.factor = 1, y.amount = NULL, x.amount = 0.05,
    pch = 21:25, lty = 1:5, bg.b.col = "darkgrey", 
    bg.f.col = NULL, fg.b.col = "black", fg.f.col = "black", 
    type = "o", pt.cex = 1, lwd = 1, xlab = "", ylab = "", ylim, 
    max.offset = 0.2, xaxis = TRUE, x.labels, xaxt = "n", plot = TRUE, 
    legend = TRUE, mar = NULL, reset.mar = TRUE, l.pos, yjust = 0.5, 
    l.bty = "n", l.adj = c(0, 0.5), ...) 
{
    # I somehow like more the idea of using random jitter.
		
    spread.out <- function(x, x.amount) {
        dupl <- duplicated(x)
        spreadx <- rep(0,length(x))
        spreadx[dupl] <- jitter(spreadx[dupl], amount = x.amount)
        return(spreadx)
    }
	
	addJitter <- function (x, y.factor, y.amount) {
		dupl <- duplicated(x)
		x[dupl] <- jitter(x[dupl], factor = y.factor, amount = y.amount)
		return(x)
	}
	
	
    # I personally more like the spreading on the y-axis, but I totally agree that 
	# spacing on the x-axis is also totally reasonable.
    create.dp <- function(lst, n.x, avoid.overlap, y.factor, y.amount, x.amount) {
        ret <- vector("list", 2)
		#browser()
		if (avoid.overlap[1] %in% c("x", "both")) 
			ret[[1]] <- rep(1:n.x, vapply(lst, length, 0)) +
			unlist(lapply(lst, spread.out, x.amount = x.amount))
		else ret[[1]] <- rep(1:n.x, vapply(lst, length, 0))
		if (avoid.overlap[1] %in% c("y", "both")) 
			ret[[2]] <- unlist(lapply(lst, addJitter, y.factor=y.factor, y.amount = y.amount))
		else ret[[2]] <- unlist(lst)
        return(ret)
    }
    largs <- c("fill", "border", "angle", "density", "box.lwd", 
        "box.lty", "box.col", "pt.lwd", "xjust", "x.intersp", 
        "y.intersp", "text.width", "text.col", "merge", "trace", 
        "plot", "ncol", "horiz", "title", "inset", "title.col", 
        "title.adj")
    dots <- list(...)
    args.to.l <- dots[names(dots) %in% largs]
    args.to.p <- dots[!(names(dots) %in% largs)]
    if (!is.data.frame(data)) 
        stop("data must be a data.frame")
    # I used "any" here as it seems more straightforward
    # I notice that you used it in add.ps
    if (any(is.na(data[, c(col.offset, col.x)]))) 
        warning("NAs in offset or x column (this produces other warnings).")
    # as above
    if (na.rm == FALSE) 
        if (any(is.na(data[, c(col.value)]))) 
            stop("NAs in data column. Try: na.rm = TRUE")
    if (!is.factor(data[, col.offset])) {
        warning(paste("Converting offset variable (column ", 
            col.offset, ") to factor.", sep = ""))
        data[, col.offset] <- factor(data[, col.offset])
    }
    if (!is.factor(data[, col.x])) {
        warning(paste("Converting x-axis variable (column ", 
            col.offset, ") to factor.", sep = ""))
        data[, col.x] <- factor(data[, col.x])
    }
    if ((length(levels(data[, col.x])) != length(unique(data[, col.x])))) {
        warning(paste("Refactoring x-axis variable (column ", 
            col.x, ") due to length mismatch.", sep = ""))
        data[, col.x] <- factor(data[, col.x])
    }
    if ((length(levels(data[, col.offset])) != length(unique(data[, 
        col.offset])))) {
        warning(paste("Refactoring offset variable (column ", 
            col.offset, ") due to length mismatch.", sep = ""))
        data[, col.offset] <- factor(data[, col.offset])
    }
    if (missing(ylim)) {
        # I think that range is equivalent to c(min,max) here
        ylim <- range(data[, col.value], na.rm = na.rm)
        warning(paste("ylim not specified, taken from data: ", 
            ylim[1], " - ", ylim[2], sep = ""))
    }
    n.offset <- length(levels(data[, col.offset]))
    n.x <- length(levels(data[, col.x]))
    if (!(missing(x.labels))) {
        if (length(x.labels) < n.x) {
            warning("x.labels too short, taking unique(data[,col.x]) as labels at x-axis ticks")
            x.labels <- levels(data[, col.x])
        }
    }
    while (length(pch) < n.offset) {
        warning("pch vector too short. recycling pch vector.")
        # this makes sure that the pch vector will be long enough
        pch <- rep(pch, length.out=n.offset)
    }
    while (length(lty) < n.offset) {
        warning("lty vector too short. recycling lty vector.")
        # ditto for the line type
        lty <- rep(lty, length.out=n.offset)
    }
    if (!is.null(bg.b.col)) {
      while (length(bg.b.col) < n.offset) {
        bg.b.col <- rep(bg.b.col, length.out=n.offset)
      }
    }
    if (!is.null(bg.f.col)) {
      while (length(bg.f.col) < n.offset) {
        bg.f.col <- rep(bg.f.col, length.out=n.offset)
      }
    }
    if (!is.null(fg.b.col)) {
      while (length(fg.b.col) < n.offset) {
        fg.b.col <- rep(fg.b.col, length.out=n.offset)
      }
    }
    if (!is.null(fg.f.col)) {
      while (length(fg.f.col) < n.offset) {
        fg.f.col <- rep(fg.f.col, length.out=n.offset)
      }
    }
    if (missing(x.labels)) {
        x.labels <- levels(data[, col.x])
    }
    orig.mar <- par("mar")
    if (legend == TRUE & is.null(mar)) {
        mar <- orig.mar
        max.l <- max(nchar(levels(data[, col.offset])))
        if (max.l < 3) 
            rb <- 4.2
        else if (max.l > 2 & max.l < 5) 
            rb <- 5
        else if (max.l > 4 & max.l < 7) 
            rb <- 6
        else if (max.l > 6 & max.l < 9) 
            rb <- 7
        else rb <- 8
        mar[4] <- rb + 0.1
    }
    if (!plot) 
        mar <- c(0, 0, 0, 0)
    if (!is.null(mar)) 
        res.mar <- par(mar = mar)
    nd <- split(data, data[, col.offset])
    if (plot) {
        do.call("plot", c(list(x = 1, y = 2, xlim = c((1 - max.offset - 
            0.2), (n.x + max.offset + 0.2)), ylim = ylim, xaxt = xaxt, 
            type = "n", xlab = xlab, ylab = ylab), args.to.p))
        if (n.offset > 1) {
            offset.start <- max.offset - ((1 - (n.offset%%2)) * 
                (max.offset/n.offset))
            offset.dist <- max.offset/((n.offset - (n.offset%%2))/2)
        }
        if (n.offset == 1) {
            offset.start <- 0
            offset.dist <- 0
        }
        for (c in 1:n.offset) {
            d.c <- nd[[c]]
            d.lst <- split(d.c[, col.value], d.c[, col.x])
            dp <- create.dp(lst = d.lst, n.x = n.x, avoid.overlap = avoid.overlap, y.factor = y.factor, y.amount = y.amount, x.amount = x.amount)
            x <- dp[[1]] - ((offset.start) - ((c - 1) * offset.dist))
            y <- dp[[2]]
            points(x, y, pch = pch[c], col = bg.b.col[c], bg = bg.f.col[c], 
                cex = pt.cex)
        }
        for (c in 1:n.offset) {
            d.c <- nd[[c]]
            d.lst <- split(d.c[, col.value], d.c[, col.x])
            x <- 1:n.x - ((offset.start) - ((c - 1) * offset.dist))
            y <- vapply(d.lst, mean, 0, na.rm = na.rm)
            lines(x, y, pch = pch[c], type = type, lty = lty[c], 
                col = fg.b.col[c], bg = fg.f.col[c], cex = pt.cex, 
                lwd = lwd)
        }
        if (xaxis == TRUE) 
            axis(side = 1, at = 1:n.x, labels = x.labels)
    }
    if (!plot) {
        plot(0, 0, type = "n", xlim = c(0, 10), ylim = c(0, 10), 
            axes = FALSE, ylab = "", xlab = "", mar = c(0, 0, 
                0, 0))
        if (missing(l.pos)) 
            l.pos = c(5, 5)
    }
    if (legend == TRUE) {
        if (n.x == 1) {
            if (missing(l.pos)) {
                l.pos <- (n.x + 0.45)
                l.pos[2] <- (ylim[2] - ((ylim[2] - ylim[1])/2))
            }
            lty <- NULL
        }
        else (if (missing(l.pos)) {
            l.pos <- (n.x + max.offset + 0.4)
            l.pos[2] <- (ylim[2] - ((ylim[2] - ylim[1])/2))
        })
        do.call("legend", c(list(x = l.pos[1], y = l.pos[2], 
            levels(data[, col.offset]), pch = pch, lty = lty, col = fg.b.col, 
            pt.bg = fg.f.col, yjust = yjust, bty = l.bty, adj = l.adj, 
            xpd = TRUE, pt.cex = pt.cex, lwd = lwd), args.to.l))
    }
    if (legend == TRUE & reset.mar == TRUE) {
        par(mar = res.mar)
    }
}