File: taylor.diagram.R

package info (click to toggle)
r-cran-plotrix 3.8-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,588 kB
  • sloc: makefile: 6
file content (224 lines) | stat: -rwxr-xr-x 10,270 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Display a Taylor diagram
# Taylor K.E. (2001)
# Summarizing multiple aspects of model performance in a single diagram
# Journal of Geophysical Research, 106: 7183-7192.

# version 1.0
# progr. Olivier.Eterradossi, 12/2007
# 2007-01-12 - modifications and Anglicizing - Jim Lemon
# version 2.0
# progr. initiale OLE, 8/01/2007
# rev. OLE 3/09/2008 : remove samples with NA's from mean, sd and cor calculations 
# 2008-09-04 - integration and more anglicizing - Jim Lemon
# 2008-12-09 - added correlation radii, sd arcs to the pos.cor=FALSE routine
# and stopped the pos.cor=FALSE routine from calculating arcs for zero radius
# Jim Lemon
# 2010-4-30 - added the gamma.col argument for pos.cor=TRUE plots - Jim Lemon
# 2010-6-24 - added mar argument to pos.cor=TRUE plots - Jim Lemon
# 2012-1-31 - added the cex.axis argument - Jim Lemon
# 2019-02-22 - added cex.axis to Olivier's text calls plus adj and srt

taylor.diagram<-function(ref,model,add=FALSE,col="red",pch=19,pos.cor = TRUE, 
    xlab = "Standard deviation", ylab = "", main = "Taylor Diagram",
    show.gamma = TRUE, ngamma = 3, gamma.col = 8, sd.arcs = 0, ref.sd = FALSE,
    sd.method = "sample", grad.corr.lines = c(0.2, 0.4, 0.6, 0.8, 0.9), 
    pcex = 1, cex.axis = 1, normalize = FALSE, mar = c(4, 3, 4, 3), ...) {
    
    grad.corr.full <- c(0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99, 1)
  # convert any list elements or data frames to vectors
   R <- cor(ref, model, use = "pairwise")
    if (is.list(ref)) 
        ref <- unlist(ref)
    if (is.list(model)) 
        ref <- unlist(model)
    SD <- function(x, subn) {
        meanx <- mean(x, na.rm = TRUE)
        devx <- x - meanx
        ssd <- sqrt(sum(devx * devx, na.rm = TRUE)/(length(x[!is.na(x)]) - 
            subn))
        return(ssd)
    }
    subn <- sd.method != "sample"
    sd.r <- SD(ref, subn)
    sd.f <- SD(model, subn)
    if (normalize) {
        sd.f <- sd.f/sd.r
        sd.r <- 1
    }
    maxsd <- 1.5 * max(sd.f, sd.r)
    oldpar <- par("mar", "xpd", "xaxs", "yaxs")
    if (!add) {
       par(mar = mar)
       # display the diagram
       if (pos.cor) {
            if (nchar(ylab) == 0) 
                ylab = "Standard deviation"
            plot(0, xlim = c(0, maxsd*1.1), ylim = c(0, maxsd*1.1), xaxs = "i", 
                yaxs = "i", axes = FALSE, main = main, xlab = "", 
                ylab = ylab, type = "n", cex = cex.axis, ...)
            mtext(xlab,side=1,line=2.3)
            if (grad.corr.lines[1]) {
                for (gcl in grad.corr.lines) lines(c(0, maxsd * 
                  gcl), c(0, maxsd * sqrt(1 - gcl^2)), lty = 3)
            }
   # add the axes
           segments(c(0, 0), c(0, 0), c(0, maxsd), c(maxsd, 
                0))
            axis.ticks <- pretty(c(0, maxsd))
            axis.ticks <- axis.ticks[axis.ticks <= maxsd]
            axis(1, at = axis.ticks,cex.axis=cex.axis)
            axis(2, at = axis.ticks,cex.axis=cex.axis)
            if (sd.arcs[1]) {
                if (length(sd.arcs) == 1) 
                  sd.arcs <- axis.ticks
                for (sdarc in sd.arcs) {
                  xcurve <- cos(seq(0, pi/2, by = 0.03)) * sdarc
                  ycurve <- sin(seq(0, pi/2, by = 0.03)) * sdarc
                  lines(xcurve, ycurve, col = "blue", lty = 3)
                }
            }
            if (show.gamma[1]) {
    # if the user has passed a set of gamma values, use that
                if (length(show.gamma) > 1) gamma <- show.gamma
    # otherwise make up a set
                else gamma <- pretty(c(0, maxsd), n = ngamma)[-1]
                if (gamma[length(gamma)] > maxsd) 
                  gamma <- gamma[-length(gamma)]
                labelpos <- seq(45, 70, length.out = length(gamma))
     # do the gamma curves
               for (gindex in 1:length(gamma)) {
                  xcurve <- cos(seq(0, pi, by = 0.03)) * gamma[gindex] + sd.r
     # find where to clip the curves
                  endcurve <- which(xcurve < 0)
                  endcurve <- ifelse(length(endcurve), min(endcurve) - 
                    1, 105)
                  ycurve <- sin(seq(0, pi, by = 0.03)) * gamma[gindex]
                  maxcurve <- xcurve * xcurve + ycurve * ycurve
                  startcurve <- which(maxcurve > maxsd * maxsd)
                  startcurve <- ifelse(length(startcurve), max(startcurve) + 
                    1, 0)
                  lines(xcurve[startcurve:endcurve], ycurve[startcurve:endcurve], 
                    col = gamma.col)
                  if (xcurve[labelpos[gindex]] > 0) 
                    boxed.labels(xcurve[labelpos[gindex]], ycurve[labelpos[gindex]], 
                      gamma[gindex], border = FALSE)
                }
            }
  # the outer curve for correlation
             xcurve <- cos(seq(0, pi/2, by = 0.01)) * maxsd
            ycurve <- sin(seq(0, pi/2, by = 0.01)) * maxsd
            lines(xcurve, ycurve)
            bigtickangles <- acos(seq(0.1, 0.9, by = 0.1))
            medtickangles <- acos(seq(0.05, 0.95, by = 0.1))
            smltickangles <- acos(seq(0.91, 0.99, by = 0.01))
            segments(cos(bigtickangles) * maxsd, sin(bigtickangles) * 
                maxsd, cos(bigtickangles) * 0.97 * maxsd, sin(bigtickangles) * 
                0.97 * maxsd)
            par(xpd = TRUE)
    # the inner curve for reference SD
            if (ref.sd) {
                xcurve <- cos(seq(0, pi/2, by = 0.01)) * sd.r
                ycurve <- sin(seq(0, pi/2, by = 0.01)) * sd.r
                lines(xcurve, ycurve)
            }
            points(sd.r, 0, cex = pcex)
            text(cos(c(bigtickangles, acos(c(0.95, 0.99)))) * 
                1.05 * maxsd, sin(c(bigtickangles, acos(c(0.95, 
                0.99)))) * 1.05 * maxsd, c(seq(0.1, 0.9, by = 0.1), 
                0.95, 0.99),cex=cex.axis)
            text(maxsd * 0.8, maxsd * 0.8, "Correlation", srt = 315,cex=cex.axis)
            segments(cos(medtickangles) * maxsd, sin(medtickangles) * 
                maxsd, cos(medtickangles) * 0.98 * maxsd, sin(medtickangles) * 
                0.98 * maxsd)
            segments(cos(smltickangles) * maxsd, sin(smltickangles) * 
                maxsd, cos(smltickangles) * 0.99 * maxsd, sin(smltickangles) * 
                0.99 * maxsd)
        }
        else {
            x <- ref
            y <- model
            R <- cor(x, y, use = "pairwise.complete.obs")
            E <- mean(x, na.rm = TRUE) - mean(y, na.rm = TRUE)
            xprime <- x - mean(x, na.rm = TRUE)
            yprime <- y - mean(y, na.rm = TRUE)
            sumofsquares <- (xprime - yprime)^2
            Eprime <- sqrt(sum(sumofsquares)/length(complete.cases(x)))
            E2 <- E^2 + Eprime^2
            if (add == FALSE) {
     # pourtour du diagramme (display the diagram)
               maxray <- 1.5 * max(sd.f, sd.r)
                plot(c(-maxray, maxray), c(0, maxray), type = "n", 
                  asp = 1, bty = "n", xaxt = "n", yaxt = "n", 
                  xlim=c(-1.1*maxray,1.1*maxray),
                  xlab = xlab, ylab = ylab, main = main, cex = cex.axis)
                discrete <- seq(180, 0, by = -1)
                listepoints <- NULL
                for (i in discrete) {
                  listepoints <- cbind(listepoints, maxray * 
                    cos(i * pi/180), maxray * sin(i * pi/180))
                }
                listepoints <- matrix(listepoints, 2, length(listepoints)/2)
                listepoints <- t(listepoints)
                lines(listepoints[, 1], listepoints[, 2])
     # axes x,y
               lines(c(-maxray, maxray), c(0, 0))
                lines(c(0, 0), c(0, maxray))
    # lignes radiales jusque R = +/- 0.8
                for (i in grad.corr.lines) {
                  lines(c(0, maxray * i), c(0, maxray * sqrt(1 - 
                    i^2)), lty = 3)
                  lines(c(0, -maxray * i), c(0, maxray * sqrt(1 - 
                    i^2)), lty = 3)
                }
   # texte radial
                 for (i in grad.corr.full) {
                  text(1.05 * maxray * i, 1.05 * maxray * sqrt(1 - 
                    i^2), i, cex = cex.axis,adj=cos(i)/2)
                  text(-1.05 * maxray * i, 1.05 * maxray * sqrt(1 - 
                    i^2), -i, cex = cex.axis,adj=1-cos(i)/2)
                }
      # sd concentriques autour de la reference
               seq.sd <- seq.int(0, 2 * maxray, by = (maxray/10))[-1]
                for (i in seq.sd) {
                  xcircle <- sd.r + (cos(discrete * pi/180) * 
                    i)
                  ycircle <- sin(discrete * pi/180) * i
                  for (j in 1:length(xcircle)) {
                    if ((xcircle[j]^2 + ycircle[j]^2) < (maxray^2)) {
                      points(xcircle[j], ycircle[j], col = "darkgreen", 
                        pch = ".")
                      if (j == 10) 
                        text(xcircle[j], ycircle[j], signif(i, 
                          2), cex = cex.axis, col = "darkgreen",srt=90)
                    }
                  }
                }
     # sd concentriques autour de l'origine
              seq.sd <- seq.int(0, maxray, length.out = 5)
                for (i in seq.sd) {
                  xcircle <- cos(discrete * pi/180) * i
                  ycircle <- sin(discrete * pi/180) * i
                  if (i) 
                    lines(xcircle, ycircle, lty = 3, col = "blue")
                  text(min(xcircle), -0.06 * maxray, signif(i, 
                    2), cex = cex.axis, col = "blue")
                  text(max(xcircle), -0.06 * maxray, signif(i, 
                    2), cex = cex.axis, col = "blue")
                }
                text(0, -0.14 * maxray, "Standard Deviation", 
                  cex = cex.axis, col = "blue")
                text(0, -0.22 * maxray, "Centered RMS Difference", 
                  cex = cex.axis, col = "darkgreen")
                points(sd.r, 0, pch = 22, bg = "darkgreen", cex = pcex)
                text(0, 1.2 * maxray, "Correlation Coefficient", 
                  cex = cex.axis)
            }
            S <- (2 * (1 + R))/(sd.f + (1/sd.f))^2
 #   Taylor<-S
       }
    }
 # display the points
    points(sd.f * R, sd.f * sin(acos(R)), pch = pch, col = col, 
        cex = pcex)
    invisible(oldpar)
}