File: crossval.R

package info (click to toggle)
r-cran-pls 2.7-3-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,016 kB
  • sloc: sh: 13; makefile: 2
file content (318 lines) | stat: -rw-r--r-- 11,965 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
### crossval.R: Cross-validation functions.

## The basic cross-validation function
mvrCv <- function(X, Y, ncomp, Y.add = NULL, weights = NULL,
                  method = pls.options()$mvralg,
                  scale = FALSE, segments = 10,
                  segment.type = c("random", "consecutive", "interleaved"),
                  length.seg, jackknife = FALSE, trace = FALSE, ...)
{
    ## Initialise:
    Y <- as.matrix(Y)
    if (!(missing(Y.add) || is.null(Y.add)))
        Y.add <- as.matrix(Y.add)

    ## Save dimnames:
    dnX <- dimnames(X)
    dnY <- dimnames(Y)

    ## Remove dimnames for performance (doesn't seem to matter; in fact,
    ## as far as it has any effect, it hurts a tiny bit in most situations).
    ## dimnames(X) <- dimnames(Y) <- NULL

    ## Save dimensions:
    nobj  <- dim(X)[1]
    npred <- dim(X)[2]
    nresp <- dim(Y)[2]

    ## Check the `scale' parameter:
    if (!is.logical(scale) || length(scale) != 1)
        stop("'scale' must be 'TRUE' or 'FALSE'")

    ## Set up segments:
    if (is.list(segments)) {
        if (is.null(attr(segments, "type")))
            attr(segments, "type") <- "user supplied"
    } else {
        if (missing(length.seg)) {
            segments <- cvsegments(nobj, k = segments, type = segment.type)
        } else {
            segments <- cvsegments(nobj, length.seg = length.seg,
                                   type = segment.type)
        }
    }

    ## Reduce ncomp, if neccessary:
    ncomp <- min(ncomp, nobj - max(sapply(segments, length)) - 1)

    ## Select fit function:
    method <- match.arg(method,c("kernelpls", "widekernelpls", "simpls",
                                 "oscorespls", "cppls", "svdpc"))
    fitFunc <- switch(method,
                      kernelpls = kernelpls.fit,
                      widekernelpls = widekernelpls.fit,
                      simpls = simpls.fit,
                      oscorespls = oscorespls.fit,
                      cppls = cppls.fit,
                      svdpc = svdpc.fit)

    ## Helper function to perform the cross-validatoin for one segment.
    ## Defined inside mvrCv to be able to access local variables:
    mvrCvSeg <- function(n.seg) {
        if (trace) cat(n.seg, "")

        ## Set up train data:
        seg <- segments[[n.seg]]
        Xtrain <- X[-seg,, drop=FALSE]
        if (scale) {
            ntrain <- nrow(Xtrain)
            ## This is faster than sd(X), but cannot handle missing values:
            sdtrain <-
                sqrt(colSums((Xtrain - rep(colMeans(Xtrain), each = ntrain))^2) /
                     (ntrain - 1))
            if (any(abs(sdtrain) < .Machine$double.eps^0.5))
                warning("Scaling with (near) zero standard deviation")
            Xtrain <- Xtrain / rep(sdtrain, each = ntrain)
        }

        ## Fit the model:
        fit <- fitFunc(Xtrain, Y[-seg,, drop=FALSE], ncomp,
                       Y.add = Y.add[-seg,, drop=FALSE], stripped = TRUE,
                       weights = weights[-seg], ...)

        ## Set up test data:
        Xtest <- X
        if (scale) Xtest <- Xtest / rep(sdtrain, each = nobj)
        Xtest <- Xtest - rep(fit$Xmeans, each = nobj)

        ## Predict test data:
        pred <- array(0, dim = c(nobj, nresp, ncomp))
        Ymeansrep <- rep(fit$Ymeans, each = nobj)
        for (a in 1:ncomp)
            pred[,,a] <- Xtest %*% fit$coefficients[,,a] + Ymeansrep

        return(list(adj = length(seg) * colSums((pred - c(Y))^2),
                    cvPred = pred[seg,,, drop=FALSE],
                    gammas = if (method == "cppls") fit$gammas else NULL,
                    cvCoef = if (jackknife) fit$coefficients else NULL
                    ))
    }

    ## Perform the cross-validation, optionally in parallel:
    if (trace) cat("Segment: ")
    results <- lapplyFunc(pls.options()$parallel, seq_along(segments), mvrCvSeg)
    if (trace) cat("\n")

    ## Variables to save CV results in:
    adj <- matrix(0, nrow = nresp, ncol = ncomp)
    cvPred <- array(0, dim = c(nobj, nresp, ncomp))
    if (jackknife)
        cvCoef <- array(dim = c(npred, nresp, ncomp, length(segments)))
    if (method == "cppls") gammas <- list()

    ## Collect the results:
    for (n.seg in seq_along(segments)) {
        res <- results[[n.seg]]
        adj <- adj + res$adj
        cvPred[segments[[n.seg]],,] <- res$cvPred
        if (jackknife) cvCoef[,,,n.seg] <- res$cvCoef
        if (method == "cppls") gammas[[n.seg]] <- res$gammas
    }

    ## Calculate validation statistics:
    PRESS0 <- apply(Y, 2, var) * nobj^2 / (nobj - 1) # FIXME: Only correct for loocv!
    PRESS <- colSums((cvPred - c(Y))^2)

    ## Add dimnames:
    objnames <- dnX[[1]]
    if (is.null(objnames)) objnames <- dnY[[1]]
    respnames <- dnY[[2]]
    nCompnames <- paste(1:ncomp, "comps")
    names(PRESS0) <- respnames
    dimnames(adj) <- dimnames(PRESS) <-
        list(respnames, nCompnames)
    dimnames(cvPred) <- list(objnames, respnames, nCompnames)
    if (jackknife)
        dimnames(cvCoef) <- list(dnX[[2]], respnames, nCompnames,
                                 paste("Seg", seq_along(segments)))

    list(method = "CV", pred = cvPred, coefficients = if (jackknife) cvCoef,
         gammas = if (method == "cppls") gammas,
         PRESS0 = PRESS0, PRESS = PRESS, adj = adj / nobj^2,
         segments = segments, ncomp = ncomp)
}


## Genereral cross-validation function.
crossval <- function(object, segments = 10,
                     segment.type = c("random", "consecutive", "interleaved"),
                     length.seg, jackknife = FALSE, trace = 15, ...)
{
    if (!inherits(object, "mvr")) stop("`object' not an mvr object.")
    ## Get data frame
    fitCall <- object$call
    data <- eval(fitCall$data, parent.frame())
    if (is.null(data)) stop("`object' must be fit with a `data' argument.")
    ## Optionally get weights
    if (cppls <- (object$method == "cppls")) {
        weights <- eval(fitCall$weights, parent.frame())
    }
    else weights <- NULL

    if (!is.null(fitCall$subset)) {
        ## Handle "subset" argument
        data <- data[eval(fitCall$subset, parent.frame()),]
        object$call$subset <- NULL
    }

    ## Handle NAs (according to na.action)
    if (is.na(match("na.action", names(fitCall)))) {
        ## Cannot use is.null(fitCall$na.action) here, since the meaning of
        ## `na.action = NULL' is not the same as that of a missing na.action
        ## argument.
        mf <- model.frame(formula(object), data = data)
    } else {
        mf <- model.frame(formula(object), data = data,
                          na.action = fitCall$na.action)
    }
    if (!is.null(NAs <- attr(mf, "na.action"))) {
        ## Some observations were dropped due to NAs.  Skip the same in data:
        data <- data[-NAs,]
    }

    ## Get response:
    Y <- as.matrix(model.response(mf))
    nresp <- dim(Y)[2]
    npred <- length(object$Xmeans)
    ## Calculate effective number of observations
    nobj <- nrow(data)

    ## Set up segments
    if (is.list(segments)) {
        if (is.null(attr(segments, "type")))
            attr(segments, "type") <- "user supplied"
    } else {
        if (missing(length.seg)) {
            segments <- cvsegments(nobj, k = segments, type = segment.type)
        } else {
            segments <- cvsegments(nobj, length.seg = length.seg,
                                   type = segment.type)
        }
    }

    jackknife <- isTRUE(jackknife)
    ncomp <- object$ncomp
    if (ncomp > nobj - max(sapply(segments, length)) - 1)
        stop("`ncomp' too large for cross-validation.",
             "\nPlease refit with `ncomp' less than ",
             nobj - max(sapply(segments, length)))

    ## Optionally turn on tracing:
    if (is.numeric(trace)) {
        trace <- object$fit.time * length(segments) > trace
    }

    ## Helper function to perform the cross-validatoin for one segment.
    ## Defined inside crossval to be able to access local variables:
    crossvalSeg <- function(n.seg) {
        if (trace) cat(n.seg, "")

        ## Run cv, using update and predict
        seg <- segments[[n.seg]]
        fit <- update(object, data = data[-seg,], weights = weights[-seg])
        pred <- predict(fit, newdata = data)

        return(list(adj = length(seg) * colSums((pred - c(Y))^2),
                    cvPred = pred[seg,,, drop=FALSE],
                    gammas = if (cppls) fit$gammas else NULL,
                    cvCoef = if (jackknife) fit$coefficients else NULL
                    ))
    }

    ## Perform the cross-validation, optionally in parallel:
    if (trace) cat("Segment: ")
    results <- lapplyFunc(pls.options()$parallel,
                          seq_along(segments), crossvalSeg,
                          quote(parallel::clusterCall(parSpec, library, "pls",
                                                      character.only = TRUE,
                                                      warn.conflicts = FALSE)))
    if (trace) cat("\n")

    ## Variables to save CV results in:
    cvPred <- array(dim = c(nobj, nresp, ncomp))
    adj <- matrix(0, nrow = nresp, ncol = ncomp)
    if (jackknife)
        cvCoef <- array(dim = c(npred, nresp, ncomp, length(segments)))
    if (cppls) gammas <- list()

    ## Collect the results:
    for (n.seg in seq_along(segments)) {
        res <- results[[n.seg]]
        adj <- adj + res$adj
        cvPred[segments[[n.seg]],,] <- res$cvPred
        if (jackknife) cvCoef[,,,n.seg] <- res$cvCoef
        if (cppls) gammas[[n.seg]] <- res$gammas
    }

    ## Calculate validation statistics:
    PRESS0 <- apply(Y, 2, var) * nobj^2 / (nobj - 1) # FIXME: Only correct for loocv!
    PRESS <- colSums((cvPred - c(Y))^2)

    ## Add dimnames:
    objnames <- rownames(data)
    if (is.null(objnames)) objnames <- rownames(Y)
    dimnames(cvPred) <- c(list(objnames), dimnames(fitted(object))[-1])
    if (is.null(names(PRESS0))) names(PRESS0) <- dimnames(object$Yloadings)[[1]]
    dimnames(PRESS) <- dimnames(adj)
    if (jackknife)
        dimnames(cvCoef) <- c(dimnames(coef(object)),
                              list(paste("Seg", seq_along(segments))))

    ## Return the original object, with a component `validation' added
    object$validation <- list(method = "CV", pred = cvPred,
                              coefficients = if (jackknife) cvCoef,
                              gammas = if (cppls) gammas,
                              PRESS0 = PRESS0, PRESS = PRESS,
                              adj = adj / nobj^2,
                              segments = segments, ncomp = ncomp)
    return(object)
}

## Internal function to apply FUN over X, optionally in parallel:
lapplyFunc <- function(parSpec, X, FUN, nonForkInit) {
    if (is.null(parSpec) || (is.numeric(parSpec) && parSpec == 1)) {
        ## Serially
        results <- lapply(X, FUN)
    } else {
        ## Parallel
        stop_cluster <- FALSE           # Whether to kill the workers afterwards

        if (is.numeric(parSpec) && parSpec > 1) {
            ## Number => number of workers with mclapply
            results <- parallel::mclapply(X, FUN, mc.cores = parSpec)
        } else {
            if (is.call(parSpec)) {
                ## Unevaluated call => evaluate it to create the cluster:
                parSpec <- eval(parSpec)
                stop_cluster <- TRUE
            }

            if (inherits(parSpec, "cluster")) {
                ## Run library(pls) on cluster if type != FORK
                if (!inherits(parSpec[[1]], "forknode")
                    && !missing(nonForkInit)) {
                    eval(nonForkInit)
                }
                results <- parallel::parLapply(parSpec, X, FUN)

                if (stop_cluster) {
                    parallel::stopCluster(parSpec)
                }
            } else {
                stop("Unknown parallelity specification: '", parSpec, "'")
            }
        }
    }

    return(results)
}