1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
### extract.R: Extraction functions
## coef.mvr: Extract the base variable regression coefficients from
## an mvr object.
coef.mvr <- function(object, ncomp = object$ncomp, comps, intercept = FALSE,
...)
{
if (missing(comps) || is.null(comps)) {
## Cumulative coefficients:
B <- object$coefficients[,,ncomp, drop=FALSE]
if (isTRUE(intercept)) { # Intercept only has meaning for
# cumulative coefficients
dB <- dim(B)
dB[1] <- dB[1] + 1
dnB <- dimnames(B)
dnB[[1]] <- c("(Intercept)", dnB[[1]])
BInt <- array(dim = dB, dimnames = dnB)
BInt[-1,,] <- B
for (i in seq(along = ncomp))
BInt[1,,i] <- object$Ymeans - object$Xmeans %*% B[,,i]
B <- BInt
}
} else {
## Individual coefficients:
B <- object$coefficients[,,comps, drop=FALSE]
g1 <- which(comps > 1)
## Indiv. coef. must be calculated since object$coefficients is
## cumulative coefs.
B[,,g1] <- B[,,g1, drop=FALSE] -
object$coefficients[,,comps[g1] - 1, drop=FALSE]
dimnames(B)[[3]] <- paste("Comp", comps)
}
return(B)
}
## fitted.mvr: Extract the fitted values. It is needed because the case
## na.action == "na.exclude" must be treated differently from what is done
## in fitted.default.
fitted.mvr <- function(object, ...) {
if (inherits(object$na.action, "exclude")) {
naExcludeMvr(object$na.action, object$fitted.values)
} else {
object$fitted.values
}
}
## residuals.mvr: Extract the residuals. It is needed because the case
## na.action == "na.exclude" must be treated differently from what is done
## in residuals.default.
residuals.mvr <- function(object, ...) {
if (inherits(object$na.action, "exclude")) {
naExcludeMvr(object$na.action, object$residuals)
} else {
object$residuals
}
}
## naExcludeMvr: Perform the equivalent of naresid.exclude and
## napredict.exclude on three-dimensional arrays where the first dimension
## corresponds to the observations.
## Almost everything here is lifted verbatim from naresid.exclude (R 2.2.0)
naExcludeMvr <- function(omit, x, ...) {
if (length(omit) == 0 || !is.numeric(omit))
stop("invalid argument 'omit'")
if (length(x) == 0)
return(x)
n <- nrow(x)
keep <- rep.int(NA, n + length(omit))
keep[-omit] <- 1:n
x <- x[keep,,, drop = FALSE] # This is where the real difference is!
temp <- rownames(x)
if (length(temp)) {
temp[omit] <- names(omit)
rownames(x) <- temp
}
return(x)
}
## loadings is in stats, but doesn't work for prcomp objects, and is not
## generic, so we build our own:
loadings <- function(object, ...) UseMethod("loadings")
loadings.default <- function(object, ...) {
L <- if (inherits(object, "prcomp")) object$rotation else object$loadings
if (!(inherits(L, "loadings") || inherits(L, "list")))
class(L) <- "loadings"
attr(L, "explvar") <- explvar(object)
L
}
## scores: Return the scores (also works for prcomp/princomp objects):
scores <- function(object, ...) UseMethod("scores")
scores.default <- function(object, ...) {
S <- if (inherits(object, "prcomp")) object$x else object$scores
if (!(inherits(S, "scores") || inherits(S, "list")))
class(S) <- "scores"
attr(S, "explvar") <- explvar(object)
S
}
## Yscores: Return the Yscores
Yscores <- function(object) object$Yscores
## loading.weights: Return the loading weights:
loading.weights <- function(object) object$loading.weights
## Yloadings: Return the Yloadings
Yloadings <- function(object) object$Yloadings
## model.frame.mvr: Extract or generate the model frame from a `mvr' object.
## It is simply a slightly modified `model.frame.lm'.
model.frame.mvr <- function(formula, ...) {
dots <- list(...)
nargs <- dots[match(c("data", "na.action", "subset"), names(dots), 0)]
if (length(nargs) || is.null(formula$model)) {
fcall <- formula$call
fcall$method <- "model.frame"
fcall[[1]] <- as.name("mvr")
fcall[names(nargs)] <- nargs
env <- environment(formula$terms)
if (is.null(env)) env <- parent.frame()
eval(fcall, env, parent.frame())
}
else formula$model
}
## model.matrix.mvr: Extract the model matrix from an `mvr' object.
## It is a modified version of model.matrix.lm.
model.matrix.mvr <- function(object, ...) {
if (n_match <- match("x", names(object), 0))
object[[n_match]]
else {
data <- model.frame(object, ...)
mm <- NextMethod("model.matrix", data = data)
mm <- delete.intercept(mm) # Deletes any intercept coloumn
## model.matrix.default prepends the term name to the colnames of
## matrices. If there is only one predictor term, and the
## corresponding matrix has colnames, remove the prepended term name:
mt <- terms(object)
if (length(attr(mt, "term.labels")) == 1 &&
!is.null(colnames(data[[attr(mt, "term.labels")]])))
colnames(mm) <- sub(attr(mt, "term.labels"), "", colnames(mm))
return(mm)
}
}
## delete.intercept: utilitiy function that deletes the response coloumn from
## a model matrix, and adjusts the "assign" attribute:
delete.intercept <- function(mm) {
## Save the attributes prior to removing the intercept coloumn:
saveattr <- attributes(mm)
## Find the intercept coloumn:
intercept <- which(saveattr$assign == 0)
## Return if there was no intercept coloumn:
if (!length(intercept)) return(mm)
## Remove the intercept coloumn:
mm <- mm[,-intercept, drop=FALSE]
## Update the attributes with the new dimensions:
saveattr$dim <- dim(mm)
saveattr$dimnames <- dimnames(mm)
## Remove the assignment of the intercept from the attributes:
saveattr$assign <- saveattr$assign[-intercept]
## Restore the (modified) attributes:
attributes(mm) <- saveattr
## Return the model matrix:
mm
}
## The following "extraction" functions are mostly used in plot and summary
## functions.
## The names of the response variables:
respnames <- function(object)
dimnames(fitted(object))[[2]]
## The names of the prediction variables:
prednames <- function(object, intercept = FALSE) {
if (isTRUE(intercept))
c("(Intercept)", rownames(object$loadings))
else
rownames(object$loadings)
}
## The names of the components:
## Note: The components must be selected prior to the format statement
compnames <- function(object, comps, explvar = FALSE, ...) {
M <- if (is.matrix(object)) object else scores(object)
labs <- colnames(M)
if (missing(comps))
comps <- seq(along = labs)
else
labs <- labs[comps]
if (isTRUE(explvar) && !is.null(evar <- explvar(M)[comps]))
labs <- paste(labs, " (", format(evar, digits = 2, trim = TRUE),
" %)", sep = "")
return(labs)
}
## The explained X variance:
explvar <- function(object)
switch(class(object)[1],
mvr = 100 * object$Xvar / object$Xtotvar,
princomp =,
prcomp = 100 * object$sdev^2 / sum(object$sdev^2),
scores =,
loadings = attr(object, "explvar")
)
|