File: cppls.fit.R

package info (click to toggle)
r-cran-pls 2.8-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,056 kB
  • sloc: sh: 13; makefile: 2
file content (509 lines) | stat: -rw-r--r-- 20,482 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
### cppls.fit.R: The Canonical Powered PLS algorithm
###
### Implements the CPPLS algorithm as described in
### Indahl, U.G., Liland, K.H., Næs, T. (2009).
### Canonical partial least squares - a unified PLS approach to classification and regression problems,
### Journal of Chemometrics 23, pp. 495-504



#' @title CPPLS (Indahl et al.)
#'
#' @description Fits a PLS model using the CPPLS algorithm.
#'
#' @details This function should not be called directly, but through the generic
#' functions \code{cppls} or \code{mvr} with the argument
#' \code{method="cppls"}. Canonical Powered PLS (CPPLS) is a generalisation of
#' PLS incorporating discrete and continuous responses (also simultaneously),
#' additional responses, individual weighting of observations and power
#' methodology for sharpening focus on groups of variables. Depending on the
#' input to \code{cppls} it can produce the following special cases: \itemize{
#' \item PLS: uni-response continuous \code{Y} \item PPLS: uni-response
#' continuous \code{Y}, \code{(lower || upper) != 0.5} \item PLS-DA (using
#' correlation maximisation - B/W): dummy-coded descrete response \code{Y}
#' \item PPLS-DA: dummy-coded descrete response \code{Y}, \code{(lower ||
#' upper) != 0.5} \item CPLS: multi-response \code{Y} (continuous, discrete or
#' combination) \item CPPLS: multi-response \code{Y} (continuous, discrete or
#' combination), \code{(lower || upper) != 0.5} } The name "canonical" comes
#' from canonical correlation analysis which is used when calculating vectors
#' of loading weights, while "powered" refers to a reparameterisation of the
#' vectors of loading weights which can be optimised over a given interval.
#'
#' @param X a matrix of observations.  \code{NA}s and \code{Inf}s are not
#' allowed.
#' @param Y a vector or matrix of responses.  \code{NA}s and \code{Inf}s are
#' not allowed.
#' @param ncomp the number of components to be used in the modelling.
#' @param Y.add a vector or matrix of additional responses containing relevant
#' information about the observations.
#' @param center logical, determines if the \eqn{X} and \eqn{Y} matrices are
#' mean centered or not. Default is to perform mean centering.
#' @param stripped logical.  If \code{TRUE} the calculations are stripped as
#' much as possible for speed; this is meant for use with cross-validation or
#' simulations when only the coefficients are needed.  Defaults to
#' \code{FALSE}.
#' @param lower a vector of lower limits for power optimisation. Defaults to
#' \code{0.5}.
#' @param upper a vector of upper limits for power optimisation. Defaults to
#' \code{0.5}.
#' @param trunc.pow logical. If \code{TRUE} an experimental alternative power
#' algorithm is used. (Optional)
#' @param weights a vector of individual weights for the observations.
#' (Optional)
#' @param \dots other arguments.  Currently ignored.
#' @return A list containing the following components is returned:
#' \item{coefficients}{an array of regression coefficients for 1, \ldots{},
#' \code{ncomp} components.  The dimensions of \code{coefficients} are
#' \code{c(nvar, npred, ncomp)} with \code{nvar} the number of \code{X}
#' variables and \code{npred} the number of variables to be predicted in
#' \code{Y}.} \item{scores}{a matrix of scores.} \item{loadings}{a matrix of
#' loadings.} \item{loading.weights}{a matrix of loading weights.}
#' \item{Yscores}{a matrix of Y-scores.} \item{Yloadings}{a matrix of
#' Y-loadings.} \item{projection}{the projection matrix used to convert X to
#' scores.} \item{Xmeans}{a vector of means of the X variables.}
#' \item{Ymeans}{a vector of means of the Y variables.} \item{fitted.values}{an
#' array of fitted values.  The dimensions of \code{fitted.values} are
#' \code{c(nobj, npred, ncomp)} with \code{nobj} the number samples and
#' \code{npred} the number of Y variables.} \item{residuals}{an array of
#' regression residuals.  It has the same dimensions as \code{fitted.values}.}
#' \item{Xvar}{a vector with the amount of X-variance explained by each
#' component.} \item{Xtotvar}{total variance in \code{X}.}
#' \item{gammas}{gamma-values obtained in power optimisation.}
#' \item{canonical.correlations}{Canonical correlation values from the
#' calculations of loading weights.} \item{A}{matrix containing vectors of
#' weights \code{a} from canonical correlation (\code{cor(Za,Yb)}).}
#' \item{smallNorms}{vector of indices of explanatory variables of length close
#' to or equal to 0.}
#'
#' If \code{stripped} is \code{TRUE}, only the components \code{coefficients},
#' \code{Xmeans}, \code{Ymeans} and \code{gammas} are returned.
#' @author Kristian Hovde Liland
#' @seealso \code{\link{mvr}} \code{\link{plsr}} \code{\link{pcr}}
#' \code{\link{widekernelpls.fit}} \code{\link{simpls.fit}}
#' \code{\link{oscorespls.fit}}
#' @references Indahl, U. (2005) A twist to partial least squares regression.
#' \emph{Journal of Chemometrics}, \bold{19}, 32--44.
#'
#' Liland, K.H and Indahl, U.G (2009) Powered partial least squares
#' discriminant analysis, \emph{Journal of Chemometrics}, \bold{23}, 7--18.
#'
#' Indahl, U.G., Liland, K.H. and Næs, T. (2009) Canonical partial least
#' squares - a unified PLS approach to classification and regression problems.
#' \emph{Journal of Chemometrics}, \bold{23}, 495--504.
#' @keywords regression classification multivariate
#' @examples
#'
#' data(mayonnaise)
#' # Create dummy response
#' mayonnaise$dummy <-
#'     I(model.matrix(~y-1, data.frame(y = factor(mayonnaise$oil.type))))
#'
#' # Predict CPLS scores for test data
#' may.cpls <- cppls(dummy ~ NIR, 10, data = mayonnaise, subset = train)
#' may.test <- predict(may.cpls, newdata = mayonnaise[!mayonnaise$train,], type = "score")
#'
#' # Predict CPLS scores for test data (experimental used design as additional Y information)
#' may.cpls.yadd <- cppls(dummy ~ NIR, 10, data = mayonnaise, subset = train, Y.add=design)
#' may.test.yadd <- predict(may.cpls.yadd, newdata = mayonnaise[!mayonnaise$train,], type = "score")
#'
#' # Classification by linear discriminant analysis (LDA)
#' library(MASS)
#' error <- matrix(ncol = 10, nrow = 2)
#' dimnames(error) <- list(Model = c('CPLS', 'CPLS (Y.add)'), ncomp = 1:10)
#' for (i in 1:10) {
#'     fitdata1 <- data.frame(oil.type = mayonnaise$oil.type[mayonnaise$train],
#'                            NIR.score = I(may.cpls$scores[,1:i,drop=FALSE]))
#'     testdata1 <- data.frame(oil.type = mayonnaise$oil.type[!mayonnaise$train],
#'                             NIR.score = I(may.test[,1:i,drop=FALSE]))
#'     error[1,i] <-
#'         (42 - sum(predict(lda(oil.type ~ NIR.score, data = fitdata1),
#'                   newdata = testdata1)$class == testdata1$oil.type)) / 42
#'     fitdata2 <- data.frame(oil.type = mayonnaise$oil.type[mayonnaise$train],
#'                            NIR.score = I(may.cpls.yadd$scores[,1:i,drop=FALSE]))
#'     testdata2 <- data.frame(oil.type = mayonnaise$oil.type[!mayonnaise$train],
#'                             NIR.score = I(may.test.yadd[,1:i,drop=FALSE]))
#'     error[2,i] <-
#'         (42 - sum(predict(lda(oil.type ~ NIR.score, data = fitdata2),
#'                   newdata = testdata2)$class == testdata2$oil.type)) / 42
#' }
#' round(error,2)
#'
#' @export
cppls.fit <- function(X, Y, ncomp, Y.add = NULL, center = TRUE,
                      stripped = FALSE, lower = 0.5, upper = 0.5,
                      trunc.pow = FALSE, weights = NULL, ...)
{
    ## X       - the data matrix
    ## Y       - the primary response matrix
    ## Y.add   - the additional response matrix (optional)
    ## ncomp   - number of components
    ## lower   - lower bounds for power algorithm (default=0.5)
    ## upper   - upper bounds for power algorithm (default=0.5)
    ## weights - prior weighting of observations (optional)

    Yprim <- as.matrix(Y)
    Y <- cbind(Yprim, Y.add)

    if (!stripped) {
        ## Save dimnames:
        dnX <- dimnames(X)
        dnY <- dimnames(Yprim)
    }
    dimnames(X) <- dimnames(Y) <- dimnames(Yprim) <- NULL

    nobj  <- dim(X)[1]
    npred <- dim(X)[2]
    nresp <- dim(Yprim)[2]

    ## Center variables:
    if (center) {
        if (is.null(weights)) {
            Xmeans <- colMeans(X)
            X <- X - rep(Xmeans, each = nobj)
        } else {
            Xmeans <- crossprod(weights,X) / sum(weights)
            X <- X - rep(Xmeans, each = nobj)
        }
        Ymeans <- colMeans(Yprim)
    } else  {
        ## Set means to zero. Will ensure that predictions do not take the
        ## mean into account.
        Xmeans <- rep_len(0, npred)
        Ymeans <- rep_len(0, nresp)
    }

    X.orig <- X

    ## Declaration of variables
    W   <- matrix(0, npred, ncomp)    # W-loadings
    TT  <- matrix(0, nobj,  ncomp)    # T-scores
    P   <- matrix(0, npred, ncomp)    # P-loadings
    Q   <- matrix(0, nresp, ncomp)    # Q-loadings
    A   <- matrix(0, dim(Y)[2], ncomp)# Column weights for W0 (from CCA)
    cc  <- numeric(ncomp)
    pot <- rep(0.5, ncomp)           # Powers used to construct the w-s in R
    B   <- array(0, c(npred, nresp, ncomp))
    smallNorm <- numeric()
    if (!stripped) {
        U <- TT                     # U-scores
        tsqs <- rep.int(1, ncomp)   # t't
        fitted <- array(0, c(nobj, nresp, ncomp))
    }

    for (a in 1:ncomp) {
        if (length(lower) == 1 && lower == 0.5 && length(upper) == 1 && upper == 0.5 ) {
            Rlist <- Rcal(X, Y, Yprim, weights) # Default CPLS algorithm
        } else {
            Rlist <- RcalP(X, Y, Yprim, weights, lower, upper, trunc.pow) # Alternate CPPLS algorithm
            pot[a] <- Rlist$pot
        }
        cc[a] <- Rlist$cc
        w.a <- Rlist$w
        ifelse(!is.null(Rlist$a), aa <- Rlist$a, aa <- NA)
        A[,a] <- aa

        ## Make new vectors orthogonal to old ones?
        ## w.a <- w.a - W[,1:(a-1)]%*%crossprod(W[,1:(a-1)], w.a)
        w.a[abs(w.a) < pls.options()$w.tol] <- 0   # Removes insignificant values
        w.a <- w.a / norm(w.a)                     # Normalization
        t.a <- X %*% w.a                           # Score vectors
        tsq <- crossprod(t.a)[1]
        p.a <- crossprod(X,t.a) / tsq
        q.a <- crossprod(Yprim,t.a) / tsq
        X   <- X - tcrossprod(t.a,p.a)             # Deflation

        ## Check and compensate for small norms
        mm <- apply(abs(X), 2, sum)
        r <- which(mm < pls.options()$X.tol)
        if (length(r) > 0) {
            for (i in 1:length(r)) {
                if (sum(smallNorm == r[i]) == 0) {
                    ## Add new short small to list
                    smallNorm[length(smallNorm) + 1] <- r[i]
                }
            }
        }
        X[,smallNorm] <- 0 # Remove collumns having small norms

        W[,a]  <- w.a
        TT[,a] <- t.a
        P[,a]  <- p.a
        Q[,a]  <- q.a
        B[,,a] <- W[,1:a, drop=FALSE] %*%
            tcrossprod(
                solve(crossprod(P[,1:a, drop=FALSE], W[,1:a, drop=FALSE])),
                Q[,1:a, drop=FALSE]
            )

        if (!stripped) {
            tsqs[a] <- tsq
            ## Extra step to calculate Y scores:
            U[,a] <- Yprim %*% q.a / crossprod(q.a)[1] # Ok for nresp == 1 ??
            ## make u orth to previous X scores:
            if (a > 1) U[,a] <- U[,a] - TT %*% (crossprod(TT, U[,a]) / tsqs)
            fitted[,,a] <- X.orig %*% B[,,a]
        }
    }
    if (stripped) {
        ## Return as quickly as possible
        list(coefficients = B, Xmeans = Xmeans, Ymeans = Ymeans, gammas = pot)
    } else {
        fitted <- fitted + rep(Ymeans, each = nobj) # Add mean
        residuals <- - fitted + c(Yprim)

        ## Add dimnames:
        objnames <- dnX[[1]]
        if (is.null(objnames)) objnames <- dnY[[1]]
        prednames <- dnX[[2]]
        respnames <- dnY[[2]]
        compnames <- paste("Comp", 1:ncomp)
        nCompnames <- paste(1:ncomp, "comps")
        dimnames(TT) <- list(objnames, compnames)
        dimnames(W) <- dimnames(P) <-
            list(prednames, compnames)
        dimnames(Q) <- list(respnames, compnames)
        dimnames(B) <- list(prednames, respnames, nCompnames)
        dimnames(fitted) <- dimnames(residuals) <-
            list(objnames, respnames, nCompnames)
        colnames(A) <- compnames
        class(TT) <- "scores"
        class(P) <- class(W) <- class(Q) <- "loadings"

        list(coefficients = B,
             scores = TT, loadings = P,
             loading.weights = W,
             Yscores = U, Yloadings = Q,
             projection = W %*% solve(crossprod(P,W)),
             Xmeans = Xmeans, Ymeans = Ymeans,
             fitted.values = fitted, residuals = residuals,
             Xvar = colSums(P * P) * tsqs,
             Xtotvar = sum(X.orig * X.orig),
             gammas = pot,
             canonical.correlations = cc,
             smallNorm = smallNorm,
             A = A, trunc.pow = trunc.pow)
    }
}


#######################
## Rcal function (CPLS)
Rcal <- function(X, Y, Yprim, weights) {
    W0 <- crossprod(X,Y)
    Ar <- cancorr(X %*% W0, Yprim, weights, FALSE) # Computes canonical correlations between columns in XW and Y with rows weighted according to 'weights'
    w  <- W0 %*% Ar$A[,1, drop=FALSE]  # Optimal loadings
    ifelse(exists('Ar'), a <- Ar$A[,1], a <- NA)
    list(w = w, cc = Ar$r^2, a = a)
}


#########################
## RcalP function (CPPLS)
RcalP <- function(X, Y, Yprim, weights, lower, upper, trunc.pow) {
    CS <- CorrXY(X, Y, weights)     # Matrix of corr(Xj,Yg) and vector of std(Xj)
    sng <- sign(CS$C)               # Signs of C {-1,0,1}
    C <- abs(CS$C)                  # Correlation without signs
    mS <- max(CS$S); S <- CS$S / mS # Divide by largest value
    mC <- max(C); C <- C / mC       #  -------- || --------

    ## Computation of the best vector of loadings
    lw <- lw_bestpar(X, S, C, sng, Yprim, weights, lower, upper, trunc.pow)
}


################
## lw_bestpar function
lw_bestpar <- function(X, S, C, sng, Yprim, weights, lower, upper,
                       trunc.pow)
{
    if (!is.null(weights))
        weights <- sqrt(weights) # Prepare weights for cca
    ## Compute for S and each columns of C the distance from the median scaled to [0,1]
    if (trunc.pow) {
        medC <- t(abs(t(sng * C) - apply(sng * C, 2, median)))
        medC <- t(t(medC) / apply(medC, 2, max))
        medS <- abs(S - median(S))
        medS <- medS / max(medS)
    } else {
        medS <- medC <- NULL
    }

    #########################
    # Optimization function #
    #########################
    f <- function(p, X, S, C, sng, Yprim, weights, trunc.pow, medS, medC) {
        if(p == 0) {        # Variable selection from standard deviation
            S[S < max(S)] <- 0
            W0 <- S
        } else if(p == 1) { # Variable selection from correlation
            C[C < max(C)] <- 0
            W0 <- rowSums(C)
        } else {            # Standard deviation and correlation with powers
            if (trunc.pow) {
                ps <- (1 - p) / p
                if (ps < 1) {
                    S <- S^ps
                } else {
                    S[medS < (1 - 2 * p)] <- 0
                }
                pc <- p / (1 - p)
                if (pc < 1) {
                    W0 <- (sng * (C^pc)) * S
                } else {
                    C[medC < (2 * p - 1)] <- 0
                    W0 <- (sng * C) * S
                }
            } else {
                S <- S^((1 - p) / p)
                W0 <- (sng * (C^(p / (1 - p)))) * S
            }
        }
        Z <- X %*% W0  # Transform X into W0
        -(cancorr(Z, Yprim, weights))^2
    }

    #####################################
    # Logic for optimization segment(s) #
    #####################################
    nOpt <- length(lower)
    pot  <- numeric(3 * nOpt)
    ca   <- numeric(3 * nOpt)

    for (i in 1:nOpt) {
        ca[ 1 + (i - 1) * 3] <-
            f(lower[i], X, S, C, sng, Yprim, weights, trunc.pow, medS, medC)
        pot[1 + (i - 1) * 3] <- lower[i]
        if (lower[i] != upper[i]) {
            Pc <- optimize(f = f, interval = c(lower[i], upper[i]),
                           tol = 10^-4, maximum = FALSE,
                           X = X, S = S, C = C, sng = sng, Yprim = Yprim,
                           weights = weights, trunc.pow = trunc.pow, medS, medC)
            pot[2 + (i - 1) * 3] <- Pc[[1]]
            ca[ 2 + (i - 1) * 3] <- Pc[[2]]
        }
        ca[ 3 + (i - 1) * 3] <-
            f(upper[i], X, S, C, sng, Yprim, weights, trunc.pow, medS, medC)
        pot[3 + (i - 1) * 3] <- upper[i]
    }


    ########################################################
    # Computation of final w-vectors based on optimization #
    ########################################################
    cc <- max(-ca)                      # Determine which is more succesful
    cmin <- which.max(-ca)              # Determine which is more succesful
    if (pot[cmin] == 0) {        # Variable selection from standard deviation
        S[S < max(S)] <- 0
        w <- S
    } else if (pot[cmin] == 1) { # Variable selection from correlation
        C[C < max(C)] <- 0
        w <- rowSums(C)
    } else {                     # Standard deviation and correlation with powers
        p <- pot[cmin]           # Power from optimization
        if (trunc.pow) {         # New power algorithm
            ps <- (1 - p) / p
            if (ps < 1) {
                S <- S^ps
            } else {
                S[medS < (1 - 2 * p)] <- 0
            }
            pc <- p / (1 - p)
            if (pc < 1) {
                W0 <- (sng * (C^pc)) * S
            } else {
                C[medC < (2 * p-1)] <- 0
                W0 <- (sng * C) * S
            }
        } else {
            S <- S^((1 - p) / p)
            W0 <- (sng * (C^(p / (1 - p)))) * S
        }

        Z <- X %*% W0                   # Transform X into W
        Ar <- cancorr(Z, Yprim, weights, FALSE) # Computes canonical correlations between columns in XW and Y with rows weighted according to 'weights'
        w <- W0 %*% Ar$A[,1, drop=FALSE]  # Optimal loadings
    }
    pot <- pot[cmin]
    ifelse(exists('Ar'), a <- Ar$A[,1], a <- NA)
    list(w = w, pot = pot, cc = cc, a = a)
}


################
## CorrXY function
CorrXY <- function(X, Y, weights) {
    ##  Computation of correlations between the columns of X and Y
    n  <- dim(X)[1]
    if (is.null(weights)) {
        cx <- colMeans(X)
        cy <- colMeans(Y)
        X <- X - rep(cx, each = n)
        Y <- Y - rep(cy, each = n)
    } else {
        cx <- crossprod(weights,X) / sum(weights)
        cy <- crossprod(weights,Y) / sum(weights)
        X  <- X - rep(cx, each = n)
        Y  <- Y - rep(cy, each = n)
        X  <- X * weights
        Y  <- Y * weights
    }

    sdX <- sqrt(apply(X^2, 2, mean))
    inds <- which(sdX == 0, arr.ind = FALSE)
    sdX[inds] <- 1

    ccxy <- crossprod(X, Y) / (n * tcrossprod(sdX, sqrt(apply(Y^2, 2, mean))))
    sdX[ inds ] <- 0
    ccxy[inds,] <- 0
    list(C = ccxy, S = sdX)
}


################
## function norm
norm <- function(vec) {
    sqrt(crossprod(vec)[1])
}


################
## Stripped version of canonical correlation (cancor)
cancorr <- function (x, y, weights, opt = TRUE) {
    nr  <- nrow(x)
    ncx <- ncol(x)
    ncy <- ncol(y)
    if (!is.null(weights)) {
        x <- x * weights
        y <- y * weights
    }
    qx <- qr(x, LAPACK = TRUE)
    qy <- qr(y, LAPACK = TRUE)
    qxR <- qr.R(qx)
    ## Compute rank like MATLAB does
    dx <- sum(abs(diag(qxR)) >
              .Machine$double.eps * 2^floor(log2(abs(qxR[1]))) * max(nr, ncx))
    if (!dx)
        stop("'x' has rank 0")
    qyR <- qr.R(qy)
    ## Compute rank like MATLAB does
    dy <- sum(abs(diag(qyR)) >
              .Machine$double.eps * 2^floor(log2(abs(qyR[1]))) * max(nr, ncy))
    if (!dy)
        stop("'y' has rank 0")
    dxy <- min(dx, dy)
    if (opt) {
        z <- svd(qr.qty(qx, qr.qy(qy, diag(1, nr, dy)))[1:dx,, drop = FALSE],
                 nu = 0, nv = 0)
        ret <- max(min(z$d[1], 1), 0)
    } else {
        z <- svd(qr.qty(qx, qr.qy(qy, diag(1, nr, dy)))[1:dx,, drop = FALSE],
                 nu = dxy, nv = 0)
        A <- backsolve((qx$qr)[1:dx,1:dx, drop = FALSE], z$u) * sqrt(nr - 1)
        if ((ncx - nrow(A)) > 0) {
            A <- rbind(A, matrix(0, ncx - nrow(A), dxy))
        }
        A[qx$pivot,] <- A
        ret <- list(A = A, r = max(min(z$d[1], 1), 0))
    }
    ret
}