1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
### cppls.fit.R: The Canonical Powered PLS algorithm
###
### Implements the CPPLS algorithm as described in
### Indahl, U.G., Liland, K.H., Næs, T. (2009).
### Canonical partial least squares - a unified PLS approach to classification and regression problems,
### Journal of Chemometrics 23, pp. 495-504
#' @title CPPLS (Indahl et al.)
#'
#' @description Fits a PLS model using the CPPLS algorithm.
#'
#' @details This function should not be called directly, but through the generic
#' functions \code{cppls} or \code{mvr} with the argument
#' \code{method="cppls"}. Canonical Powered PLS (CPPLS) is a generalisation of
#' PLS incorporating discrete and continuous responses (also simultaneously),
#' additional responses, individual weighting of observations and power
#' methodology for sharpening focus on groups of variables. Depending on the
#' input to \code{cppls} it can produce the following special cases: \itemize{
#' \item PLS: uni-response continuous \code{Y} \item PPLS: uni-response
#' continuous \code{Y}, \code{(lower || upper) != 0.5} \item PLS-DA (using
#' correlation maximisation - B/W): dummy-coded descrete response \code{Y}
#' \item PPLS-DA: dummy-coded descrete response \code{Y}, \code{(lower ||
#' upper) != 0.5} \item CPLS: multi-response \code{Y} (continuous, discrete or
#' combination) \item CPPLS: multi-response \code{Y} (continuous, discrete or
#' combination), \code{(lower || upper) != 0.5} } The name "canonical" comes
#' from canonical correlation analysis which is used when calculating vectors
#' of loading weights, while "powered" refers to a reparameterisation of the
#' vectors of loading weights which can be optimised over a given interval.
#'
#' @param X a matrix of observations. \code{NA}s and \code{Inf}s are not
#' allowed.
#' @param Y a vector or matrix of responses. \code{NA}s and \code{Inf}s are
#' not allowed.
#' @param ncomp the number of components to be used in the modelling.
#' @param Y.add a vector or matrix of additional responses containing relevant
#' information about the observations.
#' @param center logical, determines if the \eqn{X} and \eqn{Y} matrices are
#' mean centered or not. Default is to perform mean centering.
#' @param stripped logical. If \code{TRUE} the calculations are stripped as
#' much as possible for speed; this is meant for use with cross-validation or
#' simulations when only the coefficients are needed. Defaults to
#' \code{FALSE}.
#' @param lower a vector of lower limits for power optimisation. Defaults to
#' \code{0.5}.
#' @param upper a vector of upper limits for power optimisation. Defaults to
#' \code{0.5}.
#' @param trunc.pow logical. If \code{TRUE} an experimental alternative power
#' algorithm is used. (Optional)
#' @param weights a vector of individual weights for the observations.
#' (Optional)
#' @param \dots other arguments. Currently ignored.
#' @return A list containing the following components is returned:
#' \item{coefficients}{an array of regression coefficients for 1, \ldots{},
#' \code{ncomp} components. The dimensions of \code{coefficients} are
#' \code{c(nvar, npred, ncomp)} with \code{nvar} the number of \code{X}
#' variables and \code{npred} the number of variables to be predicted in
#' \code{Y}.} \item{scores}{a matrix of scores.} \item{loadings}{a matrix of
#' loadings.} \item{loading.weights}{a matrix of loading weights.}
#' \item{Yscores}{a matrix of Y-scores.} \item{Yloadings}{a matrix of
#' Y-loadings.} \item{projection}{the projection matrix used to convert X to
#' scores.} \item{Xmeans}{a vector of means of the X variables.}
#' \item{Ymeans}{a vector of means of the Y variables.} \item{fitted.values}{an
#' array of fitted values. The dimensions of \code{fitted.values} are
#' \code{c(nobj, npred, ncomp)} with \code{nobj} the number samples and
#' \code{npred} the number of Y variables.} \item{residuals}{an array of
#' regression residuals. It has the same dimensions as \code{fitted.values}.}
#' \item{Xvar}{a vector with the amount of X-variance explained by each
#' component.} \item{Xtotvar}{total variance in \code{X}.}
#' \item{gammas}{gamma-values obtained in power optimisation.}
#' \item{canonical.correlations}{Canonical correlation values from the
#' calculations of loading weights.} \item{A}{matrix containing vectors of
#' weights \code{a} from canonical correlation (\code{cor(Za,Yb)}).}
#' \item{smallNorms}{vector of indices of explanatory variables of length close
#' to or equal to 0.}
#'
#' If \code{stripped} is \code{TRUE}, only the components \code{coefficients},
#' \code{Xmeans}, \code{Ymeans} and \code{gammas} are returned.
#' @author Kristian Hovde Liland
#' @seealso \code{\link{mvr}} \code{\link{plsr}} \code{\link{pcr}}
#' \code{\link{widekernelpls.fit}} \code{\link{simpls.fit}}
#' \code{\link{oscorespls.fit}}
#' @references Indahl, U. (2005) A twist to partial least squares regression.
#' \emph{Journal of Chemometrics}, \bold{19}, 32--44.
#'
#' Liland, K.H and Indahl, U.G (2009) Powered partial least squares
#' discriminant analysis, \emph{Journal of Chemometrics}, \bold{23}, 7--18.
#'
#' Indahl, U.G., Liland, K.H. and Næs, T. (2009) Canonical partial least
#' squares - a unified PLS approach to classification and regression problems.
#' \emph{Journal of Chemometrics}, \bold{23}, 495--504.
#' @keywords regression classification multivariate
#' @examples
#'
#' data(mayonnaise)
#' # Create dummy response
#' mayonnaise$dummy <-
#' I(model.matrix(~y-1, data.frame(y = factor(mayonnaise$oil.type))))
#'
#' # Predict CPLS scores for test data
#' may.cpls <- cppls(dummy ~ NIR, 10, data = mayonnaise, subset = train)
#' may.test <- predict(may.cpls, newdata = mayonnaise[!mayonnaise$train,], type = "score")
#'
#' # Predict CPLS scores for test data (experimental used design as additional Y information)
#' may.cpls.yadd <- cppls(dummy ~ NIR, 10, data = mayonnaise, subset = train, Y.add=design)
#' may.test.yadd <- predict(may.cpls.yadd, newdata = mayonnaise[!mayonnaise$train,], type = "score")
#'
#' # Classification by linear discriminant analysis (LDA)
#' library(MASS)
#' error <- matrix(ncol = 10, nrow = 2)
#' dimnames(error) <- list(Model = c('CPLS', 'CPLS (Y.add)'), ncomp = 1:10)
#' for (i in 1:10) {
#' fitdata1 <- data.frame(oil.type = mayonnaise$oil.type[mayonnaise$train],
#' NIR.score = I(may.cpls$scores[,1:i,drop=FALSE]))
#' testdata1 <- data.frame(oil.type = mayonnaise$oil.type[!mayonnaise$train],
#' NIR.score = I(may.test[,1:i,drop=FALSE]))
#' error[1,i] <-
#' (42 - sum(predict(lda(oil.type ~ NIR.score, data = fitdata1),
#' newdata = testdata1)$class == testdata1$oil.type)) / 42
#' fitdata2 <- data.frame(oil.type = mayonnaise$oil.type[mayonnaise$train],
#' NIR.score = I(may.cpls.yadd$scores[,1:i,drop=FALSE]))
#' testdata2 <- data.frame(oil.type = mayonnaise$oil.type[!mayonnaise$train],
#' NIR.score = I(may.test.yadd[,1:i,drop=FALSE]))
#' error[2,i] <-
#' (42 - sum(predict(lda(oil.type ~ NIR.score, data = fitdata2),
#' newdata = testdata2)$class == testdata2$oil.type)) / 42
#' }
#' round(error,2)
#'
#' @export
cppls.fit <- function(X, Y, ncomp, Y.add = NULL, center = TRUE,
stripped = FALSE, lower = 0.5, upper = 0.5,
trunc.pow = FALSE, weights = NULL, ...)
{
## X - the data matrix
## Y - the primary response matrix
## Y.add - the additional response matrix (optional)
## ncomp - number of components
## lower - lower bounds for power algorithm (default=0.5)
## upper - upper bounds for power algorithm (default=0.5)
## weights - prior weighting of observations (optional)
Yprim <- as.matrix(Y)
Y <- cbind(Yprim, Y.add)
if (!stripped) {
## Save dimnames:
dnX <- dimnames(X)
dnY <- dimnames(Yprim)
}
dimnames(X) <- dimnames(Y) <- dimnames(Yprim) <- NULL
nobj <- dim(X)[1]
npred <- dim(X)[2]
nresp <- dim(Yprim)[2]
## Center variables:
if (center) {
if (is.null(weights)) {
Xmeans <- colMeans(X)
X <- X - rep(Xmeans, each = nobj)
} else {
Xmeans <- crossprod(weights,X) / sum(weights)
X <- X - rep(Xmeans, each = nobj)
}
Ymeans <- colMeans(Yprim)
} else {
## Set means to zero. Will ensure that predictions do not take the
## mean into account.
Xmeans <- rep_len(0, npred)
Ymeans <- rep_len(0, nresp)
}
X.orig <- X
## Declaration of variables
W <- matrix(0, npred, ncomp) # W-loadings
TT <- matrix(0, nobj, ncomp) # T-scores
P <- matrix(0, npred, ncomp) # P-loadings
Q <- matrix(0, nresp, ncomp) # Q-loadings
A <- matrix(0, dim(Y)[2], ncomp)# Column weights for W0 (from CCA)
cc <- numeric(ncomp)
pot <- rep(0.5, ncomp) # Powers used to construct the w-s in R
B <- array(0, c(npred, nresp, ncomp))
smallNorm <- numeric()
if (!stripped) {
U <- TT # U-scores
tsqs <- rep.int(1, ncomp) # t't
fitted <- array(0, c(nobj, nresp, ncomp))
}
for (a in 1:ncomp) {
if (length(lower) == 1 && lower == 0.5 && length(upper) == 1 && upper == 0.5 ) {
Rlist <- Rcal(X, Y, Yprim, weights) # Default CPLS algorithm
} else {
Rlist <- RcalP(X, Y, Yprim, weights, lower, upper, trunc.pow) # Alternate CPPLS algorithm
pot[a] <- Rlist$pot
}
cc[a] <- Rlist$cc
w.a <- Rlist$w
ifelse(!is.null(Rlist$a), aa <- Rlist$a, aa <- NA)
A[,a] <- aa
## Make new vectors orthogonal to old ones?
## w.a <- w.a - W[,1:(a-1)]%*%crossprod(W[,1:(a-1)], w.a)
w.a[abs(w.a) < pls.options()$w.tol] <- 0 # Removes insignificant values
w.a <- w.a / norm(w.a) # Normalization
t.a <- X %*% w.a # Score vectors
tsq <- crossprod(t.a)[1]
p.a <- crossprod(X,t.a) / tsq
q.a <- crossprod(Yprim,t.a) / tsq
X <- X - tcrossprod(t.a,p.a) # Deflation
## Check and compensate for small norms
mm <- apply(abs(X), 2, sum)
r <- which(mm < pls.options()$X.tol)
if (length(r) > 0) {
for (i in 1:length(r)) {
if (sum(smallNorm == r[i]) == 0) {
## Add new short small to list
smallNorm[length(smallNorm) + 1] <- r[i]
}
}
}
X[,smallNorm] <- 0 # Remove collumns having small norms
W[,a] <- w.a
TT[,a] <- t.a
P[,a] <- p.a
Q[,a] <- q.a
B[,,a] <- W[,1:a, drop=FALSE] %*%
tcrossprod(
solve(crossprod(P[,1:a, drop=FALSE], W[,1:a, drop=FALSE])),
Q[,1:a, drop=FALSE]
)
if (!stripped) {
tsqs[a] <- tsq
## Extra step to calculate Y scores:
U[,a] <- Yprim %*% q.a / crossprod(q.a)[1] # Ok for nresp == 1 ??
## make u orth to previous X scores:
if (a > 1) U[,a] <- U[,a] - TT %*% (crossprod(TT, U[,a]) / tsqs)
fitted[,,a] <- X.orig %*% B[,,a]
}
}
if (stripped) {
## Return as quickly as possible
list(coefficients = B, Xmeans = Xmeans, Ymeans = Ymeans, gammas = pot)
} else {
fitted <- fitted + rep(Ymeans, each = nobj) # Add mean
residuals <- - fitted + c(Yprim)
## Add dimnames:
objnames <- dnX[[1]]
if (is.null(objnames)) objnames <- dnY[[1]]
prednames <- dnX[[2]]
respnames <- dnY[[2]]
compnames <- paste("Comp", 1:ncomp)
nCompnames <- paste(1:ncomp, "comps")
dimnames(TT) <- list(objnames, compnames)
dimnames(W) <- dimnames(P) <-
list(prednames, compnames)
dimnames(Q) <- list(respnames, compnames)
dimnames(B) <- list(prednames, respnames, nCompnames)
dimnames(fitted) <- dimnames(residuals) <-
list(objnames, respnames, nCompnames)
colnames(A) <- compnames
class(TT) <- "scores"
class(P) <- class(W) <- class(Q) <- "loadings"
list(coefficients = B,
scores = TT, loadings = P,
loading.weights = W,
Yscores = U, Yloadings = Q,
projection = W %*% solve(crossprod(P,W)),
Xmeans = Xmeans, Ymeans = Ymeans,
fitted.values = fitted, residuals = residuals,
Xvar = colSums(P * P) * tsqs,
Xtotvar = sum(X.orig * X.orig),
gammas = pot,
canonical.correlations = cc,
smallNorm = smallNorm,
A = A, trunc.pow = trunc.pow)
}
}
#######################
## Rcal function (CPLS)
Rcal <- function(X, Y, Yprim, weights) {
W0 <- crossprod(X,Y)
Ar <- cancorr(X %*% W0, Yprim, weights, FALSE) # Computes canonical correlations between columns in XW and Y with rows weighted according to 'weights'
w <- W0 %*% Ar$A[,1, drop=FALSE] # Optimal loadings
ifelse(exists('Ar'), a <- Ar$A[,1], a <- NA)
list(w = w, cc = Ar$r^2, a = a)
}
#########################
## RcalP function (CPPLS)
RcalP <- function(X, Y, Yprim, weights, lower, upper, trunc.pow) {
CS <- CorrXY(X, Y, weights) # Matrix of corr(Xj,Yg) and vector of std(Xj)
sng <- sign(CS$C) # Signs of C {-1,0,1}
C <- abs(CS$C) # Correlation without signs
mS <- max(CS$S); S <- CS$S / mS # Divide by largest value
mC <- max(C); C <- C / mC # -------- || --------
## Computation of the best vector of loadings
lw <- lw_bestpar(X, S, C, sng, Yprim, weights, lower, upper, trunc.pow)
}
################
## lw_bestpar function
lw_bestpar <- function(X, S, C, sng, Yprim, weights, lower, upper,
trunc.pow)
{
if (!is.null(weights))
weights <- sqrt(weights) # Prepare weights for cca
## Compute for S and each columns of C the distance from the median scaled to [0,1]
if (trunc.pow) {
medC <- t(abs(t(sng * C) - apply(sng * C, 2, median)))
medC <- t(t(medC) / apply(medC, 2, max))
medS <- abs(S - median(S))
medS <- medS / max(medS)
} else {
medS <- medC <- NULL
}
#########################
# Optimization function #
#########################
f <- function(p, X, S, C, sng, Yprim, weights, trunc.pow, medS, medC) {
if(p == 0) { # Variable selection from standard deviation
S[S < max(S)] <- 0
W0 <- S
} else if(p == 1) { # Variable selection from correlation
C[C < max(C)] <- 0
W0 <- rowSums(C)
} else { # Standard deviation and correlation with powers
if (trunc.pow) {
ps <- (1 - p) / p
if (ps < 1) {
S <- S^ps
} else {
S[medS < (1 - 2 * p)] <- 0
}
pc <- p / (1 - p)
if (pc < 1) {
W0 <- (sng * (C^pc)) * S
} else {
C[medC < (2 * p - 1)] <- 0
W0 <- (sng * C) * S
}
} else {
S <- S^((1 - p) / p)
W0 <- (sng * (C^(p / (1 - p)))) * S
}
}
Z <- X %*% W0 # Transform X into W0
-(cancorr(Z, Yprim, weights))^2
}
#####################################
# Logic for optimization segment(s) #
#####################################
nOpt <- length(lower)
pot <- numeric(3 * nOpt)
ca <- numeric(3 * nOpt)
for (i in 1:nOpt) {
ca[ 1 + (i - 1) * 3] <-
f(lower[i], X, S, C, sng, Yprim, weights, trunc.pow, medS, medC)
pot[1 + (i - 1) * 3] <- lower[i]
if (lower[i] != upper[i]) {
Pc <- optimize(f = f, interval = c(lower[i], upper[i]),
tol = 10^-4, maximum = FALSE,
X = X, S = S, C = C, sng = sng, Yprim = Yprim,
weights = weights, trunc.pow = trunc.pow, medS, medC)
pot[2 + (i - 1) * 3] <- Pc[[1]]
ca[ 2 + (i - 1) * 3] <- Pc[[2]]
}
ca[ 3 + (i - 1) * 3] <-
f(upper[i], X, S, C, sng, Yprim, weights, trunc.pow, medS, medC)
pot[3 + (i - 1) * 3] <- upper[i]
}
########################################################
# Computation of final w-vectors based on optimization #
########################################################
cc <- max(-ca) # Determine which is more succesful
cmin <- which.max(-ca) # Determine which is more succesful
if (pot[cmin] == 0) { # Variable selection from standard deviation
S[S < max(S)] <- 0
w <- S
} else if (pot[cmin] == 1) { # Variable selection from correlation
C[C < max(C)] <- 0
w <- rowSums(C)
} else { # Standard deviation and correlation with powers
p <- pot[cmin] # Power from optimization
if (trunc.pow) { # New power algorithm
ps <- (1 - p) / p
if (ps < 1) {
S <- S^ps
} else {
S[medS < (1 - 2 * p)] <- 0
}
pc <- p / (1 - p)
if (pc < 1) {
W0 <- (sng * (C^pc)) * S
} else {
C[medC < (2 * p-1)] <- 0
W0 <- (sng * C) * S
}
} else {
S <- S^((1 - p) / p)
W0 <- (sng * (C^(p / (1 - p)))) * S
}
Z <- X %*% W0 # Transform X into W
Ar <- cancorr(Z, Yprim, weights, FALSE) # Computes canonical correlations between columns in XW and Y with rows weighted according to 'weights'
w <- W0 %*% Ar$A[,1, drop=FALSE] # Optimal loadings
}
pot <- pot[cmin]
ifelse(exists('Ar'), a <- Ar$A[,1], a <- NA)
list(w = w, pot = pot, cc = cc, a = a)
}
################
## CorrXY function
CorrXY <- function(X, Y, weights) {
## Computation of correlations between the columns of X and Y
n <- dim(X)[1]
if (is.null(weights)) {
cx <- colMeans(X)
cy <- colMeans(Y)
X <- X - rep(cx, each = n)
Y <- Y - rep(cy, each = n)
} else {
cx <- crossprod(weights,X) / sum(weights)
cy <- crossprod(weights,Y) / sum(weights)
X <- X - rep(cx, each = n)
Y <- Y - rep(cy, each = n)
X <- X * weights
Y <- Y * weights
}
sdX <- sqrt(apply(X^2, 2, mean))
inds <- which(sdX == 0, arr.ind = FALSE)
sdX[inds] <- 1
ccxy <- crossprod(X, Y) / (n * tcrossprod(sdX, sqrt(apply(Y^2, 2, mean))))
sdX[ inds ] <- 0
ccxy[inds,] <- 0
list(C = ccxy, S = sdX)
}
################
## function norm
norm <- function(vec) {
sqrt(crossprod(vec)[1])
}
################
## Stripped version of canonical correlation (cancor)
cancorr <- function (x, y, weights, opt = TRUE) {
nr <- nrow(x)
ncx <- ncol(x)
ncy <- ncol(y)
if (!is.null(weights)) {
x <- x * weights
y <- y * weights
}
qx <- qr(x, LAPACK = TRUE)
qy <- qr(y, LAPACK = TRUE)
qxR <- qr.R(qx)
## Compute rank like MATLAB does
dx <- sum(abs(diag(qxR)) >
.Machine$double.eps * 2^floor(log2(abs(qxR[1]))) * max(nr, ncx))
if (!dx)
stop("'x' has rank 0")
qyR <- qr.R(qy)
## Compute rank like MATLAB does
dy <- sum(abs(diag(qyR)) >
.Machine$double.eps * 2^floor(log2(abs(qyR[1]))) * max(nr, ncy))
if (!dy)
stop("'y' has rank 0")
dxy <- min(dx, dy)
if (opt) {
z <- svd(qr.qty(qx, qr.qy(qy, diag(1, nr, dy)))[1:dx,, drop = FALSE],
nu = 0, nv = 0)
ret <- max(min(z$d[1], 1), 0)
} else {
z <- svd(qr.qty(qx, qr.qy(qy, diag(1, nr, dy)))[1:dx,, drop = FALSE],
nu = dxy, nv = 0)
A <- backsolve((qx$qr)[1:dx,1:dx, drop = FALSE], z$u) * sqrt(nr - 1)
if ((ncx - nrow(A)) > 0) {
A <- rbind(A, matrix(0, ncx - nrow(A), dxy))
}
A[qx$pivot,] <- A
ret <- list(A = A, r = max(min(z$d[1], 1), 0))
}
ret
}
|