1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
### crossval.R: Cross-validation functions.
## The basic cross-validation function
#' @title Cross-validation
#'
#' @description Performs the cross-validation calculations for \code{mvr}.
#'
#' This function is not meant to be called directly, but through the generic
#' functions \code{pcr}, \code{plsr}, \code{cppls} or \code{mvr} with the
#' argument \code{validation} set to \code{"CV"} or \code{"LOO"}. All
#' arguments to \code{mvrCv} can be specified in the generic function call.
#'
#' If \code{segments} is a list, the arguments \code{segment.type} and
#' \code{length.seg} are ignored. The elements of the list should be integer
#' vectors specifying the indices of the segments. See
#' \code{\link{cvsegments}} for details.
#'
#' Otherwise, segments of type \code{segment.type} are generated. How many
#' segments to generate is selected by specifying the number of segments in
#' \code{segments}, or giving the segment length in \code{length.seg}. If both
#' are specified, \code{segments} is ignored.
#'
#' If \code{jackknife} is \code{TRUE}, jackknifed regression coefficients are
#' returned, which can be used for for variance estimation
#' (\code{\link{var.jack}}) or hypothesis testing (\code{\link{jack.test}}).
#'
#' \code{X} and \code{Y} do not need to be centered.
#'
#' Note that this function cannot be used in situations where \eqn{X} needs to
#' be recalculated for each segment (except for scaling by the standard
#' deviation), for instance with \code{msc} or other preprocessing. For such
#' models, use the more general (but slower) function \code{\link{crossval}}.
#'
#' Also note that if needed, the function will silently(!) reduce \code{ncomp}
#' to the maximal number of components that can be cross-validated, which is
#' \eqn{n - l - 1}, where \eqn{n} is the number of observations and \eqn{l} is
#' the length of the longest segment. The (possibly reduced) number of
#' components is returned as the component \code{ncomp}.
#'
#' By default, the cross-validation will be performed serially. However, it
#' can be done in parallel using functionality in the \code{\link{parallel}}
#' package by setting the option \code{parallel} in \code{\link{pls.options}}.
#' See \code{\link{pls.options}} for the different ways to specify the
#' parallelism.
#'
#' @param X a matrix of observations. \code{NA}s and \code{Inf}s are not
#' allowed.
#' @param Y a vector or matrix of responses. \code{NA}s and \code{Inf}s are
#' not allowed.
#' @param ncomp the number of components to be used in the modelling.
#' @param Y.add a vector or matrix of additional responses containing relevant
#' information about the observations. Only used for \code{cppls}.
#' @param weights a vector of individual weights for the observations. Only
#' used for \code{cppls}. (Optional)
#' @param method the multivariate regression method to be used.
#' @param scale logical. If \code{TRUE}, the learning \eqn{X} data for each
#' segment is scaled by dividing each variable by its sample standard
#' deviation. The prediction data is scaled by the same amount.
#' @param segments the number of segments to use, or a list with segments (see
#' below).
#' @param segment.type the type of segments to use. Ignored if \code{segments}
#' is a list.
#' @param length.seg Positive integer. The length of the segments to use. If
#' specified, it overrides \code{segments} unless \code{segments} is a list.
#' @param jackknife logical. Whether jackknifing of regression coefficients
#' should be performed.
#' @param trace logical; if \code{TRUE}, the segment number is printed for each
#' segment.
#' @param \dots additional arguments, sent to the underlying fit function.
#' @return A list with the following components: \item{method}{equals
#' \code{"CV"} for cross-validation.} \item{pred}{an array with the
#' cross-validated predictions.} \item{coefficients}{(only if \code{jackknife}
#' is \code{TRUE}) an array with the jackknifed regression coefficients. The
#' dimensions correspond to the predictors, responses, number of components,
#' and segments, respectively.} \item{PRESS0}{a vector of PRESS values (one for
#' each response variable) for a model with zero components, i.e., only the
#' intercept.} \item{PRESS}{a matrix of PRESS values for models with 1,
#' \ldots{}, \code{ncomp} components. Each row corresponds to one response
#' variable.} \item{adj}{a matrix of adjustment values for calculating bias
#' corrected MSEP. \code{MSEP} uses this.} \item{segments}{the list of
#' segments used in the cross-validation.} \item{ncomp}{the actual number of
#' components used.} \item{gamma}{if method \code{cppls} is used, gamma values
#' for the powers of each CV segment are returned.}
#' @note The \code{PRESS0} is always cross-validated using leave-one-out
#' cross-validation. This usually makes little difference in practice, but
#' should be fixed for correctness.
#'
#' The current implementation of the jackknife stores all jackknife-replicates
#' of the regression coefficients, which can be very costly for large matrices.
#' This might change in a future version.
#' @author Ron Wehrens and Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}} \code{\link{crossval}} \code{\link{cvsegments}}
#' \code{\link{MSEP}} \code{\link{var.jack}} \code{\link{jack.test}}
#' @references Mevik, B.-H., Cederkvist, H. R. (2004) Mean Squared Error of
#' Prediction (MSEP) Estimates for Principal Component Regression (PCR) and
#' Partial Least Squares Regression (PLSR). \emph{Journal of Chemometrics},
#' \bold{18}(9), 422--429.
#' @keywords regression multivariate
#' @examples
#'
#' data(yarn)
#' yarn.pcr <- pcr(density ~ NIR, 6, data = yarn, validation = "CV", segments = 10)
#' \dontrun{plot(MSEP(yarn.pcr))}
#'
mvrCv <- function(X, Y, ncomp, Y.add = NULL, weights = NULL,
method = pls.options()$mvralg,
scale = FALSE, segments = 10,
segment.type = c("random", "consecutive", "interleaved"),
length.seg, jackknife = FALSE, trace = FALSE, ...)
{
## Initialise:
Y <- as.matrix(Y)
if (!(missing(Y.add) || is.null(Y.add)))
Y.add <- as.matrix(Y.add)
## Save dimnames:
dnX <- dimnames(X)
dnY <- dimnames(Y)
## Remove dimnames for performance (doesn't seem to matter; in fact,
## as far as it has any effect, it hurts a tiny bit in most situations).
## dimnames(X) <- dimnames(Y) <- NULL
## Save dimensions:
nobj <- dim(X)[1]
npred <- dim(X)[2]
nresp <- dim(Y)[2]
## Check the `scale' parameter:
if (!is.logical(scale) || length(scale) != 1)
stop("'scale' must be 'TRUE' or 'FALSE'")
## Set up segments:
if (is.list(segments)) {
if (is.null(attr(segments, "type")))
attr(segments, "type") <- "user supplied"
} else {
if (missing(length.seg)) {
segments <- cvsegments(nobj, k = segments, type = segment.type)
} else {
segments <- cvsegments(nobj, length.seg = length.seg,
type = segment.type)
}
}
## Reduce ncomp, if neccessary:
ncomp <- min(ncomp, nobj - max(sapply(segments, length)) - 1)
## Select fit function:
method <- match.arg(method,c("kernelpls", "widekernelpls", "simpls",
"oscorespls", "cppls", "svdpc"))
fitFunc <- switch(method,
kernelpls = kernelpls.fit,
widekernelpls = widekernelpls.fit,
simpls = simpls.fit,
oscorespls = oscorespls.fit,
cppls = cppls.fit,
svdpc = svdpc.fit)
## Helper function to perform the cross-validatoin for one segment.
## Defined inside mvrCv to be able to access local variables:
mvrCvSeg <- function(n.seg) {
if (trace) cat(n.seg, "")
## Set up train data:
seg <- segments[[n.seg]]
Xtrain <- X[-seg,, drop=FALSE]
if (scale) {
ntrain <- nrow(Xtrain)
## This is faster than sd(X), but cannot handle missing values:
sdtrain <-
sqrt(colSums((Xtrain - rep(colMeans(Xtrain), each = ntrain))^2) /
(ntrain - 1))
if (any(abs(sdtrain) < .Machine$double.eps^0.5))
warning("Scaling with (near) zero standard deviation")
Xtrain <- Xtrain / rep(sdtrain, each = ntrain)
}
## Fit the model:
fit <- fitFunc(Xtrain, Y[-seg,, drop=FALSE], ncomp,
Y.add = Y.add[-seg,, drop=FALSE], stripped = TRUE,
weights = weights[-seg], ...)
## Set up test data:
Xtest <- X
if (scale) Xtest <- Xtest / rep(sdtrain, each = nobj)
Xtest <- Xtest - rep(fit$Xmeans, each = nobj)
## Predict test data:
pred <- array(0, dim = c(nobj, nresp, ncomp))
Ymeansrep <- rep(fit$Ymeans, each = nobj)
for (a in 1:ncomp)
pred[,,a] <- Xtest %*% fit$coefficients[,,a] + Ymeansrep
return(list(adj = length(seg) * colSums((pred - c(Y))^2),
cvPred = pred[seg,,, drop=FALSE],
gammas = if (method == "cppls") fit$gammas else NULL,
cvCoef = if (jackknife) fit$coefficients else NULL
))
}
## Perform the cross-validation, optionally in parallel:
if (trace) cat("Segment: ")
results <- lapplyFunc(pls.options()$parallel, seq_along(segments), mvrCvSeg)
if (trace) cat("\n")
## Variables to save CV results in:
adj <- matrix(0, nrow = nresp, ncol = ncomp)
cvPred <- array(0, dim = c(nobj, nresp, ncomp))
if (jackknife)
cvCoef <- array(dim = c(npred, nresp, ncomp, length(segments)))
if (method == "cppls") gammas <- list()
## Collect the results:
for (n.seg in seq_along(segments)) {
res <- results[[n.seg]]
adj <- adj + res$adj
cvPred[segments[[n.seg]],,] <- res$cvPred
if (jackknife) cvCoef[,,,n.seg] <- res$cvCoef
if (method == "cppls") gammas[[n.seg]] <- res$gammas
}
## Calculate validation statistics:
PRESS0 <- apply(Y, 2, var) * nobj^2 / (nobj - 1) # FIXME: Only correct for loocv!
PRESS <- colSums((cvPred - c(Y))^2)
## Add dimnames:
objnames <- dnX[[1]]
if (is.null(objnames)) objnames <- dnY[[1]]
respnames <- dnY[[2]]
nCompnames <- paste(1:ncomp, "comps")
names(PRESS0) <- respnames
dimnames(adj) <- dimnames(PRESS) <-
list(respnames, nCompnames)
dimnames(cvPred) <- list(objnames, respnames, nCompnames)
if (jackknife)
dimnames(cvCoef) <- list(dnX[[2]], respnames, nCompnames,
paste("Seg", seq_along(segments)))
list(method = "CV", pred = cvPred, coefficients = if (jackknife) cvCoef,
gammas = if (method == "cppls") gammas,
PRESS0 = PRESS0, PRESS = PRESS, adj = adj / nobj^2,
segments = segments, ncomp = ncomp)
}
## Genereral cross-validation function.
#' @title Cross-validation of PLSR and PCR models
#'
#' @description A \dQuote{stand alone} cross-validation function for \code{mvr} objects.
#'
#' @details This function performs cross-validation on a model fit by \code{mvr}. It
#' can handle models such as \code{plsr(y ~ msc(X), \dots{})} or other models
#' where the predictor variables need to be recalculated for each segment.
#' When recalculation is not needed, the result of
#' \code{crossval(mvr(\dots{}))} is identical to \code{mvr(\dots{}, validation
#' = "CV")}, but slower.
#'
#' Note that to use \code{crossval}, the data \emph{must} be specified with a
#' \code{data} argument when fitting \code{object}.
#'
#' If \code{segments} is a list, the arguments \code{segment.type} and
#' \code{length.seg} are ignored. The elements of the list should be integer
#' vectors specifying the indices of the segments. See
#' \code{\link{cvsegments}} for details.
#'
#' Otherwise, segments of type \code{segment.type} are generated. How many
#' segments to generate is selected by specifying the number of segments in
#' \code{segments}, or giving the segment length in \code{length.seg}. If both
#' are specified, \code{segments} is ignored.
#'
#' If \code{jackknife} is \code{TRUE}, jackknifed regression coefficients are
#' returned, which can be used for for variance estimation
#' (\code{\link{var.jack}}) or hypothesis testing (\code{\link{jack.test}}).
#'
#' When tracing is turned on, the segment number is printed for each segment.
#'
#' By default, the cross-validation will be performed serially. However, it
#' can be done in parallel using functionality in the \code{\link{parallel}}
#' package by setting the option \code{parallel} in \code{\link{pls.options}}.
#' See \code{\link{pls.options}} for the different ways to specify the
#' parallelism. See also Examples below.
#'
#' @param object an \code{mvr} object; the regression to cross-validate.
#' @param segments the number of segments to use, or a list with segments (see
#' below).
#' @param segment.type the type of segments to use. Ignored if \code{segments}
#' is a list.
#' @param length.seg Positive integer. The length of the segments to use. If
#' specified, it overrides \code{segments} unless \code{segments} is a list.
#' @param jackknife logical. Whether jackknifing of regression coefficients
#' should be performed.
#' @param trace if \code{TRUE}, tracing is turned on. If numeric, it denotes a
#' time limit (in seconds). If the estimated total time of the
#' cross-validation exceeds this limit, tracing is turned on.
#' @param \dots additional arguments, sent to the underlying fit function.
#' @return The supplied \code{object} is returned, with an additional component
#' \code{validation}, which is a list with components \item{method}{euqals
#' \code{"CV"} for cross-validation.} \item{pred}{an array with the
#' cross-validated predictions.} \item{coefficients}{(only if \code{jackknife}
#' is \code{TRUE}) an array with the jackknifed regression coefficients. The
#' dimensions correspond to the predictors, responses, number of components,
#' and segments, respectively.} \item{PRESS0}{a vector of PRESS values (one for
#' each response variable) for a model with zero components, i.e., only the
#' intercept.} \item{PRESS}{a matrix of PRESS values for models with 1,
#' \ldots{}, \code{ncomp} components. Each row corresponds to one response
#' variable.} \item{adj}{a matrix of adjustment values for calculating bias
#' corrected MSEP. \code{MSEP} uses this.} \item{segments}{the list of
#' segments used in the cross-validation.} \item{ncomp}{the number of
#' components.} \item{gammas}{if method \code{cppls} is used, gamma values for
#' the powers of each CV segment are returned.}
#' @note The \code{PRESS0} is always cross-validated using leave-one-out
#' cross-validation. This usually makes little difference in practice, but
#' should be fixed for correctness.
#'
#' The current implementation of the jackknife stores all jackknife-replicates
#' of the regression coefficients, which can be very costly for large matrices.
#' This might change in a future version.
#' @author Ron Wehrens and Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}} \code{\link{mvrCv}} \code{\link{cvsegments}}
#' \code{\link{MSEP}} \code{\link{var.jack}} \code{\link{jack.test}}
#' @references Mevik, B.-H., Cederkvist, H. R. (2004) Mean Squared Error of
#' Prediction (MSEP) Estimates for Principal Component Regression (PCR) and
#' Partial Least Squares Regression (PLSR). \emph{Journal of Chemometrics},
#' \bold{18}(9), 422--429.
#' @keywords regression multivariate
#' @examples
#'
#' data(yarn)
#' yarn.pcr <- pcr(density ~ msc(NIR), 6, data = yarn)
#' yarn.cv <- crossval(yarn.pcr, segments = 10)
#' \dontrun{plot(MSEP(yarn.cv))}
#'
#' \dontrun{
#' ## Parallelised cross-validation, using transient cluster:
#' pls.options(parallel = 4) # use mclapply (not available on Windows)
#' pls.options(parallel = quote(parallel::makeCluster(4, type = "PSOCK"))) # parLapply
#' ## A new cluster is created and stopped for each cross-validation:
#' yarn.cv <- crossval(yarn.pcr)
#' yarn.loocv <- crossval(yarn.pcr, length.seg = 1)
#'
#' ## Parallelised cross-validation, using persistent cluster:
#' library(parallel)
#' ## This creates the cluster:
#' pls.options(parallel = makeCluster(4, type = "FORK")) # not available on Windows
#' pls.options(parallel = makeCluster(4, type = "PSOCK"))
#' ## The cluster can be used several times:
#' yarn.cv <- crossval(yarn.pcr)
#' yarn.loocv <- crossval(yarn.pcr, length.seg = 1)
#' ## The cluster should be stopped manually afterwards:
#' stopCluster(pls.options()$parallel)
#'
#' ## Parallelised cross-validation, using persistent MPI cluster:
#' ## This requires the packages snow and Rmpi to be installed
#' library(parallel)
#' ## This creates the cluster:
#' pls.options(parallel = makeCluster(4, type = "MPI"))
#' ## The cluster can be used several times:
#' yarn.cv <- crossval(yarn.pcr)
#' yarn.loocv <- crossval(yarn.pcr, length.seg = 1)
#' ## The cluster should be stopped manually afterwards:
#' stopCluster(pls.options()$parallel)
#' ## It is good practice to call mpi.exit() or mpi.quit() afterwards:
#' mpi.exit()
#' }
#'
#' @export
crossval <- function(object, segments = 10,
segment.type = c("random", "consecutive", "interleaved"),
length.seg, jackknife = FALSE, trace = 15, ...)
{
if (!inherits(object, "mvr")) stop("`object' not an mvr object.")
## Get data frame
fitCall <- object$call
data <- eval(fitCall$data, parent.frame())
if (is.null(data)) stop("`object' must be fit with a `data' argument.")
## Optionally get weights
if (cppls <- (object$method == "cppls")) {
weights <- eval(fitCall$weights, parent.frame())
}
else weights <- NULL
if (!is.null(fitCall$subset)) {
## Handle "subset" argument
data <- data[eval(fitCall$subset, parent.frame()),]
object$call$subset <- NULL
}
## Handle NAs (according to na.action)
if (is.na(match("na.action", names(fitCall)))) {
## Cannot use is.null(fitCall$na.action) here, since the meaning of
## `na.action = NULL' is not the same as that of a missing na.action
## argument.
mf <- model.frame(formula(object), data = data)
} else {
mf <- model.frame(formula(object), data = data,
na.action = fitCall$na.action)
}
if (!is.null(NAs <- attr(mf, "na.action"))) {
## Some observations were dropped due to NAs. Skip the same in data:
data <- data[-NAs,]
}
## Get response:
Y <- as.matrix(model.response(mf))
nresp <- dim(Y)[2]
npred <- length(object$Xmeans)
## Calculate effective number of observations
nobj <- nrow(data)
## Set up segments
if (is.list(segments)) {
if (is.null(attr(segments, "type")))
attr(segments, "type") <- "user supplied"
} else {
if (missing(length.seg)) {
segments <- cvsegments(nobj, k = segments, type = segment.type)
} else {
segments <- cvsegments(nobj, length.seg = length.seg,
type = segment.type)
}
}
jackknife <- isTRUE(jackknife)
ncomp <- object$ncomp
if (ncomp > nobj - max(sapply(segments, length)) - 1)
stop("`ncomp' too large for cross-validation.",
"\nPlease refit with `ncomp' less than ",
nobj - max(sapply(segments, length)))
## Optionally turn on tracing:
if (is.numeric(trace)) {
trace <- object$fit.time * length(segments) > trace
}
## Helper function to perform the cross-validatoin for one segment.
## Defined inside crossval to be able to access local variables:
crossvalSeg <- function(n.seg) {
if (trace) cat(n.seg, "")
## Run cv, using update and predict
seg <- segments[[n.seg]]
fit <- update(object, data = data[-seg,], weights = weights[-seg])
pred <- predict(fit, newdata = data)
return(list(adj = length(seg) * colSums((pred - c(Y))^2),
cvPred = pred[seg,,, drop=FALSE],
gammas = if (cppls) fit$gammas else NULL,
cvCoef = if (jackknife) fit$coefficients else NULL
))
}
## Perform the cross-validation, optionally in parallel:
if (trace) cat("Segment: ")
results <- lapplyFunc(pls.options()$parallel,
seq_along(segments), crossvalSeg,
quote(parallel::clusterCall(parSpec, library, "pls",
character.only = TRUE,
warn.conflicts = FALSE)))
if (trace) cat("\n")
## Variables to save CV results in:
cvPred <- array(dim = c(nobj, nresp, ncomp))
adj <- matrix(0, nrow = nresp, ncol = ncomp)
if (jackknife)
cvCoef <- array(dim = c(npred, nresp, ncomp, length(segments)))
if (cppls) gammas <- list()
## Collect the results:
for (n.seg in seq_along(segments)) {
res <- results[[n.seg]]
adj <- adj + res$adj
cvPred[segments[[n.seg]],,] <- res$cvPred
if (jackknife) cvCoef[,,,n.seg] <- res$cvCoef
if (cppls) gammas[[n.seg]] <- res$gammas
}
## Calculate validation statistics:
PRESS0 <- apply(Y, 2, var) * nobj^2 / (nobj - 1) # FIXME: Only correct for loocv!
PRESS <- colSums((cvPred - c(Y))^2)
## Add dimnames:
objnames <- rownames(data)
if (is.null(objnames)) objnames <- rownames(Y)
dimnames(cvPred) <- c(list(objnames), dimnames(fitted(object))[-1])
if (is.null(names(PRESS0))) names(PRESS0) <- dimnames(object$Yloadings)[[1]]
dimnames(PRESS) <- dimnames(adj)
if (jackknife)
dimnames(cvCoef) <- c(dimnames(coef(object)),
list(paste("Seg", seq_along(segments))))
## Return the original object, with a component `validation' added
object$validation <- list(method = "CV", pred = cvPred,
coefficients = if (jackknife) cvCoef,
gammas = if (cppls) gammas,
PRESS0 = PRESS0, PRESS = PRESS,
adj = adj / nobj^2,
segments = segments, ncomp = ncomp)
return(object)
}
## Internal function to apply FUN over X, optionally in parallel:
lapplyFunc <- function(parSpec, X, FUN, nonForkInit) {
if (is.null(parSpec) || (is.numeric(parSpec) && parSpec == 1)) {
## Serially
results <- lapply(X, FUN)
} else {
## Parallel
stop_cluster <- FALSE # Whether to kill the workers afterwards
if (is.numeric(parSpec) && parSpec > 1) {
## Number => number of workers with mclapply
results <- parallel::mclapply(X, FUN, mc.cores = parSpec)
} else {
if (is.call(parSpec)) {
## Unevaluated call => evaluate it to create the cluster:
parSpec <- eval(parSpec)
stop_cluster <- TRUE
}
if (inherits(parSpec, "cluster")) {
## Run library(pls) on cluster if type != FORK
if (!inherits(parSpec[[1]], "forknode")
&& !missing(nonForkInit)) {
eval(nonForkInit)
}
results <- parallel::parLapply(parSpec, X, FUN)
if (stop_cluster) {
parallel::stopCluster(parSpec)
}
} else {
stop("Unknown parallelity specification: '", parSpec, "'")
}
}
}
return(results)
}
|