File: jackknife.R

package info (click to toggle)
r-cran-pls 2.8-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,056 kB
  • sloc: sh: 13; makefile: 2
file content (228 lines) | stat: -rw-r--r-- 10,743 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
### jackknife.R: Jackknife variance estimation of regression coefficients.

## var.jack: Calculate jackknife variance (or covariance) estimates


#' @title Jackknife Variance Estimates of Regression Coefficients
#'
#' @description Calculates jackknife variance or covariance estimates of regression
#' coefficients.
#'
#' The original (Tukey) jackknife variance estimator is defined as \eqn{(g-1)/g
#' \sum_{i=1}^g(\tilde\beta_{-i} - \bar\beta)^2}, where \eqn{g} is the number
#' of segments, \eqn{\tilde\beta_{-i}} is the estimated coefficient when
#' segment \eqn{i} is left out (called the jackknife replicates), and
#' \eqn{\bar\beta} is the mean of the \eqn{\tilde\beta_{-i}}.  The most common
#' case is delete-one jackknife, with \eqn{g = n}, the number of observations.
#'
#' This is the definition \code{var.jack} uses by default.
#'
#' However, Martens and Martens (2000) defined the estimator as \eqn{(g-1)/g
#' \sum_{i=1}^g(\tilde\beta_{-i} - \hat\beta)^2}, where \eqn{\hat\beta} is the
#' coefficient estimate using the entire data set.  I.e., they use the original
#' fitted coefficients instead of the mean of the jackknife replicates.  Most
#' (all?) other jackknife implementations for PLSR use this estimator.
#' \code{var.jack} can be made to use this definition with \code{use.mean =
#' FALSE}.  In practice, the difference should be small if the number of
#' observations is sufficiently large.  Note, however, that all theoretical
#' results about the jackknife refer to the `proper' definition.  (Also note
#' that this option might disappear in a future version.)
#'
#' @param object an \code{mvr} object.  A cross-validated model fitted with
#' \code{jackknife = TRUE}.
#' @param ncomp the number of components to use for estimating the
#' (co)variances
#' @param covariance logical.  If \code{TRUE}, covariances are calculated;
#' otherwise only variances.  The default is \code{FALSE}.
#' @param use.mean logical.  If \code{TRUE} (default), the mean coefficients
#' are used when estimating the (co)variances; otherwise the coefficients from
#' a model fitted to the entire data set.  See Details.
#' @return If \code{covariance} is \code{FALSE}, an \eqn{p\times q \times c}
#' array of variance estimates, where \eqn{p} is the number of predictors,
#' \eqn{q} is the number of responses, and \eqn{c} is the number of components.
#'
#' If \code{covariance} id \code{TRUE}, an \eqn{pq\times pq \times c} array of
#' variance-covariance estimates.
#' @section Warning: Note that the Tukey jackknife variance estimator is not
#' unbiased for the variance of regression coefficients (Hinkley 1977).  The
#' bias depends on the \eqn{X} matrix.  For ordinary least squares regression
#' (OLSR), the bias can be calculated, and depends on the number of
#' observations \eqn{n} and the number of parameters \eqn{k} in the mode.  For
#' the common case of an orthogonal design matrix with \eqn{\pm 1}{?1} levels,
#' the delete-one jackknife estimate equals \eqn{(n-1)/(n-k)} times the
#' classical variance estimate for the regression coefficients in OLSR.
#' Similar expressions hold for delete-d estimates.  Modifications have been
#' proposed to reduce or eliminate the bias for the OLSR case, however, they
#' depend on the number of parameters used in the model.  See e.g. Hinkley
#' (1977) or Wu (1986).
#'
#' Thus, the results of \code{var.jack} should be used with caution.
#' @author Bjørn-Helge Mevik
#' @seealso \code{\link{mvrCv}}, \code{\link{jack.test}}
#' @references Tukey J.W. (1958) Bias and Confidence in Not-quite Large
#' Samples. (Abstract of Preliminary Report).  \emph{Annals of Mathematical
#' Statistics}, \bold{29}(2), 614.
#'
#' Martens H. and Martens M. (2000) Modified Jack-knife Estimation of Parameter
#' Uncertainty in Bilinear Modelling by Partial Least Squares Regression
#' (PLSR).  \emph{Food Quality and Preference}, \bold{11}, 5--16.
#'
#' Hinkley D.V. (1977), Jackknifing in Unbalanced Situations.
#' \emph{Technometrics}, \bold{19}(3), 285--292.
#'
#' Wu C.F.J. (1986) Jackknife, Bootstrap and Other Resampling Methods in
#' Regression Analysis.  \emph{Te Annals of Statistics}, \bold{14}(4),
#' 1261--1295.
#' @keywords univar
#' @examples
#'
#' data(oliveoil)
#' mod <- pcr(sensory ~ chemical, data = oliveoil, validation = "LOO",
#'            jackknife = TRUE)
#' var.jack(mod, ncomp = 2)
#'
#' @export
var.jack <- function(object, ncomp = object$ncomp, covariance = FALSE,
                     use.mean = TRUE)
{
    if (!inherits(object, "mvr"))
        stop("Not an 'mvr' object")
    if (is.null(object$validation) || is.null(object$validation$coefficients))
        stop("'object' was not fit with jackknifing enabled")

    seglengths <- sapply(object$validation$segments, length)
    if (any(diff(seglengths) != 0))
        warning("Unequal segment lengths.  Estimator currently ignores that")
    nseg <- length(seglengths)
    if (isTRUE(use.mean)) {
        ## The `proper' version of the jackknife
        cent <-
            rowMeans(object$validation$coefficients[,,ncomp,, drop=FALSE],
                     dims = 3)
    } else {
        ## The `sloppy' version, used by e.g. Westad FIXME: ref
        cent <- object$coefficients[,,ncomp, drop=FALSE]
    }
    dnB <- dimnames(object$validation$coefficients[,,ncomp,, drop=FALSE])
    Bdiff <- object$validation$coefficients[,,ncomp,, drop=FALSE] - c(cent)
    if (isTRUE(covariance)) {
        BdiffSq <- apply(Bdiff, 3:4, function(x) tcrossprod(c(x)))
        dims <- dim(Bdiff)
        dims[1:2] <- dims[1] * dims[2]
        dim(BdiffSq) <- dims
        est <- (nseg - 1) * rowMeans(BdiffSq, dims = 3)
        if (length(dnB[[2]]) == 1) {
            nxy <- dnB[[1]]
        } else if (length(dnB[[1]]) == 1) {
            nxy <- dnB[[2]]
        } else {
            nxy <- c(t(outer(dnB[[2]], dnB[[1]], paste, sep = ":")))
        }
        dimnames(est) <- list(nxy, nxy, dnB[[3]])
    } else {
        BdiffSq <- apply(Bdiff, 3:4, function(x) c(x)^2)
        est <- (nseg - 1) * rowMeans(BdiffSq, dims = 2)
        dim(est) <- dim(cent)
        dimnames(est) <- dnB[1:3]
    }
    return(est)
}

## jack.test: Use jackknife variance estimates to test B = 0


#' @name jack.test
#' @title Jackknife approximate t tests of regression coefficients
#'
#' @description Performes approximate t tests of regression coefficients based on jackknife
#' variance estimates.
#'
#' @details \code{jack.test} uses the variance estimates from \code{var.jack} to perform
#' \eqn{t} tests of the regression coefficients.  The resulting object has a
#' print method, \code{print.jacktest}, which uses \code{\link{printCoefmat}}
#' for the actual printing.
#'
#' @aliases jack.test print.jacktest
#' @param object an \code{mvr} object.  A cross-validated model fitted with
#' \code{jackknife = TRUE}.
#' @param ncomp the number of components to use for estimating the variances
#' @param use.mean logical.  If \code{TRUE} (default), the mean coefficients
#' are used when estimating the (co)variances; otherwise the coefficients from
#' a model fitted to the entire data set.  See \code{\link{var.jack}} for
#' details.
#' @param x an \code{jacktest} object, the result of \code{jack.test}.
#' @param P.values logical.  Whether to print \eqn{p} values (default).
#' @param \dots Further arguments sent to the underlying print function
#' \code{\link{printCoefmat}}.
#' @return \code{jack.test} returns an object of class \code{"jacktest"}, with
#' components \item{coefficients }{The estimated regression coefficients}
#' \item{sd}{The square root of the jackknife variance estimates}
#' \item{tvalues}{The \eqn{t} statistics} \item{df}{The `degrees of freedom'
#' used for calculating \eqn{p} values} \item{pvalues}{The calculated \eqn{p}
#' values}
#'
#' \code{print.jacktest} returns the \code{"jacktest"} object (invisibly).
#' @section Warning: The jackknife variance estimates are known to be biased
#' (see \code{\link{var.jack}}).  Also, the distribution of the regression
#' coefficient estimates and the jackknife variance estimates are unknown (at
#' least in PLSR/PCR).  Consequently, the distribution (and in particular, the
#' degrees of freedom) of the resulting \eqn{t} statistics is unknown.  The
#' present code simply assumes a \eqn{t} distribution with \eqn{m - 1} degrees
#' of freedom, where \eqn{m} is the number of cross-validation segments.
#'
#' Therefore, the resulting \eqn{p} values should not be used uncritically, and
#' should perhaps be regarded as mere indicator of (non-)significance.
#'
#' Finally, also keep in mind that as the number of predictor variables
#' increase, the problem of multiple tests increases correspondingly.
#' @author Bjørn-Helge Mevik
#' @seealso \code{\link{var.jack}}, \code{\link{mvrCv}}
#' @references Martens H. and Martens M. (2000) Modified Jack-knife Estimation
#' of Parameter Uncertainty in Bilinear Modelling by Partial Least Squares
#' Regression (PLSR).  \emph{Food Quality and Preference}, \bold{11}, 5--16.
#' @keywords htest
#' @examples
#'
#' data(oliveoil)
#' mod <- pcr(sensory ~ chemical, data = oliveoil, validation = "LOO", jackknife = TRUE)
#' jack.test(mod, ncomp = 2)
#'
#' @export
jack.test <- function(object, ncomp = object$ncomp, use.mean = TRUE) {
    nresp <- dim(object$coefficients)[2]
    sdjack <- sqrt(var.jack(object, ncomp = ncomp, covariance = FALSE,
                           use.mean = use.mean))
    B <- coef(object, ncomp = ncomp)
    ## FIXME: This is an approximation at best:
    df <- length(object$validation$segments) - 1
    tvals <- B / sdjack
    pvals <- 2 * pt(abs(tvals), df = df, lower.tail = FALSE)
    structure(list(coefficients = B, sd = sdjack,
                   tvalues = tvals, df = df, pvalues = pvals),
              class = "jacktest")
}

## print.jacktest: Print method for jacktest objects
#' @rdname jack.test
#' @export
print.jacktest <- function(x, P.values = TRUE, ...) {
    nresp <- dim(x$coefficients)[2]
    respnames <- dimnames(x$coefficients)[[2]]
    nmod <- dim(x$coefficients)[3]
    modnames <- dimnames(x$coefficients)[[3]]
    for (resp in 1:nresp) {
        for (mod in 1:nmod) {
            if (resp > 1 || mod > 1) cat("\n")
            cat("Response ", respnames[resp], " (", modnames[mod], "):\n",
                sep = "")
            coefmat <- cbind(Estimate = x$coefficients[,resp,mod],
                             "Std. Error" = x$sd[,resp,mod],
                             Df = x$df,
                             "t value" = x$tvalues[,resp,mod],
                             "Pr(>|t|)" = x$pvalues[,resp,mod])
            printCoefmat(coefmat, P.values = isTRUE(P.values),
                         cs.ind = 1:2, tst.ind = 4, ...)
        }
    }
    invisible(x)
}