1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
### mvrVal.R: Functions for calculating validation statistics, such
### as MSEP, RMSEP and R2, for mvr objects.
## Calculate the validation statistics needed for (R)MSEP and R^2.
## Note that it accepts any values for `estimate', but only calculates
## statistics for "train", "test" and "CV".
#' @name mvrVal
#' @title MSEP, RMSEP and R2 of PLSR and PCR models
#'
#' @description Functions to estimate the mean squared error of prediction (MSEP), root mean
#' squared error of prediction (RMSEP) and \eqn{R^2} (A.K.A. coefficient of
#' multiple determination) for fitted PCR and PLSR models. Test-set,
#' cross-validation and calibration-set estimates are implemented.
#'
#' @details \code{RMSEP} simply calls \code{MSEP} and takes the square root of the
#' estimates. It therefore accepts the same arguments as \code{MSEP}.
#'
#' Several estimators can be used. \code{"train"} is the training or
#' calibration data estimate, also called (R)MSEC. For \code{R2}, this is the
#' unadjusted \eqn{R^2}. It is overoptimistic and should not be used for
#' assessing models. \code{"CV"} is the cross-validation estimate, and
#' \code{"adjCV"} (for \code{RMSEP} and \code{MSEP}) is the bias-corrected
#' cross-validation estimate. They can only be calculated if the model has
#' been cross-validated. Finally, \code{"test"} is the test set estimate,
#' using \code{newdata} as test set.
#'
#' Which estimators to use is decided as follows (see below for
#' \code{mvrValstats}). If \code{estimate} is not specified, the test set
#' estimate is returned if \code{newdata} is specified, otherwise the CV and
#' adjusted CV (for \code{RMSEP} and \code{MSEP}) estimates if the model has
#' been cross-validated, otherwise the training data estimate. If
#' \code{estimate} is \code{"all"}, all possible estimates are calculated.
#' Otherwise, the specified estimates are calculated.
#'
#' Several model sizes can also be specified. If \code{comps} is missing (or
#' is \code{NULL}), \code{length(ncomp)} models are used, with \code{ncomp[1]}
#' components, \ldots{}, \code{ncomp[length(ncomp)]} components. Otherwise, a
#' single model with the components \code{comps[1]}, \ldots{},
#' \code{comps[length(comps)]} is used. If \code{intercept} is \code{TRUE}, a
#' model with zero components is also used (in addition to the above).
#'
#' The \eqn{R^2} values returned by \code{"R2"} are calculated as \eqn{1 -
#' SSE/SST}, where \eqn{SST} is the (corrected) total sum of squares of the
#' response, and \eqn{SSE} is the sum of squared errors for either the fitted
#' values (i.e., the residual sum of squares), test set predictions or
#' cross-validated predictions (i.e., the \eqn{PRESS}). For \code{estimate =
#' "train"}, this is equivalent to the squared correlation between the fitted
#' values and the response. For \code{estimate = "train"}, the estimate is
#' often called the prediction \eqn{R^2}.
#'
#' \code{mvrValstats} is a utility function that calculates the statistics
#' needed by \code{MSEP} and \code{R2}. It is not intended to be used
#' interactively. It accepts the same arguments as \code{MSEP} and \code{R2}.
#' However, the \code{estimate} argument must be specified explicitly: no
#' partial matching and no automatic choice is made. The function simply
#' calculates the types of estimates it knows, and leaves the other untouched.
#'
#' @aliases MSEP MSEP.mvr RMSEP RMSEP.mvr R2 R2.mvr mvrValstats
#' @param object an \code{mvr} object
#' @param estimate a character vector. Which estimators to use. Should be a
#' subset of \code{c("all", "train", "CV", "adjCV", "test")}. \code{"adjCV"}
#' is only available for (R)MSEP. See below for how the estimators are chosen.
#' @param newdata a data frame with test set data.
#' @param ncomp,comps a vector of positive integers. The components or number
#' of components to use. See below.
#' @param intercept logical. Whether estimates for a model with zero
#' components should be returned as well.
#' @param se logical. Whether estimated standard errors of the estimates
#' should be calculated. Not implemented yet.
#' @param \dots further arguments sent to underlying functions or (for
#' \code{RMSEP}) to \code{MSEP}
#' @section Value: \code{mvrValstats} returns a list with components \describe{
#' \item{SSE}{three-dimensional array of SSE values. The first dimension is
#' the different estimators, the second is the response variables and the third
#' is the models.} \item{SST}{matrix of SST values. The first dimension is the
#' different estimators and the second is the response variables.}
#' \item{nobj}{a numeric vector giving the number of objects used for each
#' estimator.} \item{comps}{the components specified, with \code{0} prepended
#' if \code{intercept} is \code{TRUE}.} \item{cumulative}{\code{TRUE} if
#' \code{comps} was \code{NULL} or not specified.} }
#'
#' The other functions return an object of class \code{"mvrVal"}, with
#' components \describe{ \item{val}{three-dimensional array of estimates. The
#' first dimension is the different estimators, the second is the response
#' variables and the third is the models.} \item{type}{\code{"MSEP"},
#' \code{"RMSEP"} or \code{"R2"}.} \item{comps}{the components specified, with
#' \code{0} prepended if \code{intercept} is \code{TRUE}.}
#' \item{cumulative}{\code{TRUE} if \code{comps} was \code{NULL} or not
#' specified.} \item{call}{the function call} }
#' @author Ron Wehrens and Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}}, \code{\link{crossval}}, \code{\link{mvrCv}},
#' \code{\link{validationplot}}, \code{\link{plot.mvrVal}}
#' @references Mevik, B.-H., Cederkvist, H. R. (2004) Mean Squared Error of
#' Prediction (MSEP) Estimates for Principal Component Regression (PCR) and
#' Partial Least Squares Regression (PLSR). \emph{Journal of Chemometrics},
#' \bold{18}(9), 422--429.
#' @keywords regression multivariate
#' @examples
#'
#' data(oliveoil)
#' mod <- plsr(sensory ~ chemical, ncomp = 4, data = oliveoil, validation = "LOO")
#' RMSEP(mod)
#' \dontrun{plot(R2(mod))}
#'
#' @export
mvrValstats <- function(object, estimate,
newdata, ncomp = 1:object$ncomp, comps,
intercept = cumulative, se = FALSE, ...)
{
## Makes the code slightly simpler:
cumulative <- missing(comps) || is.null(comps)
if (any(estimate == "CV")) {
## Check that cross-validation is possible:
if (!cumulative)
stop("Cross-validation is not supported when `comps' is specified")
if (is.null(object$validation))
stop("`object' has no `validation' component")
}
## The calculated stuff:
nestimates <- length(estimate)
nresp <- dim(fitted(object))[2]
respnames <- dimnames(fitted(object))[[2]]
SSE <- array(dim = c(nestimates, nresp,
if(cumulative) 1 + length(ncomp) else 2),
dimnames = list(estimate = estimate,
response = respnames,
model = if (cumulative) {
c("(Intercept)", paste(ncomp, "comps"))
} else {
c("(Intercept)", paste("(Intercept), Comp",
paste(comps, collapse = ", ")))
}
))
SST <- array(dim = c(nestimates, nresp),
dimnames = list(estimate = estimate, response = respnames))
nobj <- numeric(nestimates)
names(nobj) <- estimate
## Calculate the statistics:
for (i in seq(along = estimate)) {
switch(estimate[i],
train = {
resp <- as.matrix(model.response(model.frame(object)))
nobj[i] <- nrow(resp)
if (inherits(object$na.action, "exclude")) {
resp <- napredict(object$na.action, resp) # inserts NAs
}
res <- if (cumulative)
residuals(object, ...)[,,ncomp, drop=FALSE]
else
resp - predict(object, comps = comps, ...)
SST[i,] <- apply(resp, 2, var, na.rm = TRUE) *
(nobj[i] - 1)
SSE[i,,] <- cbind(SST[i,], colSums(res^2, na.rm = TRUE))
},
test = {
if (missing(newdata)) stop("Missing `newdata'.")
## Remove any observations with NAs:
newdata <- model.frame(formula(object), data = newdata)
resp <- as.matrix(model.response(newdata))
pred <- if (cumulative)
predict(object, ncomp = ncomp, newdata = newdata,...)
else
predict(object, comps = comps, newdata = newdata,...)
nobj[i] <- nrow(newdata)
SST[i,] <- apply(resp, 2, var) * (nobj[i] - 1)
SSE[i,,] <- cbind(colSums(sweep(resp, 2, object$Ymeans)^2),
colSums((pred - c(resp))^2))
},
CV = {
resp <- as.matrix(model.response(model.frame(object)))
nobj[i] <- nrow(resp)
SST[i,] <- apply(resp, 2, var) * (nobj[i] - 1)
SSE[i,,] <-
cbind(object$validation$PRESS0,
object$validation$PRESS[,ncomp, drop=FALSE])
}
)
}
if (cumulative) comps <- ncomp
## Either remove the intercept or add a "zeroth" component:
if (isTRUE(intercept))
comps <- c(0, comps)
else
SSE <- SSE[,,-1, drop=FALSE]
return(list(SSE = SSE, SST = SST, nobj = nobj, comps = comps,
cumulative = cumulative))
}
## R2: Return R^2
#' @rdname mvrVal
#' @export
R2 <- function(object, ...) UseMethod("R2")
#' @rdname mvrVal
#' @export
R2.mvr <- function(object, estimate, newdata, ncomp = 1:object$ncomp, comps,
intercept = cumulative, se = FALSE, ...)
{
## Makes the code slightly simpler: FIXME: maybe remove
cumulative <- missing(comps) || is.null(comps)
## Figure out which estimate(s) to calculate:
allEstimates <- c("all", "train", "CV", "test")
if (missing(estimate)) {
## Select the `best' available estimate
if (!missing(newdata)) {
estimate = "test"
} else {
if (!is.null(object$validation)) {
estimate = "CV"
} else {
estimate = "train"
}
}
} else {
estimate <- allEstimates[pmatch(estimate, allEstimates)]
if (any(is.na(estimate)))
stop("`estimate' should be a subset of ",
paste(allEstimates, collapse = ", "))
if (any(estimate == "all")) {
estimate <- allEstimates[-1] # Try all estimates (except "all")
if (missing(newdata))
estimate <- setdiff(estimate, "test")
if (is.null(object$validation) || !cumulative)
estimate <- setdiff(estimate, "CV")
}
}
## Get the needed validation statistics:
cl <- match.call(expand.dots = FALSE)
cl$estimate <- estimate # update estimate argument
cl[[1]] <- as.name("mvrValstats")
valstats <- eval(cl, parent.frame())
## Calculate the R^2s:
R2 <- 1 - valstats$SSE / c(valstats$SST)
return(structure(list(val = R2, type = "R2", comps = valstats$comps,
cumulative = valstats$cumulative, call = match.call()),
class = "mvrVal"))
}
## MSEP: Return MSEP
#' @rdname mvrVal
#' @export
MSEP <- function(object, ...) UseMethod("MSEP")
#' @rdname mvrVal
#' @export
MSEP.mvr <- function(object, estimate, newdata, ncomp = 1:object$ncomp, comps,
intercept = cumulative, se = FALSE, ...)
{
## Makes the code slightly simpler:
cumulative <- missing(comps) || is.null(comps)
## Figure out which estimate(s) to calculate:
allEstimates <- c("all", "train", "CV", "adjCV", "test")
if (missing(estimate)) {
## Select the `best' available estimate
if (!missing(newdata)) {
estimate = "test"
} else {
if (!is.null(object$validation)) {
estimate = c("CV", "adjCV")
} else {
estimate = "train"
}
}
} else {
estimate <- allEstimates[pmatch(estimate, allEstimates)]
if (any(is.na(estimate)))
stop("`estimate' should be a subset of ",
paste(allEstimates, collapse = ", "))
if (any(estimate == "all")) {
estimate <- allEstimates[-1] # Try all estimates (except "all")
if (missing(newdata))
estimate <- setdiff(estimate, "test")
if (is.null(object$validation) || !cumulative)
estimate <- setdiff(estimate, c("CV", "adjCV"))
}
}
## adjCV needs the statistics for CV and train, so we optionally
## have to add them:
if (adjCV <- any(estimate == "adjCV")) {
## Note: this removes any duplicate elements
calcestimates <- union(estimate, c("train", "CV"))
} else {
calcestimates <- estimate
}
## Get the needed validation statistics:
cl <- match.call(expand.dots = FALSE)
cl$estimate <- calcestimates # update estimate argument
cl[[1]] <- as.name("mvrValstats")
valstats <- eval(cl, parent.frame())
## Calculate the MSEPs:
MSEP <- valstats$SSE / valstats$nobj
if (adjCV) {
## Calculate the adjusted CV
MSEP["adjCV",,] <- MSEP["CV",,]
if (isTRUE(intercept)) {
MSEP["adjCV",,-1] <- MSEP["adjCV",,-1] + MSEP["train",,-1] -
object$validation$adj[,ncomp]
} else {
MSEP["adjCV",,] <- MSEP["adjCV",,] + MSEP["train",,] -
object$validation$adj[,ncomp]
}
## Remove any specially added estimates (this also adds back any
## duplicate elements):
MSEP <- MSEP[estimate,,, drop=FALSE]
}
return(structure(list(val = MSEP, type = "MSEP", comps = valstats$comps,
cumulative = valstats$cumulative, call = match.call()),
class = "mvrVal"))
}
# RMSEP: A wrapper around MSEP to calculate RMSEPs
#' @rdname mvrVal
#' @export
RMSEP <- function(object, ...) UseMethod("RMSEP")
#' @rdname mvrVal
#' @export
RMSEP.mvr <- function(object, ...) {
cl <- match.call()
cl[[1]] <- as.name("MSEP")
z <- eval(cl, parent.frame())
z$val <- sqrt(z$val)
z$type <- "RMSEP"
z$call[[1]] <- as.name("RMSEP")
z
}
|