File: plots.R

package info (click to toggle)
r-cran-pls 2.8-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,056 kB
  • sloc: sh: 13; makefile: 2
file content (1439 lines) | stat: -rw-r--r-- 58,154 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
### Plots for mvr objects.  Some of them also work for other
### objects, but that is not a priority.

###
### Plot method for mvr objects
###



#' @title Plot Method for MVR objects
#'
#' @description \code{plot.mvr} plots predictions, coefficients, scores, loadings, biplots,
#' correlation loadings or validation plots (RMSEP curves, etc.).
#'
#' @details The function is simply a wrapper for the underlying plot functions used to
#' make the selected plots.  See \code{\link{predplot.mvr}},
#' \code{\link{validationplot}}, \code{\link{coefplot}},
#' \code{\link{scoreplot}}, \code{\link{loadingplot}}, \code{\link{biplot.mvr}}
#' or \code{\link{corrplot}} for details.  Note that all arguments except
#' \code{x} and \code{plottype} must be named.
#'
#' @param x an object of class \code{mvr}.  The fitted model to plot.
#' @param plottype character.  What kind of plot to plot.
#' @param \dots further arguments, sent to the underlying plot functions.
#' @return \code{plot.mvr} returns whatever the underlying plot function
#' returns.
#' @author Ron Wehrens and Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}}, \code{\link{predplot.mvr}},
#' \code{\link{validationplot}}, \code{\link{coefplot}},
#' \code{\link{scoreplot}}, \code{\link{loadingplot}},
#' \code{\link{biplot.mvr}}, \code{\link{corrplot}}
#' @keywords regression multivariate hplot
#' @examples
#'
#' data(yarn)
#' nir.pcr <- pcr(density ~ NIR, ncomp = 9, data = yarn, validation = "CV")
#' \dontrun{
#' plot(nir.pcr, ncomp = 5) # Plot of cross-validated predictions
#' plot(nir.pcr, "scores") # Score plot
#' plot(nir.pcr, "loadings", comps = 1:3) # The three first loadings
#' plot(nir.pcr, "coef", ncomp = 5) # Coefficients
#' plot(nir.pcr, "val") # RMSEP curves
#' plot(nir.pcr, "val", val.type = "MSEP", estimate = "CV") # CV MSEP
#' }
#'
#' @export
plot.mvr <- function(x, plottype = c("prediction", "validation",
                                     "coefficients", "scores", "loadings", "biplot",
                                     "correlation"),
                     ...)
{
  plottype <- match.arg(plottype)
  plotFunc <- switch(plottype,
                     prediction = predplot.mvr,
                     validation = validationplot,
                     coefficients = coefplot,
                     scores = scoreplot,
                     loadings = loadingplot,
                     biplot = biplot.mvr,
                     correlation = corrplot)
  plotFunc(x, ...)
}


###
### Scoreplot
###



#' @name scoreplot
#' @title Plots of Scores, Loadings and Correlation Loadings
#'
#' @description  Functions to make scatter plots of scores or correlation loadings, and
#' scatter or line plots of loadings.
#'
#' @details \code{plot.scores} is simply a wrapper calling \code{scoreplot}, passing all
#' arguments.  Similarly for \code{plot.loadings}.
#'
#' \code{scoreplot} is generic, currently with a default method that works for
#' matrices and any object for which \code{\link{scores}} returns a matrix.
#' The default \code{scoreplot} method makes one or more scatter plots of the
#' scores, depending on how many components are selected.  If one or two
#' components are selected, and \code{identify} is \code{TRUE}, the function
#' \code{\link{identify}} is used to interactively identify points.
#'
#' Also \code{loadingplot} is generic, with a default method that works for
#' matrices and any object where \code{\link{loadings}} returns a matrix.  If
#' \code{scatter} is \code{TRUE}, the default method works exactly like the
#' default \code{scoreplot} method.  Otherwise, it makes a lineplot of the
#' selected loading vectors, and if \code{identify} is \code{TRUE}, uses
#' \code{\link{identify}} to interactively identify points.  Also, if
#' \code{legendpos} is given, a legend is drawn at the position indicated.
#'
#' \code{corrplot} works exactly like the default \code{scoreplot} method,
#' except that at least two components must be selected.  The
#' \dQuote{correlation loadings}, i.e. the correlations between each variable
#' and the selected components (see References), are plotted as pairwise
#' scatter plots, with concentric circles of radii given by \code{radii}.  Each
#' point corresponds to a variable.  The squared distance between the point and
#' origin equals the fraction of the variance of the variable explained by the
#' components in the panel.  The default \code{radii} corresponds to 50\% and
#' 100\% explained variance.  By default, only the correlation loadings of the
#' \eqn{X} variables are plotted, but if \code{ploty} is \code{TRUE}, also the
#' \eqn{Y} correlation loadings are plotted.
#'
#' \code{scoreplot}, \code{loadingplot} and \code{corrplot} can also be called
#' through the plot method for \code{mvr} objects, by specifying
#' \code{plottype} as \code{"scores"}, \code{"loadings"} or
#' \code{"correlation"}, respectively.  See \code{\link{plot.mvr}}.
#'
#' The argument \code{labels} can be a vector of labels or one of
#' \code{"names"} and \code{"numbers"}.
#'
#' If a scatter plot is produced (i.e., \code{scoreplot}, \code{corrplot}, or
#' \code{loadingplot} with \code{scatter = TRUE}), the labels are used instead
#' of plot symbols for the points plotted.  If \code{labels} is \code{"names"}
#' or \code{"numbers"}, the row names or row numbers of the matrix (scores,
#' loadings or correlation loadings) are used.
#'
#' If a line plot is produced (i.e., \code{loadingplot}), the labels are used
#' as \eqn{x} axis labels.  If \code{labels} is \code{"names"} or
#' \code{"numbers"}, the variable names are used as labels, the difference
#' being that with \code{"numbers"}, the variable names are converted to
#' numbers, if possible.  Variable names of the forms \samp{"number"} or
#' \samp{"number text"} (where the space is optional), are handled.
#'
#' The argument \code{pretty.xlabels} is only used when \code{labels} is
#' specified for a line plot.  If \code{TRUE} (default), the code tries to use
#' a \sQuote{pretty} selection of labels.  If \code{labels} is
#' \code{"numbers"}, it also uses the numerical values of the labels for
#' horisontal spacing.  If one has excluded parts of the spectral region, one
#' might therefore want to use \code{pretty.xlabels = FALSE}.
#'
#' @aliases scoreplot scoreplot.default plot.scores loadingplot
#' loadingplot.default plot.loadings corrplot
#' @param object an object.  The fitted model.
#' @param comps integer vector.  The components to plot.
#' @param scatter logical.  Whether the loadings should be plotted as a scatter
#' instead of as lines.
#' @param labels optional.  Alternative plot labels or \eqn{x} axis labels.
#' See Details.
#' @param plotx locical.  Whether to plot the \eqn{X} correlation loadings.
#' Defaults to \code{TRUE}.
#' @param ploty locical.  Whether to plot the \eqn{Y} correlation loadings.
#' Defaults to \code{FALSE}.
#' @param radii numeric vector, giving the radii of the circles drawn in
#' \code{corrplot}.  The default radii represent 50\% and 100\% explained
#' variance of the \eqn{X} variables by the chosen components.
#' @param identify logical.  Whether to use \code{identify} to interactively
#' identify points.  See below.
#' @param type character.  What type of plot to make.  Defaults to \code{"p"}
#' (points) for scatter plots and \code{"l"} (lines) for line plots.  See
#' \code{\link{plot}} for a complete list of types (not all types are
#' possible/meaningful for all plots).
#' @param lty vector of line types (recycled as neccessary).  Line types can be
#' specified as integers or character strings (see \code{\link{par}} for the
#' details).
#' @param lwd vector of positive numbers (recycled as neccessary), giving the
#' width of the lines.
#' @param pch plot character.  A character string or a vector of single
#' characters or integers (recycled as neccessary).  See \code{\link{points}}
#' for all alternatives.
#' @param cex numeric vector of character expansion sizes (recycled as
#' neccessary) for the plotted symbols.
#' @param col character or integer vector of colors for plotted lines and
#' symbols (recycled as neccessary).  See \code{\link{par}} for the details.
#' @param legendpos Legend position.  Optional.  Ignored if \code{scatter} is
#' \code{TRUE}.  If present, a legend is drawn at the given position.  The
#' position can be specified symbolically (e.g., \code{legendpos =
#' "topright"}).  This requires >= 2.1.0.  Alternatively, the position can be
#' specified explicitly (\code{legendpos = t(c(x,y))}) or interactively
#' (\code{legendpos = \link{locator}()}).
#' @param xlab,ylab titles for \eqn{x} and \eqn{y} axes.  Typically character
#' strings, but can be expressions or lists.  See \code{\link{title}} for
#' details.
#' @param pretty.xlabels logical.  If \code{TRUE}, \code{loadingplot} tries to
#' plot the \eqn{x} labels more nicely.  See Details.
#' @param xlim optional vector of length two, with the \eqn{x} limits of the
#' plot.
#' @param x a \code{scores} or \code{loadings} object.  The scores or loadings
#' to plot.
#' @param \dots further arguments sent to the underlying plot function(s).
#' @return The functions return whatever the underlying plot function (or
#' \code{identify}) returns.
#' @note \code{\link{legend}} has many options.  If you want greater control
#' over the appearance of the legend, omit the \code{legendpos} argument and
#' call \code{legend} manually.
#'
#' Graphical parametres (such as \code{pch} and \code{cex}) can also be used
#' with \code{scoreplot} and \code{corrplot}.  They are not listed in the
#' argument list simply because they are not handled specifically in the
#' function (unlike in \code{loadingplot}), but passed directly to the
#' underlying plot functions by \code{\dots{}}.
#'
#' Tip: If the labels specified with \code{labels} are too long, they get
#' clipped at the border of the plot region.  This can be avoided by supplying
#' the graphical parameter \code{xpd = TRUE} in the plot call.
#'
#' The handling of \code{labels} and \code{pretty.xlabels} in \code{coefplot}
#' is experimental.
#' @author Ron Wehrens and Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}}, \code{\link{plot.mvr}}, \code{\link{scores}},
#' \code{\link{loadings}}, \code{\link{identify}}, \code{\link{legend}}
#' @references Martens, H., Martens, M. (2000) Modified Jack-knife Estimation
#' of Parameter Uncertainty in Bilinear Modelling by Partial Least Squares
#' Regression (PLSR).  \emph{Food Quality and Preference}, \bold{11}(1--2),
#' 5--16.
#' @keywords regression multivariate hplot
#' @examples
#'
#' data(yarn)
#' mod <- plsr(density ~ NIR, ncomp = 10, data = yarn)
#' ## These three are equivalent:
#' \dontrun{
#' scoreplot(mod, comps = 1:5)
#' plot(scores(mod), comps = 1:5)
#' plot(mod, plottype = "scores", comps = 1:5)
#'
#' loadingplot(mod, comps = 1:5)
#' loadingplot(mod, comps = 1:5, legendpos = "topright") # With legend
#' loadingplot(mod, comps = 1:5, scatter = TRUE) # Plot as scatterplots
#'
#' corrplot(mod, comps = 1:2)
#' corrplot(mod, comps = 1:3)
#' }
#'
#' @export
scoreplot <- function(object, ...) UseMethod("scoreplot")

#' @rdname scoreplot
#' @export
scoreplot.default <- function(object, comps = 1:2, labels, identify = FALSE,
                              type = "p", xlab, ylab, ...)
{
  ## Check arguments
  nComps <- length(comps)
  if (nComps == 0) stop("At least one component must be selected.")
  if((inherits(object, "scores") && ncol(object) == 1 ) ||
     (inherits(object, "mvr") && length(object$Xvar) == 1)){ # Check for single component in model
    comps <- comps[1]
    nComps <- length(comps)
  }
  ## Get the scores
  if (is.matrix(object)) {
    ## Assume this is already a score matrix
    S <- object[,comps, drop = FALSE]
  } else {
    ## Try to get the scores
    S <- scores(object)[,comps, drop = FALSE]
    if (is.null(S))
      stop("`", deparse(substitute(object)), "' has no scores.")
  }
  if (!missing(labels)) {
    ## Set up point labels
    if (length(labels) == 1) {
      labels <- switch(match.arg(labels, c("names", "numbers")),
                       names = rownames(S),
                       numbers = 1:nrow(S)
      )
    }
    labels <- as.character(labels)
    type <- "n"
  }
  varlab <- compnames(object, comps, explvar = TRUE)
  if (nComps <= 2) {
    if (nComps == 1) {
      ## One component versus index
      if (missing(xlab)) xlab <- "observation"
      if (missing(ylab)) ylab <- varlab
    } else {
      ## Second component versus first
      if (missing(xlab)) xlab <- varlab[1]
      if (missing(ylab)) ylab <- varlab[2]
    }
    plot(S, xlab = xlab, ylab = ylab, type = type, ...)
    if (!missing(labels)) text(S, labels, ...)
    if (isTRUE(identify)) {
      if (!is.null(rownames(S))) {
        identify(S, labels = rownames(S))
      } else {
        identify(S)
      }
    }
  } else {
    ## Pairwise scatterplots of several components
    panel <- if (missing(labels))
      function(x, y, ...) points(x, y, type = type, ...) else
        function(x, y, ...) text(x, y, labels = labels, ...)
    pairs(S, labels = varlab, panel = panel, ...)
  }
}

## A plot method for scores:
#' @rdname scoreplot
#' @export
plot.scores <- function(x, ...) scoreplot(x, ...)


###
### Loadingplot
###

#' @rdname scoreplot
#' @export
loadingplot <- function(object, ...) UseMethod("loadingplot")

#' @rdname scoreplot
#' @export
loadingplot.default <- function(object, comps = 1:2, scatter = FALSE, labels,
                                identify = FALSE, type, lty, lwd = NULL, pch,
                                cex = NULL, col, legendpos, xlab, ylab,
                                pretty.xlabels = TRUE, xlim, ...)
{
  ## Check arguments
  nComps <- length(comps)
  if (nComps == 0) stop("At least one component must be selected.")
  if((inherits(object, "loadings") && ncol(object) == 1 ) ||
     (inherits(object, "mvr") && length(object$Xvar) == 1)){ # Check for single component in model
    comps <- comps[1]
    nComps <- length(comps)
  }
  if (!missing(type) &&
      (length(type) != 1 || is.na(nchar(type, "c")) || nchar(type, "c") != 1))
    stop("Invalid plot type.")
  ## Get the loadings
  if (is.matrix(object)) {
    ## Assume this is already a loading matrix
    L <- object[,comps, drop = FALSE]
  } else {
    ## Try to get the loadings:
    L <- loadings(object)[,comps, drop = FALSE]
    if (is.null(L))
      stop("`", deparse(substitute(object)), "' has no loadings.")
  }
  varlab <- compnames(object, comps, explvar = TRUE)
  if (isTRUE(scatter)) {
    ## Scatter plots
    if (missing(type)) type <- "p"
    if (!missing(labels)) {
      ## Set up point/tick mark labels
      if (length(labels) == 1) {
        labels <- switch(match.arg(labels, c("names", "numbers")),
                         names = {
                           if (is.null(rnames <- rownames(L))) {
                             stop("The loadings have no row names.")
                           } else {
                             rnames
                           }},
                         numbers = 1:nrow(L)
        )
      }
      labels <- as.character(labels)
      type <- "n"
    }
    if (missing(lty)) lty <- NULL
    if (missing(pch)) pch <- NULL
    if (missing(col)) col <- par("col") # `NULL' means `no colour'
    if (nComps <= 2) {
      if (nComps == 1) {
        ## One component versus index
        if (missing(xlab)) xlab <- "variable"
        if (missing(ylab)) ylab <- varlab
      } else {
        ## Second component versus first
        if (missing(xlab)) xlab <- varlab[1]
        if (missing(ylab)) ylab <- varlab[2]
      }
      if(missing(xlim)) xlim <- NULL
      plot(L, xlab = xlab, ylab = ylab, type = type, lty = lty,
           lwd = lwd, pch = pch, cex = cex, col = col, xlim = xlim, ...)
      if (!missing(labels)) text(L, labels, cex = cex, col = col, ...)
      if (isTRUE(identify))
        identify(L, labels = paste(1:nrow(L), rownames(L), sep = ": "))
    } else {
      ## Pairwise scatterplots of several components
      panel <- if (missing(labels)) {
        function(x, y, ...)
          points(x, y, type = type, lty = lty, lwd = lwd,
                 pch = pch, col = col, ...)
      } else {
        function(x, y, ...)
          text(x, y, labels = labels, col = col, ...)
      }
      pairs(L, labels = varlab, panel = panel, cex = cex, ...)
    }
  } else {                            # if (!isTRUE(scatter))
    ## Line plots
    if (missing(type)) type <- "l"
    if (missing(lty))  lty  <- 1:nComps
    if (missing(pch))  pch  <- 1:nComps
    if (missing(col))  col  <- 1:nComps
    if (missing(xlab)) xlab <- "variable"
    if (missing(ylab)) ylab <- "loading value"
    xnum <- 1:nrow(L)
    if (missing(labels)) {
      xaxt <- par("xaxt")
    } else {
      xaxt <- "n"
      if (length(labels) == 1) {
        xnam <- rownames(L)
        switch(match.arg(labels, c("names", "numbers")),
               names = {        # Simply use the names as is
                 labels <- xnam
               },
               numbers = {      # Try to use them as numbers
                 if (length(grep("^[-0-9.]+[^0-9]*$", xnam)) ==
                     length(xnam)) {
                   ## Labels are on "num+text" format
                   labels <- sub("[^0-9]*$", "", xnam)
                   if (isTRUE(pretty.xlabels)) {
                     xnum <- as.numeric(labels)
                     xaxt <- par("xaxt")
                   }
                 } else {
                   stop("Could not convert variable names to numbers.")
                 }
               }
        )
      } else {
        labels <- as.character(labels)
      }
    }
    if (missing(xlim)) xlim <- xnum[c(1, length(xnum))] # Needed for reverted scales
    matplot(xnum, L, xlab = xlab, ylab = ylab, type = type,
            lty = lty, lwd = lwd, pch = pch, cex = cex, col = col,
            xaxt = xaxt, xlim = xlim, ...)
    if (!missing(labels) && xaxt == "n") {
      if (isTRUE(pretty.xlabels)) {
        ticks <- axTicks(1)
        ticks <- ticks[ticks >= 1 & ticks <= length(labels)]
      } else {
        ticks <- 1:length(labels)
      }
      axis(1, ticks, labels[ticks], ...)
    }
    if (!missing(legendpos)) {
      ## Are we plotting lines?
      dolines <- type %in% c("l", "b", "c", "o", "s", "S", "h")
      ## Are we plotting points?
      dopoints <- type %in% c("p", "b", "o")
      if (length(lty) > nComps) lty <- lty[1:nComps]
      do.call("legend", c(list(legendpos, varlab, col = col),
                          if (dolines) list(lty = lty, lwd = lwd),
                          if (dopoints) list(pch = pch, pt.cex = cex,
                                             pt.lwd = lwd)))
    }
    if (isTRUE(identify))
      identify(c(row(L)), c(L),
               labels = paste(c(col(L)), rownames(L), sep = ": "))
  }                                   # if (isTRUE(scatter))
}

## A plot method for loadings (loadings, loading.weights or Yloadings):
#' @rdname scoreplot
#' @export
plot.loadings <- function(x, ...) loadingplot(x, ...)


###
### Correlation loadings plot
###

#' @rdname scoreplot
#' @export
corrplot <- function(object, comps = 1:2, labels, plotx = TRUE, ploty = FALSE,
                     radii = c(sqrt(1/2), 1), identify = FALSE,
                     type = "p", xlab, ylab, col, ...)
{
  nComps <- length(comps)
  if (nComps < 2) stop("At least two components must be selected.")
  if (is.matrix(object)) {
    ## Assume this is already a correlation matrix
    cl <- object[,comps, drop = FALSE]
    numX <- nrow(cl)
    numY <- 0
    varlab <- colnames(cl)
  } else {
    S <- scores(object)[,comps, drop = FALSE]
    if (is.null(S))
      stop("`", deparse(substitute(object)), "' has no scores.")

    if (isTRUE(plotx)) {
      clX <- cor(model.matrix(object), S)
      numX <- nrow(clX)
    } else {
      clX <- NULL
      numX <- 0
    }
    if (isTRUE(ploty)) {
      clY <- cor(model.response(model.frame(object)), S)
      numY <- nrow(clY)
      if (numY == 1) {
        ## Add response name for single response models
        rownames(clY) <- all.vars(formula(object))[1]
      }
    } else {
      clY <- NULL
      numY <- 0
    }
    cl <- rbind(clX, clY)
    varlab <- compnames(object, comps, explvar = TRUE)
  }
  if (missing(col)) {
    ## Set up default colours:
    col <- c(rep(1, numX), rep(2, numY))
  }
  if (!missing(labels)) {
    ## Set up point labels
    if (length(labels) == 1) {
      labels <- switch(match.arg(labels, c("names", "numbers")),
                       names = rownames(cl),
                       numbers = 1:nrow(cl)
      )
    }
    labels <- as.character(labels)
    type <- "n"
  }
  ## Build the expression to add circles:
  if (length(radii)) {
    addcircles <- substitute(symbols(cent, cent, circles = radii,
                                     inches = FALSE, add = TRUE),
                             list(cent = rep(0, length(radii))))
  } else {
    addcircles <- expression()
  }
  if (nComps == 2) {
    ## Second component versus first
    if (missing(xlab)) xlab <- varlab[1]
    if (missing(ylab)) ylab <- varlab[2]
    plot(cl, xlim = c(-1,1), ylim = c(-1,1), asp = 1,
         xlab = xlab, ylab = ylab, type = type, col = col, ...)
    eval(addcircles)
    segments(x0 = c(-1, 0), y0 = c(0, -1), x1 = c(1, 0), y1 = c(0, 1))
    if (!missing(labels)) text(cl, labels, col = col, ...)
    if (isTRUE(identify)) {
      if (!is.null(rownames(cl))) {
        identify(cl, labels = rownames(cl))
      } else {
        identify(cl)
      }
    }
  } else {
    ## Pairwise scatterplots of several components
    pointsOrText <- if (missing(labels)) {
      function(x, y, ...) points(x, y, type = type, ...)
    } else {
      function(x, y, ...) text(x, y, labels = labels, ...)
    }
    panel <- function(x, y, ...) {
      ## Ignore the leading `ghost points':
      pointsOrText(x[-(1:2)], y[-(1:2)], ...)
      eval(addcircles)
      segments(x0 = c(-1, 0), y0 = c(0, -1), x1 = c(1, 0),
               y1 = c(0, 1))
    }
    ## Call `pairs' with two leading `ghost points', to get
    ## correct xlim and ylim:
    pairs(rbind(-1, 1, cl), labels = varlab, panel = panel, asp = 1,
          col = col, ...)
  }
}


###
### prediction plot
###

## Generic:


#' @name predplot
#' @title Prediction Plots
#'
#' @description Functions to plot predicted values against measured values for a fitted
#' model.
#'
#' @details \code{predplot} is a generic function for plotting predicted versus measured
#' response values, with default and \code{mvr} methods currently implemented.
#' The default method is very simple, and doesn't handle multiple responses or
#' new data.
#'
#' The \code{mvr} method, handles multiple responses, model sizes and types of
#' predictions by making one plot for each combination.  It can also be called
#' through the plot method for \code{mvr}, by specifying \code{plottype =
#' "prediction"} (the default).
#'
#' The argument \code{main} can be used to specify the main title of the plot.
#' It is handled in a non-standard way.  If there is only on (sub) plot,
#' \code{main} will be used as the main title of the plot.  If there is
#' \emph{more} than one (sub) plot, however, the presence of \code{main} will
#' produce a corresponding \sQuote{global} title on the page.  Any graphical
#' parametres, e.g., \code{cex.main}, supplied to \code{coefplot} will only
#' affect the \sQuote{ordinary} plot titles, not the \sQuote{global} one.  Its
#' appearance can be changed by setting the parameters with \code{\link{par}},
#' which will affect \emph{both} titles (with the exception of \code{font.main}
#' and \code{cex.main}, which will only affect the \sQuote{global} title when
#' there is more than one plot).  (To have different settings for the two
#' titles, one can override the \code{par} settings with arguments to
#' \code{predplot}.)
#'
#' \code{predplotXy} is an internal function and is not meant for interactive
#' use.  It is called by the \code{predplot} methods, and its arguments, e.g,
#' \code{line}, can be given in the \code{predplot} call.
#'
#' @aliases predplot predplot.default predplot.mvr predplotXy
#' @param object a fitted model.
#' @param ncomp integer vector.  The model sizes (numbers of components) to use
#' for prediction.
#' @param which character vector.  Which types of predictions to plot.  Should
#' be a subset of \code{c("train", "validation", "test")}.  If not specified,
#' \code{plot.mvr} selects test set predictions if \code{newdata} is supplied,
#' otherwise cross-validated predictions if the model has been cross-validated,
#' otherwise fitted values from the calibration data.
#' @param newdata data frame.  New data to predict.
#' @param nCols,nRows integer.  The number of coloumns and rows the plots will
#' be laid out in.  If not specified, \code{plot.mvr} tries to be intelligent.
#' @param xlab,ylab titles for \eqn{x} and \eqn{y} axes.  Typically character
#' strings, but can be expressions or lists.  See \code{\link{title}} for
#' details.
#' @param labels optional.  Alternative plot labels to use.  Either a vector of
#' labels, or \code{"names"} or \code{"numbers"} to use the row names or row
#' numbers of the data as labels.
#' @param type character.  What type of plot to make.  Defaults to \code{"p"}
#' (points).  See \code{\link{plot}} for a complete list of types.  The
#' argument is ignored if \code{labels} is specified.
#' @param main optional main title for the plot.  See Details.
#' @param ask logical.  Whether to ask the user before each page of a plot.
#' @param font.main font to use for main titles.  See \code{\link{par}} for
#' details.  Also see Details below.
#' @param cex.main numeric.  The magnification to be used for main titles
#' relative to the current size.  Also see Details below.
#' @param x numeric vector.  The observed response values.
#' @param y numeric vector.  The predicted response values.
#' @param line logical.  Whether a target line should be drawn.
#' @param line.col,line.lty,line.lwd character or numeric.  The \code{col},
#' \code{lty} and \code{lwd} parametres for the target line.  See
#' \code{\link{par}} for details.
#' @param \dots further arguments sent to underlying plot functions.
#' @return The functions invisibly return a matrix with the (last) plotted
#' data.
#' @note The \code{font.main} and \code{cex.main} must be (completely) named.
#' This is to avoid that any argument \code{cex} or \code{font} matches them.
#'
#' Tip: If the labels specified with \code{labels} are too long, they get
#' clipped at the border of the plot region.  This can be avoided by supplying
#' the graphical parameter \code{xpd = TRUE} in the plot call.
#' @author Ron Wehrens and Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}}, \code{\link{plot.mvr}}
#' @keywords regression multivariate hplot
#' @examples
#'
#' data(yarn)
#' mod <- plsr(density ~ NIR, ncomp = 10, data = yarn[yarn$train,], validation = "CV")
#' \dontrun{
#' predplot(mod, ncomp = 1:6)
#' plot(mod, ncomp = 1:6) # Equivalent to the previous
#' ## Both cross-validated and test set predictions:
#' predplot(mod, ncomp = 4:6, which = c("validation", "test"),
#'          newdata = yarn[!yarn$train,])
#' }
#'
#' data(oliveoil)
#' mod.sens <- plsr(sensory ~ chemical, ncomp = 4, data = oliveoil)
#' \dontrun{plot(mod.sens, ncomp = 2:4) # Several responses gives several plots}
#'
#' @export
predplot <- function(object, ...)
  UseMethod("predplot")

## Default method:
#' @rdname predplot
#' @export
predplot.default <- function(object, ...) {
  measured <- model.response(model.frame(object))
  predicted <- predict(object)
  predplotXy(measured, predicted, ...)
}

## Method for mvr objects:
#' @rdname predplot
#' @export
predplot.mvr <- function(object, ncomp = object$ncomp, which, newdata,
                         nCols, nRows, xlab = "measured", ylab = "predicted",
                         main,
                         ask = nRows * nCols < nPlots && dev.interactive(),
                         ..., font.main, cex.main)
{
  ## Select type(s) of prediction
  if (missing(which)) {
    ## Pick the `best' alternative.
    if (!missing(newdata)) {
      which <- "test"
    } else {
      if (!is.null(object$validation)) {
        which <- "validation"
      } else {
        which <- "train"
      }
    }
  } else {
    ## Check the supplied `which'
    allTypes <- c("train", "validation", "test")
    which <- allTypes[pmatch(which, allTypes)]
    if (length(which) == 0 || any(is.na(which)))
      stop("`which' should be a subset of ",
           paste(allTypes, collapse = ", "))
  }

  ## Help variables
  nEst  <- length(which)
  nSize <- length(ncomp)
  nResp <- dim(object$fitted.values)[2]

  ## Set plot parametres as needed:
  dims <- c(nEst, nSize, nResp)
  dims <- dims[dims > 1]
  nPlots <- prod(dims)
  if (nPlots > 1) {
    ## Set up default font.main and cex.main for individual titles:
    if (missing(font.main)) font.main <- 1
    if (missing(cex.main)) cex.main <- 1.1
    ## Show the *labs in the margin:
    mXlab <- xlab
    mYlab <- ylab
    xlab <- ylab <- ""
    if(missing(nCols)) nCols <- min(c(3, dims[1]))
    if(missing(nRows))
      nRows <- min(c(3, ceiling(prod(dims[1:2], na.rm = TRUE) / nCols)))
    opar <- par(no.readonly = TRUE)
    on.exit(par(opar))
    par(mfrow = c(nRows, nCols),
        oma = c(1, 1, if(missing(main)) 0 else 2, 0) + 0.1,
        mar = c(3,3,3,1) + 0.1)
    if (isTRUE(ask)) {
      oask <- devAskNewPage(TRUE)
      on.exit(devAskNewPage(oask))
    }
  } else {
    ## Set up default font.main and cex.main for the main title:
    if (missing(font.main)) font.main <- par("font.main")
    if (missing(cex.main)) cex.main <- par("cex.main")
    nCols <- nRows <- 1
  }

  ## Set up measured and predicted for all model sizes, responses and
  ## estimates:
  if ("train" %in% which) {
    train.measured <- as.matrix(model.response(model.frame(object)))
    train.predicted <- object$fitted.values[,,ncomp, drop = FALSE]
  }
  if ("validation" %in% which) {
    if (is.null(object$validation)) stop("`object' has no `validation' component.")
    if(!exists("train.measured"))
      train.measured <- as.matrix(model.response(model.frame(object)))
    validation.predicted <- object$validation$pred[,,ncomp, drop = FALSE]
  }
  if ("test" %in% which) {
    if (missing(newdata)) stop("Missing `newdata'.")
    test.measured <- as.matrix(model.response(model.frame(formula(object),
                                                          data = newdata)))
    test.predicted <- predict(object, ncomp = ncomp, newdata = newdata)
  }

  ## Do the plots
  plotNo <- 0
  for (resp in 1:nResp) {
    for (size in 1:nSize) {
      for (est in 1:nEst) {
        plotNo <- plotNo + 1
        if (nPlots == 1 && !missing(main)) {
          lmain <- main
        } else {
          lmain <- sprintf("%s, %d comps, %s",
                           respnames(object)[resp],
                           ncomp[size], which[est])
        }
        sub <- which[est]
        switch(which[est],
               train = {
                 measured <- train.measured[,resp]
                 predicted <- train.predicted[,resp,size]
               },
               validation = {
                 measured <- train.measured[,resp]
                 predicted <- validation.predicted[,resp,size]
               },
               test = {
                 measured <- test.measured[,resp]
                 predicted <- test.predicted[,resp,size]
               }
        )
        xy <- predplotXy(measured, predicted, main = lmain,
                         font.main = font.main, cex.main = cex.main,
                         xlab = xlab, ylab = ylab, ...)
        if (nPlots > 1 &&
            (plotNo %% (nCols * nRows) == 0 || plotNo == nPlots)) {
          ## Last plot on a page; add outer margin text and title:
          mtext(mXlab, side = 1, outer = TRUE)
          mtext(mYlab, side = 2, outer = TRUE)
          if (!missing(main)) title(main = main, outer = TRUE)
        }
      }
    }
  }
  invisible(xy)
}

## The workhorse function:
#' @rdname predplot
#' @export
predplotXy <- function(x, y, line = FALSE, labels, type = "p",
                       main = "Prediction plot", xlab = "measured response",
                       ylab = "predicted response", line.col = par("col"),
                       line.lty = NULL, line.lwd = NULL, ...)
{
  if (!missing(labels)) {
    ## Set up point labels
    if (length(labels) == 1) {
      labels <- switch(match.arg(labels, c("names", "numbers")),
                       names = names(y),
                       numbers = as.character(1:length(y))
      )
    }
    ## Override plot type:
    type <- "n"
  }
  plot(y ~ x, type = type, main = main, xlab = xlab, ylab = ylab, ...)
  if (!missing(labels)) text(x, y, labels, ...)
  if (isTRUE(line)) abline(0, 1, col = line.col, lty = line.lty, lwd = line.lwd)
  invisible(cbind(measured = x, predicted = as.vector(y)))
}


###
### Coefficient plot
###



#' @title Plot Regression Coefficients of PLSR and PCR models
#'
#' @description  Function to plot the regression coefficients of an \code{mvr} object.
#'
#' @details \code{coefplot} handles multiple responses by making one plot for each
#' response.  If \code{separate} is \code{TRUE}, separate plots are made for
#' each combination of model size and response.  The plots are laid out in a
#' rectangular fashion.
#'
#' If \code{legendpos} is given, a legend is drawn at the given position
#' (unless \code{separate} is \code{TRUE}).
#'
#' The argument \code{labels} can be a vector of labels or one of
#' \code{"names"} and \code{"numbers"}.  The labels are used as \eqn{x} axis
#' labels.  If \code{labels} is \code{"names"} or \code{"numbers"}, the
#' variable names are used as labels, the difference being that with
#' \code{"numbers"}, the variable names are converted to numbers, if possible.
#' Variable names of the forms \samp{"number"} or \samp{"number text"} (where
#' the space is optional), are handled.
#'
#' The argument \code{main} can be used to specify the main title of the plot.
#' It is handled in a non-standard way.  If there is only on (sub) plot,
#' \code{main} will be used as the main title of the plot.  If there is
#' \emph{more} than one (sub) plot, however, the presence of \code{main} will
#' produce a corresponding \sQuote{global} title on the page.  Any graphical
#' parametres, e.g., \code{cex.main}, supplied to \code{coefplot} will only
#' affect the \sQuote{ordinary} plot titles, not the \sQuote{global} one.  Its
#' appearance can be changed by setting the parameters with \code{\link{par}},
#' which will affect \emph{both} titles.  (To have different settings for the
#' two titles, one can override the \code{par} settings with arguments to
#' \code{coefplot}.)
#'
#' The argument \code{pretty.xlabels} is only used when \code{labels} is
#' specified.  If \code{TRUE} (default), the code tries to use a
#' \sQuote{pretty} selection of labels.  If \code{labels} is \code{"numbers"},
#' it also uses the numerical values of the labels for horisontal spacing.  If
#' one has excluded parts of the spectral region, one might therefore want to
#' use \code{pretty.xlabels = FALSE}.
#'
#' When \code{separate} is \code{TRUE}, the arguments \code{lty}, \code{col},
#' and \code{pch} default to their \code{par()} setting.  Otherwise, the
#' default for all of them is \code{1:nLines}, where \code{nLines} is the
#' number of model sizes specified, i.e., the length of \code{ncomp} or
#' \code{comps}.
#'
#' The function can also be called through the \code{mvr} plot method by
#' specifying \code{plottype = "coefficients"}.
#'
#' @param object an \code{mvr} object.  The fitted model.
#' @param ncomp,comps vector of positive integers.  The components to plot.
#' See \code{\link{coef.mvr}} for details.
#' @param separate logical.  If \code{TRUE}, coefficients for different model
#' sizes are blotted in separate plots.
#' @param se.whiskers logical.  If \code{TRUE}, whiskers at plus/minus 1
#' estimated standard error are added to the plot.  This is only available if
#' the model was cross-validated with \code{jackknife = TRUE}.  Also, in the
#' current implementation, \code{intercept} must be \code{FALSE}, and
#' \code{separate} must be \code{TRUE} if \code{length(ncomp) > 1}.
#' @param intercept logical.  Whether coefficients for the intercept should be
#' plotted.  Ignored if \code{comps} is specified.  Defaults to \code{FALSE}.
#' See \code{\link{coef.mvr}} for details.
#' @param nCols,nRows integer.  The number of coloumns and rows the plots will
#' be laid out in.  If not specified, \code{coefplot} tries to be intelligent.
#' @param labels optional.  Alternative \eqn{x} axis labels.  See Details.
#' @param type character.  What type of plot to make.  Defaults to \code{"l"}
#' (lines).  Alternative types include \code{"p"} (points) and \code{"b"}
#' (both).  See \code{\link{plot}} for a complete list of types.
#' @param lty vector of line types (recycled as neccessary).  Line types can be
#' specified as integers or character strings (see \code{\link{par}} for the
#' details).
#' @param lwd vector of positive numbers (recycled as neccessary), giving the
#' width of the lines.
#' @param pch plot character.  A character string or a vector of single
#' characters or integers (recycled as neccessary).  See \code{\link{points}}
#' for all alternatives.
#' @param cex numeric vector of character expansion sizes (recycled as
#' neccessary) for the plotted symbols.
#' @param col character or integer vector of colors for plotted lines and
#' symbols (recycled as neccessary).  See \code{\link{par}} for the details.
#' @param legendpos Legend position.  Optional.  Ignored if \code{separate} is
#' \code{TRUE}.  If present, a legend is drawn at the given position.  The
#' position can be specified symbolically (e.g., \code{legendpos =
#' "topright"}).  This requires >= 2.1.0.  Alternatively, the position can be
#' specified explicitly (\code{legendpos = t(c(x,y))}) or interactively
#' (\code{legendpos = \link{locator}()}).  This only works well for plots of
#' single-response models.
#' @param xlab,ylab titles for \eqn{x} and \eqn{y} axes.  Typically character
#' strings, but can be expressions (e.g., \code{expression(R^2)} or lists.  See
#' \code{\link{title}} for details.
#' @param main optional main title for the plot.  See Details.
#' @param pretty.xlabels logical.  If \code{TRUE}, \code{coefplot} tries to
#' plot the \eqn{x} labels more nicely.  See Details.
#' @param xlim,ylim optional vector of length two, with the \eqn{x} or \eqn{y}
#' limits of the plot.
#' @param ask logical.  Whether to ask the user before each page of a plot.
#' @param \dots Further arguments sent to the underlying plot functions.
#' @note \code{\link{legend}} has many options.  If you want greater control
#' over the appearance of the legend, omit the \code{legendpos} argument and
#' call \code{legend} manually.
#'
#' The handling of \code{labels} and \code{pretty.xlabels} is experimental.
#' @author Ron Wehrens and Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}}, \code{\link{plot.mvr}}, \code{\link{coef.mvr}},
#' \code{\link{plot}}, \code{\link{legend}}
#' @keywords regression multivariate hplot
#' @examples
#'
#' data(yarn)
#' mod.nir <- plsr(density ~ NIR, ncomp = 8, data = yarn)
#' \dontrun{
#' coefplot(mod.nir, ncomp = 1:6)
#' plot(mod.nir, plottype = "coefficients", ncomp = 1:6) # Equivalent to the previous
#' ## Plot with legend:
#' coefplot(mod.nir, ncom = 1:6, legendpos = "bottomright")
#' }
#'
#' data(oliveoil)
#' mod.sens <- plsr(sensory ~ chemical, ncomp = 4, data = oliveoil)
#' \dontrun{coefplot(mod.sens, ncomp = 2:4, separate = TRUE)}
#'
#' @export
coefplot <- function(object, ncomp = object$ncomp, comps, intercept = FALSE,
                     separate = FALSE, se.whiskers = FALSE,
                     nCols, nRows, labels,
                     type = "l", lty, lwd = NULL,
                     pch, cex = NULL, col, legendpos,
                     xlab = "variable", ylab = "regression coefficient",
                     main, pretty.xlabels = TRUE, xlim, ylim,
                     ask = nRows * nCols < nPlots && dev.interactive(), ...)
{
  ## This simplifies code below:
  if (missing(comps)) comps <- NULL
  separate <- isTRUE(separate)
  se.whiskers <- isTRUE(se.whiskers)

  ## Help variables
  nLines <- if (is.null(comps)) length(ncomp) else length(comps)
  nSize <- if (separate) nLines else 1
  nResp <- dim(object$fitted.values)[2]

  ## Set plot parametres as needed:
  dims <- c(nSize, nResp)
  dims <- dims[dims > 1]
  nPlots <- prod(dims)
  if (nPlots > 1) {
    ## Show the *labs in the margin:
    mXlab <- xlab
    mYlab <- ylab
    xlab <- ylab <- ""
    if (missing(nCols)) nCols <- min(c(3, dims[1]))
    if (missing(nRows))
      nRows <- min(c(3, ceiling(prod(dims[1:2], na.rm = TRUE) / nCols)))
    opar <- par(no.readonly = TRUE)
    on.exit(par(opar))
    par(mfrow = c(nRows, nCols),
        oma = c(1, 1, if(missing(main)) 0 else 2, 0) + 0.1,
        mar = c(3,3,3,1) + 0.1)
    if (isTRUE(ask)) {
      oask <- devAskNewPage(TRUE)
      on.exit(devAskNewPage(oask))
    }
  } else {
    nCols <- nRows <- 1
  }
  if (missing(col)) col <- if (separate) par("col") else 1:nLines
  if (missing(pch)) pch <- if (separate) par("pch") else 1:nLines
  if (missing(lty)) lty <- if (separate) par("lty") else 1:nLines
  if (length(lty) > nLines) lty <- lty[1:nLines] # otherwise legend chokes
  if (length(type) != 1 || is.na(nchar(type, "c")) || nchar(type, "c") != 1)
    stop("Invalid plot type.")
  ## Are we plotting lines?
  dolines <- type %in% c("l", "b", "c", "o", "s", "S", "h")
  ## Are we plotting points?
  dopoints <- type %in% c("p", "b", "o")

  ## Get the coefficients:
  coefs <- coef(object, ncomp = ncomp, comps = comps, intercept = intercept)
  complabs <- dimnames(coefs)[[3]]

  ## Optionally, get the standard errors:
  if (se.whiskers) {
    if (isTRUE(intercept))
      stop(sQuote("se.whiskers"), " not supported when ",
           sQuote("intercept"), " is TRUE")
    if (!is.null(comps))
      stop(sQuote("se.whiskers"), " not supported when ",
           sQuote("comps"), " is specified")
    if (dim(coefs)[3] > 1 && !separate)
      stop(sQuote("se.whiskers"), " not supported when ",
           sQuote("separate"), " is FALSE and length(ncomp) > 1")
    SEs <- sqrt(var.jack(object, ncomp = ncomp))
    npred <- dim(SEs)[1]
    if (!hasArg("ylim")) {
      ## Calculate new ylims:
      miny <- apply(coefs - SEs, 2:3, min)
      maxy <- apply(coefs + SEs, 2:3, max)
    }
  }

  ## Set up the x labels:
  xnum <- 1:dim(coefs)[1]
  if (missing(labels)) {
    xaxt <- par("xaxt")
  } else {
    xaxt <- "n"
    if (length(labels) == 1) {
      xnam <- prednames(object, intercept = intercept)
      switch(match.arg(labels, c("names", "numbers")),
             names = {            # Simply use the names as is
               labels <- xnam
             },
             numbers = {          # Try to use them as numbers
               if (length(grep("^[-0-9.]+[^0-9]*$", xnam)) ==
                   length(xnam)) {
                 ## Labels are on "num+text" format
                 labels <- sub("[^0-9]*$", "", xnam)
                 if (isTRUE(pretty.xlabels)) {
                   xnum <- as.numeric(labels)
                   xaxt <- par("xaxt")
                 }
               } else {
                 stop("Could not convert variable names to numbers.")
               }
             }
      )
    } else {
      labels <- as.character(labels)
    }
  }
  if (missing(xlim)) xlim <- xnum[c(1, length(xnum))] # Needed for reverted scales
  ## Do the plots
  plotNo <- 0
  for (resp in 1:nResp) {
    respname <- respnames(object)[resp]
    for (size in 1:nSize) {
      plotNo <- plotNo + 1

      if (nPlots == 1 && !missing(main)) {
        lmain <- main
      } else if (separate) {
        lmain <- paste(respname, complabs[size], sep = ", ")
      } else {
        lmain <- respname
      }
      if (separate) {
        if (missing(ylim)) {
          if (se.whiskers) {
            ylims <- c(miny[resp,size], maxy[resp,size])
          } else {
            ylims <- range(coefs[,resp,size])
          }
        } else {
          ylims <- ylim
        }
        plot(xnum, coefs[,resp,size],
             main = lmain, xlab = xlab, ylab = ylab, type = type,
             lty = lty, lwd = lwd, pch = pch, cex = cex,
             col = col, xaxt = xaxt, xlim = xlim, ylim = ylims, ...)
        if (se.whiskers) {
          arrows(1:npred, (coefs - SEs)[,resp,size],
                 1:npred, (coefs + SEs)[,resp,size], length = 0.05,
                 angle = 90, code = 3, col = 2)
        }
      } else {
        if (missing(ylim)) {
          if (se.whiskers) {
            ylims <- c(miny[resp,], maxy[resp,])
          } else {
            ylims <- range(coefs[,resp,])
          }
        } else {
          ylims <- ylim
        }
        matplot(xnum, coefs[,resp,], main = lmain, xlab = xlab,
                ylab = ylab, type = type, lty = lty, lwd = lwd,
                pch = pch, cex = cex, col = col, xaxt = xaxt,
                xlim = xlim, ylim = ylims, ...)
        if (se.whiskers) {
          arrows(1:npred, (coefs - SEs)[,resp,],
                 1:npred, (coefs + SEs)[,resp,], length = 0.05,
                 angle = 90, code = 3, col = 2)
        }
        if (!missing(legendpos)) {
          do.call("legend", c(list(legendpos, complabs, col = col),
                              if(dolines) list(lty = lty, lwd = lwd),
                              if(dopoints) list(pch = pch,
                                                pt.cex = cex,
                                                pt.lwd = lwd)))
        }
      }
      if (!missing(labels) && xaxt == "n") {
        if (isTRUE(pretty.xlabels)) {
          ticks <- axTicks(1)
          ticks <- ticks[ticks >= 1 & ticks <= length(labels)]
        } else {
          ticks <- 1:length(labels)
        }
        axis(1, ticks, labels[ticks], ...)
      }
      abline(h = 0, col = "gray")

      if (nPlots > 1 &&
          (plotNo %% (nCols * nRows) == 0 || plotNo == nPlots)) {
        ## Last plot on a page; add outer margin text and title:
        mtext(mXlab, side = 1, outer = TRUE)
        mtext(mYlab, side = 2, outer = TRUE)
        if (!missing(main)) title(main, outer = TRUE)
      }
    }
  }
}


###
### Validation plot (MSEP/RMSEP/R2)
###



#' @name validationplot
#' @title Validation Plots
#'
#' @description Functions to plot validation statistics, such as RMSEP or \eqn{R^2}, as a
#' function of the number of components.
#'
#' @details \code{validationplot} calls the proper validation function (currently
#' \code{\link{MSEP}}, \code{\link{RMSEP}} or \code{\link{R2}}) and plots the
#' results with \code{plot.mvrVal}.  \code{validationplot} can be called
#' through the \code{mvr} plot method, by specifying \code{plottype =
#' "validation"}.
#'
#' \code{plot.mvrVal} creates one plot for each response variable in the model,
#' laid out in a rectangle.  It uses \code{\link{matplot}} for performing the
#' actual plotting.  If \code{legendpos} is given, a legend is drawn at the
#' given position.
#'
#' The argument \code{main} can be used to specify the main title of the plot.
#' It is handled in a non-standard way.  If there is only on (sub) plot,
#' \code{main} will be used as the main title of the plot.  If there is
#' \emph{more} than one (sub) plot, however, the presence of \code{main} will
#' produce a corresponding \sQuote{global} title on the page.  Any graphical
#' parametres, e.g., \code{cex.main}, supplied to \code{coefplot} will only
#' affect the \sQuote{ordinary} plot titles, not the \sQuote{global} one.  Its
#' appearance can be changed by setting the parameters with \code{\link{par}},
#' which will affect \emph{both} titles.  (To have different settings for the
#' two titles, one can override the \code{par} settings with arguments to the
#' plot function.)
#'
#' @aliases validationplot plot.mvrVal
#' @param object an \code{mvr} object.
#' @param val.type character.  What type of validation statistic to plot.
#' @param estimate character.  Which estimates of the statistic to calculate.
#' See \code{\link{RMSEP}}.
#' @param newdata data frame.  Optional new data used to calculate statistic.
#' @param ncomp,comps integer vector.  The model sizes to compute the statistic
#' for.  See \code{\link{RMSEP}}.
#' @param intercept logical.  Whether estimates for a model with zero
#' components should be calculated as well.
#' @param x an \code{mvrVal} object.  Usually the result of a
#' \code{\link{RMSEP}}, \code{\link{MSEP}} or \code{\link{R2}} call.
#' @param nCols,nRows integers.  The number of coloumns and rows the plots will
#' be laid out in.  If not specified, \code{plot.mvrVal} tries to be
#' intelligent.
#' @param type character.  What type of plots to create.  Defaults to
#' \code{"l"} (lines).  Alternative types include \code{"p"} (points) and
#' \code{"b"} (both).  See \code{\link{plot}} for a complete list of types.
#' @param lty vector of line types (recycled as neccessary).  Line types can be
#' specified as integers or character strings (see \code{\link{par}} for the
#' details).
#' @param lwd vector of positive numbers (recycled as neccessary), giving the
#' width of the lines.
#' @param pch plot character.  A character string or a vector of single
#' characters or integers (recycled as neccessary).  See \code{\link{points}}
#' for all alternatives.
#' @param cex numeric vector of character expansion sizes (recycled as
#' neccessary) for the plotted symbols.
#' @param col character or integer vector of colors for plotted lines and
#' symbols (recycled as neccessary).  See \code{\link{par}} for the details.
#' @param legendpos Legend position.  Optional.  If present, a legend is drawn
#' at the given position.  The position can be specified symbolically (e.g.,
#' \code{legendpos = "topright"}).  This requires >= 2.1.0.  Alternatively, the
#' position can be specified explicitly (\code{legendpos = t(c(x,y))}) or
#' interactively (\code{legendpos = \link{locator}()}).  This only works well
#' for plots of single-response models.
#' @param xlab,ylab titles for \eqn{x} and \eqn{y} axes.  Typically character
#' strings, but can be expressions (e.g., \code{expression(R^2)} or lists.  See
#' \code{\link{title}} for details.
#' @param main optional main title for the plot.  See Details.
#' @param ask logical.  Whether to ask the user before each page of a plot.
#' @param \dots Further arguments sent to underlying plot functions.
#' @note \code{\link{legend}} has many options.  If you want greater control
#' over the appearance of the legend, omit the \code{legendpos} argument and
#' call \code{legend} manually.
#' @author Ron Wehrens and Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}}, \code{\link{plot.mvr}}, \code{\link{RMSEP}},
#' \code{\link{MSEP}}, \code{\link{R2}}, \code{\link{matplot}},
#' \code{\link{legend}}
#' @keywords regression multivariate hplot
#' @examples
#'
#' data(oliveoil)
#' mod <- plsr(sensory ~ chemical, data = oliveoil, validation = "LOO")
#' \dontrun{
#' ## These three are equivalent:
#' validationplot(mod, estimate = "all")
#' plot(mod, "validation", estimate = "all")
#' plot(RMSEP(mod, estimate = "all"))
#' ## Plot R2:
#' plot(mod, "validation", val.type = "R2")
#' ## Plot R2, with a legend:
#' plot(mod, "validation", val.type = "MSEP", legendpos = "top") # R >= 2.1.0
#' }
#'
#' @export
validationplot <- function(object, val.type = c("RMSEP", "MSEP", "R2"),
                           estimate, newdata, ncomp, comps, intercept, ...)
{
  cl <- match.call(expand.dots = FALSE)
  cl[[1]] <- as.name(match.arg(val.type))
  cl$val.type <- NULL
  x <- eval(cl, parent.frame())
  plot(x, ...)
}

## A plot method for mvrVal objects:
#' @rdname validationplot
#' @export
plot.mvrVal <- function(x, nCols, nRows, type = "l", lty = 1:nEst,
                        lwd = par("lwd"), pch = 1:nEst, cex = 1, col = 1:nEst,
                        legendpos, xlab = "number of components",
                        ylab = x$type, main,
                        ask = nRows * nCols < nResp && dev.interactive(), ...)
{
  if (!is.null(x$call$cumulative) && eval(x$call$cumulative) == FALSE)
    stop("`cumulative = FALSE' not supported.")
  ## Set plot parametres as needed:
  nResp <- dim(x$val)[2]              # Number of response variables
  if (nResp > 1) {
    ## Show the *labs in the margin:
    mXlab <- xlab
    mYlab <- ylab
    xlab <- ylab <- ""
    if(missing(nCols)) nCols <- min(c(3, nResp))
    if(missing(nRows)) nRows <- min(c(3, ceiling(nResp / nCols)))
    opar <- par(no.readonly = TRUE)
    on.exit(par(opar))
    par(mfrow = c(nRows, nCols),
        oma = c(1, 1, if(missing(main)) 0 else 2, 0) + 0.1,
        mar = c(3,3,3,1) + 0.1)
    if (isTRUE(ask)) {
      oask <- devAskNewPage(TRUE)
      on.exit(devAskNewPage(oask))
    }
  } else {
    nCols <- nRows <- 1
  }
  ynames <- dimnames(x$val)[[2]]      # Names of response variables
  estnames <- dimnames(x$val)[[1]]    # Names of estimators
  nEst <- length(estnames)
  if (length(lty) > nEst) lty <- lty[1:nEst] # otherwise legend chokes
  if (length(type) != 1 || is.na(nchar(type, "c")) || nchar(type, "c") != 1)
    stop("Invalid plot type.")
  ## Are we plotting lines?
  dolines <- type %in% c("l", "b", "c", "o", "s", "S", "h")
  ## Are we plotting points?
  dopoints <- type %in% c("p", "b", "o")

  for (resp in 1:nResp) {
    if (nResp == 1 && !missing(main)) {
      lmain <- main
    } else {
      lmain <- ynames[resp]
    }
    y <- x$val[,resp,]
    if (is.matrix(y)) y <- t(y)
    if (isTRUE(all.equal(x$comps, min(x$comps):max(x$comps)))) {
      matplot(x$comps, y, xlab = xlab, ylab = ylab, main = lmain,
              type = type, lty = lty, lwd = lwd, pch = pch, cex = cex,
              col = col, ...)
    } else {
      ## Handle irregular x$comps:
      matplot(y, xlab = xlab, ylab = ylab, main = lmain,
              xaxt = "n", type = type, lty = lty, lwd = lwd,
              pch = pch, cex = cex, col = col, ...)
      axis(1, seq(along = x$comps), x$comps)
    }
    if (!missing(legendpos)) {
      do.call("legend", c(list(legendpos, estnames, col = col),
                          if (dolines) list(lty = lty, lwd = lwd),
                          if (dopoints) list(pch = pch, pt.cex = cex,
                                             pt.lwd = lwd)))
    }
    if (nResp > 1 && (resp %% (nCols * nRows) == 0 || resp == nResp)) {
      ## Last plot on a page; add outer margin text and title:
      mtext(mXlab, side = 1, outer = TRUE)
      mtext(mYlab, side = 2, outer = TRUE)
      if (!missing(main)) title(main, outer = TRUE)
    }
  }
}


###
### biplot
###



#' @name biplot.mvr
#' @title Biplots of PLSR and PCR Models.
#'
#' @description Biplot method for \code{mvr} objects.
#'
#' @details \code{biplot.mvr} can also be called through the \code{mvr} plot method by
#' specifying \code{plottype = "biplot"}.
#'
#' @param x an \code{mvr} object.
#' @param comps integer vector of length two.  The components to plot.
#' @param which character.  Which matrices to plot.  One of \code{"x"} (X
#' scores and loadings), \code{"y"} (Y scores and loadings), \code{"scores"} (X
#' and Y scores) and \code{"loadings"} (X and Y loadings).
#' @param var.axes logical.  If \code{TRUE}, the second set of points have
#' arrows representing them.
#' @param xlabs either a character vector of labels for the first set of
#' points, or \code{FALSE} for no labels.  If missing, the row names of the
#' first matrix is used as labels.
#' @param ylabs either a character vector of labels for the second set of
#' points, or \code{FALSE} for no labels.  If missing, the row names of the
#' second matrix is used as labels.
#' @param main character.  Title of plot.  If missing, a title is constructed
#' by \code{biplot.mvr}.
#' @param \dots Further arguments passed on to \code{biplot.default}.
#' @author Ron Wehrens and Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}}, \code{\link{plot.mvr}},
#' \code{\link{biplot.default}}
#' @keywords regression multivariate hplot
#' @examples
#'
#' data(oliveoil)
#' mod <- plsr(sensory ~ chemical, data = oliveoil)
#' \dontrun{
#' ## These are equivalent
#' biplot(mod)
#' plot(mod, plottype = "biplot")
#'
#' ## The four combinations of x and y points:
#' par(mfrow = c(2,2))
#' biplot(mod, which = "x") # Default
#' biplot(mod, which = "y")
#' biplot(mod, which = "scores")
#' biplot(mod, which = "loadings")
#' }
#'
#' @export
biplot.mvr <- function(x, comps = 1:2,
                       which = c("x", "y", "scores", "loadings"),
                       var.axes = FALSE, xlabs, ylabs, main, ...)
{
  if (length(comps) != 2) stop("Exactly 2 components must be selected.")
  which <- match.arg(which)
  switch(which,
         x = {
           objects <- x$scores
           vars <- x$loadings
           title <- "X scores and X loadings"
         },
         y = {
           objects <- x$Yscores
           vars <- x$Yloadings
           title <- "Y scores and Y loadings"
         },
         scores = {
           objects <- x$scores
           vars <- x$Yscores
           title <- "X scores and Y scores"
         },
         loadings = {
           objects <- x$loadings
           vars <- x$Yloadings
           title <- "X loadings and Y loadings"
         }
  )
  if (is.null(objects) || is.null(vars))
    stop("'x' lacks the required scores/loadings.")
  ## Build a call to `biplot'
  mc <- match.call()
  mc$comps <- mc$which <- NULL
  mc$x <- objects[,comps, drop = FALSE]
  mc$y <- vars[,comps, drop = FALSE]
  if (missing(main)) mc$main <- title
  if (missing(var.axes)) mc$var.axes = FALSE
  if (!missing(xlabs) && isFALSE(xlabs))
    mc$xlabs <- rep("o", nrow(objects))
  if (!missing(ylabs) && isFALSE(ylabs))
    mc$ylabs <- rep("o", nrow(vars))
  mc[[1]] <- as.name("biplot")
  ## Evaluate the call:
  eval(mc, parent.frame())
}