File: simpls.fit.R

package info (click to toggle)
r-cran-pls 2.8-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,056 kB
  • sloc: sh: 13; makefile: 2
file content (184 lines) | stat: -rw-r--r-- 7,911 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
### simpls.fit.R: SimPLS fit algorithm.
###
### Implements an adapted version of the SIMPLS algorithm described in
###   de Jong, S. (1993) SIMPLS: an alternative approach to partial least
###   squares regression.  \emph{Chemometrics and Intelligent Laboratory
###   Systems}, \bold{18}, 251--263.



#' @title Sijmen de Jong's SIMPLS
#'
#' @description Fits a PLSR model with the SIMPLS algorithm.
#'
#' @details This function should not be called directly, but through the generic
#' functions \code{plsr} or \code{mvr} with the argument
#' \code{method="simpls"}.  SIMPLS is much faster than the NIPALS algorithm,
#' especially when the number of X variables increases, but gives slightly
#' different results in the case of multivariate Y.  SIMPLS truly maximises the
#' covariance criterion.  According to de Jong, the standard PLS2 algorithms
#' lie closer to ordinary least-squares regression where a precise fit is
#' sought; SIMPLS lies closer to PCR with stable predictions.
#'
#' @param X a matrix of observations.  \code{NA}s and \code{Inf}s are not
#' allowed.
#' @param Y a vector or matrix of responses.  \code{NA}s and \code{Inf}s are
#' not allowed.
#' @param ncomp the number of components to be used in the modelling.
#' @param center logical, determines if the \eqn{X} and \eqn{Y} matrices are
#' mean centered or not. Default is to perform mean centering.
#' @param stripped logical.  If \code{TRUE} the calculations are stripped as
#' much as possible for speed; this is meant for use with cross-validation or
#' simulations when only the coefficients are needed.  Defaults to
#' \code{FALSE}.
#' @param \dots other arguments.  Currently ignored.
#' @return A list containing the following components is returned:
#' \item{coefficients}{an array of regression coefficients for 1, \ldots{},
#' \code{ncomp} components.  The dimensions of \code{coefficients} are
#' \code{c(nvar, npred, ncomp)} with \code{nvar} the number of \code{X}
#' variables and \code{npred} the number of variables to be predicted in
#' \code{Y}.} \item{scores}{a matrix of scores.} \item{loadings}{a matrix of
#' loadings.} \item{Yscores}{a matrix of Y-scores.} \item{Yloadings}{a matrix
#' of Y-loadings.} \item{projection}{the projection matrix used to convert X to
#' scores.} \item{Xmeans}{a vector of means of the X variables.}
#' \item{Ymeans}{a vector of means of the Y variables.} \item{fitted.values}{an
#' array of fitted values.  The dimensions of \code{fitted.values} are
#' \code{c(nobj, npred, ncomp)} with \code{nobj} the number samples and
#' \code{npred} the number of Y variables.} \item{residuals}{an array of
#' regression residuals.  It has the same dimensions as \code{fitted.values}.}
#' \item{Xvar}{a vector with the amount of X-variance explained by each
#' component.} \item{Xtotvar}{Total variance in \code{X}.}
#'
#' If \code{stripped} is \code{TRUE}, only the components \code{coefficients},
#' \code{Xmeans} and \code{Ymeans} are returned.
#' @author Ron Wehrens and Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}} \code{\link{plsr}} \code{\link{pcr}}
#' \code{\link{kernelpls.fit}} \code{\link{widekernelpls.fit}}
#' \code{\link{oscorespls.fit}}
#' @references de Jong, S. (1993) SIMPLS: an alternative approach to partial
#' least squares regression.  \emph{Chemometrics and Intelligent Laboratory
#' Systems}, \bold{18}, 251--263.
#' @keywords regression multivariate
#' @export
simpls.fit <- function(X, Y, ncomp, center = TRUE, stripped = FALSE, ...) {
    Y <- as.matrix(Y)
    if (!stripped) {
        ## Save dimnames:
        dnX <- dimnames(X)
        dnY <- dimnames(Y)
    }
    ## Remove dimnames during calculation (doesn't seem to matter; in fact,
    ## as far as it has any effect, it hurts a tiny bit in most situations).
    dimnames(X) <- dimnames(Y) <- NULL

    nobj  <- dim(X)[1] # n in paper
    npred <- dim(X)[2] # p in paper
    nresp <- dim(Y)[2]

    V <- R <- matrix(0, nrow = npred, ncol = ncomp)
    tQ <- matrix(0, nrow = ncomp, ncol = nresp) # Y loadings; transposed
    B <- array(0, dim = c(npred, nresp, ncomp))
    if (!stripped) {
        P <- R
        U <- TT <- matrix(0, nrow = nobj, ncol = ncomp)
        fitted <- array(0, dim = c(nobj, nresp, ncomp))
    }

    ## Center variables:
    if (center) {
        Xmeans <- colMeans(X)
        X <- X - rep(Xmeans, each = nobj) # This is not strictly neccessary
                                        # (but might be good for accuracy?)!
        Ymeans <- colMeans(Y)
        Y <- Y - rep(Ymeans, each = nobj)
    } else {
        ## Set means to zero. Will ensure that predictions do not take the
        ## mean into account.
        Xmeans <- rep_len(0, npred)
        Ymeans <- rep_len(0, nresp)
    }

    S <- crossprod(X, Y)

    for (a in 1:ncomp) {
        ## A more efficient way of calculating the Y block factor weights
        ## q.a <- svd(S)$v[,1]:
        if (nresp == 1) {
            q.a <- 1
        } else {
            if (nresp < npred) {
                q.a <- eigen(crossprod(S), symmetric = TRUE)$vectors[,1]
            } else {
                q.a <- c(crossprod(S, eigen(S %*% t(S),
                                            symmetric = TRUE)$vectors[,1]))
                q.a <- q.a / sqrt(c(crossprod(q.a)))
            }
        }
        r.a <- S %*% q.a                 # X block factor weights
        t.a <- X %*% r.a
        if (center) {
            t.a <- t.a - mean(t.a)       # center scores
        }
        tnorm <- sqrt(c(crossprod(t.a)))
        t.a <- t.a / tnorm               # normalize scores
        r.a <- r.a / tnorm               # adapt weights accordingly
        p.a <- crossprod(X, t.a)         # X block factor loadings
        q.a <- crossprod(Y, t.a)         # Y block factor loadings
        v.a <- p.a			 # init orthogonal loadings
        if (a > 1) {
            v.a <- v.a - V %*% crossprod(V, p.a) # v.a orth to previous loadings
        }
        v.a <- v.a / sqrt(c(crossprod(v.a))) # normalize orthogonal loadings
        S <- S - v.a %*% crossprod(v.a, S) # deflate S

        R[,a]  <- r.a
        tQ[a,] <- q.a
        V[,a]  <- v.a

        B[,,a] <- R[,1:a, drop=FALSE] %*% tQ[1:a,, drop=FALSE]

        if (!stripped) {
            u.a <- Y %*% q.a # Y block factor scores
            if (a > 1)
                u.a <- u.a - TT %*% crossprod(TT, u.a) # u.a orth to previous t.a values
            P[,a]  <- p.a
            TT[,a] <- t.a
            U[,a]  <- u.a
            ## (For very tall, slim X and Y, X %*% B[,,a] is slightly faster,
            ## due to less overhead.)
            fitted[,,a] <- TT[,1:a] %*% tQ[1:a,, drop=FALSE]
        }
    }

    if (stripped) {
        ## Return as quickly as possible
        list(coefficients = B, Xmeans = Xmeans, Ymeans = Ymeans)
    } else {
        residuals <- - fitted + c(Y)
        fitted <- fitted + rep(Ymeans, each = nobj) # Add mean

        ## Add dimnames and classes:
        objnames <- dnX[[1]]
        if (is.null(objnames)) objnames <- dnY[[1]]
        prednames <- dnX[[2]]
        respnames <- dnY[[2]]
        compnames <- paste("Comp", 1:ncomp)
        nCompnames <- paste(1:ncomp, "comps")
        dimnames(TT) <- dimnames(U) <- list(objnames, compnames)
        dimnames(R) <- dimnames(P) <- list(prednames, compnames)
        dimnames(tQ) <- list(compnames, respnames)
        dimnames(B) <- list(prednames, respnames, nCompnames)
        dimnames(fitted) <- dimnames(residuals) <-
            list(objnames, respnames, nCompnames)
        class(TT) <- class(U) <- "scores"
        class(P) <- class(tQ) <- "loadings"

        list(coefficients = B,
             scores = TT, loadings = P,
             Yscores = U, Yloadings = t(tQ),
             projection = R,
             Xmeans = Xmeans, Ymeans = Ymeans,
             fitted.values = fitted, residuals = residuals,
             Xvar = colSums(P * P), Xtotvar = sum(X * X))
    }
}