1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
### simpls.fit.R: SimPLS fit algorithm.
###
### Implements an adapted version of the SIMPLS algorithm described in
### de Jong, S. (1993) SIMPLS: an alternative approach to partial least
### squares regression. \emph{Chemometrics and Intelligent Laboratory
### Systems}, \bold{18}, 251--263.
#' @title Sijmen de Jong's SIMPLS
#'
#' @description Fits a PLSR model with the SIMPLS algorithm.
#'
#' @details This function should not be called directly, but through the generic
#' functions \code{plsr} or \code{mvr} with the argument
#' \code{method="simpls"}. SIMPLS is much faster than the NIPALS algorithm,
#' especially when the number of X variables increases, but gives slightly
#' different results in the case of multivariate Y. SIMPLS truly maximises the
#' covariance criterion. According to de Jong, the standard PLS2 algorithms
#' lie closer to ordinary least-squares regression where a precise fit is
#' sought; SIMPLS lies closer to PCR with stable predictions.
#'
#' @param X a matrix of observations. \code{NA}s and \code{Inf}s are not
#' allowed.
#' @param Y a vector or matrix of responses. \code{NA}s and \code{Inf}s are
#' not allowed.
#' @param ncomp the number of components to be used in the modelling.
#' @param center logical, determines if the \eqn{X} and \eqn{Y} matrices are
#' mean centered or not. Default is to perform mean centering.
#' @param stripped logical. If \code{TRUE} the calculations are stripped as
#' much as possible for speed; this is meant for use with cross-validation or
#' simulations when only the coefficients are needed. Defaults to
#' \code{FALSE}.
#' @param \dots other arguments. Currently ignored.
#' @return A list containing the following components is returned:
#' \item{coefficients}{an array of regression coefficients for 1, \ldots{},
#' \code{ncomp} components. The dimensions of \code{coefficients} are
#' \code{c(nvar, npred, ncomp)} with \code{nvar} the number of \code{X}
#' variables and \code{npred} the number of variables to be predicted in
#' \code{Y}.} \item{scores}{a matrix of scores.} \item{loadings}{a matrix of
#' loadings.} \item{Yscores}{a matrix of Y-scores.} \item{Yloadings}{a matrix
#' of Y-loadings.} \item{projection}{the projection matrix used to convert X to
#' scores.} \item{Xmeans}{a vector of means of the X variables.}
#' \item{Ymeans}{a vector of means of the Y variables.} \item{fitted.values}{an
#' array of fitted values. The dimensions of \code{fitted.values} are
#' \code{c(nobj, npred, ncomp)} with \code{nobj} the number samples and
#' \code{npred} the number of Y variables.} \item{residuals}{an array of
#' regression residuals. It has the same dimensions as \code{fitted.values}.}
#' \item{Xvar}{a vector with the amount of X-variance explained by each
#' component.} \item{Xtotvar}{Total variance in \code{X}.}
#'
#' If \code{stripped} is \code{TRUE}, only the components \code{coefficients},
#' \code{Xmeans} and \code{Ymeans} are returned.
#' @author Ron Wehrens and Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}} \code{\link{plsr}} \code{\link{pcr}}
#' \code{\link{kernelpls.fit}} \code{\link{widekernelpls.fit}}
#' \code{\link{oscorespls.fit}}
#' @references de Jong, S. (1993) SIMPLS: an alternative approach to partial
#' least squares regression. \emph{Chemometrics and Intelligent Laboratory
#' Systems}, \bold{18}, 251--263.
#' @keywords regression multivariate
#' @export
simpls.fit <- function(X, Y, ncomp, center = TRUE, stripped = FALSE, ...) {
Y <- as.matrix(Y)
if (!stripped) {
## Save dimnames:
dnX <- dimnames(X)
dnY <- dimnames(Y)
}
## Remove dimnames during calculation (doesn't seem to matter; in fact,
## as far as it has any effect, it hurts a tiny bit in most situations).
dimnames(X) <- dimnames(Y) <- NULL
nobj <- dim(X)[1] # n in paper
npred <- dim(X)[2] # p in paper
nresp <- dim(Y)[2]
V <- R <- matrix(0, nrow = npred, ncol = ncomp)
tQ <- matrix(0, nrow = ncomp, ncol = nresp) # Y loadings; transposed
B <- array(0, dim = c(npred, nresp, ncomp))
if (!stripped) {
P <- R
U <- TT <- matrix(0, nrow = nobj, ncol = ncomp)
fitted <- array(0, dim = c(nobj, nresp, ncomp))
}
## Center variables:
if (center) {
Xmeans <- colMeans(X)
X <- X - rep(Xmeans, each = nobj) # This is not strictly neccessary
# (but might be good for accuracy?)!
Ymeans <- colMeans(Y)
Y <- Y - rep(Ymeans, each = nobj)
} else {
## Set means to zero. Will ensure that predictions do not take the
## mean into account.
Xmeans <- rep_len(0, npred)
Ymeans <- rep_len(0, nresp)
}
S <- crossprod(X, Y)
for (a in 1:ncomp) {
## A more efficient way of calculating the Y block factor weights
## q.a <- svd(S)$v[,1]:
if (nresp == 1) {
q.a <- 1
} else {
if (nresp < npred) {
q.a <- eigen(crossprod(S), symmetric = TRUE)$vectors[,1]
} else {
q.a <- c(crossprod(S, eigen(S %*% t(S),
symmetric = TRUE)$vectors[,1]))
q.a <- q.a / sqrt(c(crossprod(q.a)))
}
}
r.a <- S %*% q.a # X block factor weights
t.a <- X %*% r.a
if (center) {
t.a <- t.a - mean(t.a) # center scores
}
tnorm <- sqrt(c(crossprod(t.a)))
t.a <- t.a / tnorm # normalize scores
r.a <- r.a / tnorm # adapt weights accordingly
p.a <- crossprod(X, t.a) # X block factor loadings
q.a <- crossprod(Y, t.a) # Y block factor loadings
v.a <- p.a # init orthogonal loadings
if (a > 1) {
v.a <- v.a - V %*% crossprod(V, p.a) # v.a orth to previous loadings
}
v.a <- v.a / sqrt(c(crossprod(v.a))) # normalize orthogonal loadings
S <- S - v.a %*% crossprod(v.a, S) # deflate S
R[,a] <- r.a
tQ[a,] <- q.a
V[,a] <- v.a
B[,,a] <- R[,1:a, drop=FALSE] %*% tQ[1:a,, drop=FALSE]
if (!stripped) {
u.a <- Y %*% q.a # Y block factor scores
if (a > 1)
u.a <- u.a - TT %*% crossprod(TT, u.a) # u.a orth to previous t.a values
P[,a] <- p.a
TT[,a] <- t.a
U[,a] <- u.a
## (For very tall, slim X and Y, X %*% B[,,a] is slightly faster,
## due to less overhead.)
fitted[,,a] <- TT[,1:a] %*% tQ[1:a,, drop=FALSE]
}
}
if (stripped) {
## Return as quickly as possible
list(coefficients = B, Xmeans = Xmeans, Ymeans = Ymeans)
} else {
residuals <- - fitted + c(Y)
fitted <- fitted + rep(Ymeans, each = nobj) # Add mean
## Add dimnames and classes:
objnames <- dnX[[1]]
if (is.null(objnames)) objnames <- dnY[[1]]
prednames <- dnX[[2]]
respnames <- dnY[[2]]
compnames <- paste("Comp", 1:ncomp)
nCompnames <- paste(1:ncomp, "comps")
dimnames(TT) <- dimnames(U) <- list(objnames, compnames)
dimnames(R) <- dimnames(P) <- list(prednames, compnames)
dimnames(tQ) <- list(compnames, respnames)
dimnames(B) <- list(prednames, respnames, nCompnames)
dimnames(fitted) <- dimnames(residuals) <-
list(objnames, respnames, nCompnames)
class(TT) <- class(U) <- "scores"
class(P) <- class(tQ) <- "loadings"
list(coefficients = B,
scores = TT, loadings = P,
Yscores = U, Yloadings = t(tQ),
projection = R,
Xmeans = Xmeans, Ymeans = Ymeans,
fitted.values = fitted, residuals = residuals,
Xvar = colSums(P * P), Xtotvar = sum(X * X))
}
}
|