1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Efficient Computation of Ordinary and Generalized Poisson Binomial Distributions</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Efficient Computation of Ordinary and
Generalized Poisson Binomial Distributions</h1>
<div id="TOC">
<ul>
<li><a href="#introduction" id="toc-introduction">Introduction</a>
<ul>
<li><a href="#ordinary-poisson-binomial-distribution" id="toc-ordinary-poisson-binomial-distribution">Ordinary Poisson
Binomial Distribution</a></li>
<li><a href="#generalized-poisson-binomial-distribution" id="toc-generalized-poisson-binomial-distribution">Generalized Poisson
Binomial Distribution</a></li>
<li><a href="#existing-r-packages" id="toc-existing-r-packages">Existing
R Packages</a></li>
</ul></li>
<li><a href="#exact-procedures" id="toc-exact-procedures">Exact
Procedures</a>
<ul>
<li><a href="#ordinary-poisson-binomial-distribution-1" id="toc-ordinary-poisson-binomial-distribution-1">Ordinary Poisson
Binomial Distribution</a></li>
<li><a href="#generalized-poisson-binomial-distribution-1" id="toc-generalized-poisson-binomial-distribution-1">Generalized Poisson
Binomial Distribution</a></li>
<li><a href="#examples" id="toc-examples">Examples</a></li>
</ul></li>
<li><a href="#approximations" id="toc-approximations">Approximations</a>
<ul>
<li><a href="#ordinary-poisson-binomial-distribution-2" id="toc-ordinary-poisson-binomial-distribution-2">Ordinary Poisson
Binomial Distribution</a></li>
<li><a href="#generalized-poisson-binomial-distribution-2" id="toc-generalized-poisson-binomial-distribution-2">Generalized Poisson
Binomial Distribution</a></li>
<li><a href="#examples-1" id="toc-examples-1">Examples</a></li>
</ul></li>
<li><a href="#handling-special-cases-zeros-and-ones" id="toc-handling-special-cases-zeros-and-ones">Handling special cases,
zeros and ones</a>
<ul>
<li><a href="#ordinary-poisson-binomial-distributions" id="toc-ordinary-poisson-binomial-distributions">Ordinary Poisson
Binomial Distributions</a></li>
<li><a href="#generalized-poisson-binomial-distributions" id="toc-generalized-poisson-binomial-distributions">Generalized Poisson
Binomial Distributions</a></li>
</ul></li>
<li><a href="#usage-with-rcpp" id="toc-usage-with-rcpp">Usage with
Rcpp</a></li>
</ul>
</div>
<div id="introduction" class="section level2">
<h2>Introduction</h2>
<p>The Poisson binomial distribution (in the following abbreviated as
PBD) is becoming increasingly important, especially in the areas of
statistics, finance, insurance mathematics and quality management. This
package provides functions for two types of PBDs: ordinary and
generalized PBDs (henceforth referred to as O-PBDs and G-PBDs).</p>
<div id="ordinary-poisson-binomial-distribution" class="section level3">
<h3>Ordinary Poisson Binomial Distribution</h3>
<p>The O-PBD is the distribution of the sum of a number <span class="math inline">\(n\)</span> of independent Bernoulli-distributed
random indicators <span class="math inline">\(X_i \in \{0, 1\}\)</span>
<span class="math inline">\((i = 1, ..., n)\)</span>: <span class="math display">\[X := \sum_{i = 1}^{n}{X_i}.\]</span> Each of the
<span class="math inline">\(X_i\)</span> possesses a predefined
probability of success <span class="math inline">\(p_i := P(X_i =
1)\)</span> (subsequently <span class="math inline">\(P(X_i = 0) = 1 -
p_i =: q_i\)</span>). With this, mean, variance and skewness can be
expressed as <span class="math display">\[E(X) = \sum_{i = 1}^{n}{p_i}
\quad \quad Var(X) = \sum_{i = 1}^{n}{p_i q_i} \quad \quad Skew(X) =
\frac{\sum_{i = 1}^{n}{p_i q_i(q_i - p_i)}}{\sqrt{Var(X)}^3}.\]</span>
All possible observations are in <span class="math inline">\(\{0, ...,
n\}\)</span>.</p>
</div>
<div id="generalized-poisson-binomial-distribution" class="section level3">
<h3>Generalized Poisson Binomial Distribution</h3>
<p>The G-PBD is defined very similar. Again, it is the distribution of a
sum random variables, but here, each <span class="math inline">\(X_i \in
\{u_i, v_i\}\)</span> with <span class="math inline">\(P(X_i = u_i) =:
p_i\)</span> and <span class="math inline">\(P(X_i = v_i) = 1 - p_i =:
q_i\)</span>. Using ordinary Bernoulli-distributed random variables
<span class="math inline">\(Y_i\)</span>, <span class="math inline">\(X_i\)</span> can be expressed as <span class="math inline">\(X_i = u_i Y_i + v_i(1 - Y_i) = v_i + Y_i \cdot
(u_i - v_i)\)</span>. As a result, mean, variance and skewness are given
by <span class="math display">\[E(X) = \sum_{i = 1}^{n}{v_i} + \sum_{i =
1}^{n}{p_i (u_i - v_i)} \quad \quad Var(X) = \sum_{i = 1}^{n}{p_i
q_i(u_i - v_i)^2} \\Skew(X) = \frac{\sum_{i = 1}^{n}{p_i q_i(q_i -
p_i)(u_i - v_i)^3}}{\sqrt{Var(X)}^3}.\]</span> All possible observations
are in <span class="math inline">\(\{U, ..., V\}\)</span> with <span class="math inline">\(U := \sum_{i = 1}^{n}{\min\{u_i, v_i\}}\)</span>
and <span class="math inline">\(V := \sum_{i = 1}^{n}{\max\{u_i,
v_i\}}\)</span>. Note that the size <span class="math inline">\(m := V -
U\)</span> of the distribution does not generally equal <span class="math inline">\(n\)</span>!</p>
</div>
<div id="existing-r-packages" class="section level3">
<h3>Existing R Packages</h3>
<p>Computing these distributions exactly is computationally demanding,
but in the last few years, some efficient algorithms have been
developed. Particularly significant in this respect are the works of <a href="http://dx.doi.org/10.1016/j.csda.2012.10.006">Hong (2013)</a>, who
derived the DFT-CF procedure for O-PBDs, <a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao &
Brunner (2018)</a> who developed two immensely faster algorithms for
O-PBDs, namely the DC and DC-FFT procedures, and <a href="https://doi.org/10.1080/00949655.2018.1440294">Zhang, Hong and
Balakrishnan (2018)</a> who further developed <a href="http://dx.doi.org/10.1016/j.csda.2012.10.006">Hong’s (2013)</a>
DFT-CF algorithm for G-PBDs (in the following, this generalized
procedure is referred to as G-DFT-CF). Still, only a few R packages
exist for the calculation of either ordinary and generalized PBDs,
e.g. <a href="https://cran.r-project.org/package=poibin"><code>poibin</code></a>
and <a href="https://cran.r-project.org/package=poisbinom"><code>poisbinom</code></a>
for O-PBDs and <a href="https://cran.r-project.org/package=GPB"><code>GPB</code></a> for
G-PDBs. Before the release of this <code>PoissonBinomial</code> package,
there has been no R package that implemented the DC and DC-FFT
algorithms of <a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao &
Brunner (2018)</a>, as they only published a <a href="https://github.com/biscarri1/convpoibin">reference
implementation</a> for R, but refrained from releasing it as a package.
Additionally, there are no comparable approaches for G-PBDs to date.</p>
<p>The <code>poibin</code> package implements the DFT-CF algorithm along
with the exact recursive method of <a href="http://dx.doi.org/10.1109/TR.1984.5221843">Barlow & Heidtmann
(1984)</a> and Normal and Poisson approximations. However, both exact
procedures of this package possess some disadvantages, i.e. they are
relatively slow at computing very large distributions, with the
recursive algorithm being also very memory consuming. The G-DFT-CF
procedure is implemented in the <code>GPB</code> package and inherits
this performance drawback. The <code>poisbinom</code> package provides a
more efficient and much faster DFT-CF implementation. The performance
improvement over the <code>poibin</code> package lies in the use of the
<a href="http://www.fftw.org">FFTW C library</a>. Unfortunately, it
sometimes yields some negative probabilities in the tail regions,
especially for large distributions. However, this numerical issue has
not been addressed to date. This <code>PoissonBinomial</code> also
utilizes FFTW for both DFT-CF and G-DFT-CF algorithms, but corrects that
issue. In addition to the disadvantages regarding computational speed
(<code>poibin</code> and <code>GPB</code>) or numerics
(<code>poisbinom</code>), especially for very large distributions, the
aforementioned packages do not provide headers for their internal C/C++
functions, so that they cannot be imported directly by C or C++ code of
other packages that use for example <code>Rcpp</code>.</p>
<p>In some situations, people might have to deal with Poisson binomial
distributions that include Bernoulli variables with <span class="math inline">\(p_i \in \{0, 1\}\)</span>. Calculation performance
can be further optimized by handling these indicators before the actual
computations. Approximations also benefit from this in terms of
accuracy. None of the aforementioned packages implements such
optimizations. Therefore, the advantages of this
<code>PoissonBinomial</code> package can be summarized as follows:</p>
<ul>
<li>Efficient computation of very large distributions with both exact
and approximate algorithms for O-PBDs and G-PBDs</li>
<li>Provides headers for the C++ functions so that other packages may
include them in their own C++ code</li>
<li>Handles (sometimes large numbers of) 0- and 1-probabilities to speed
up performance</li>
</ul>
<p>In total, this package includes 10 different algorithms of computing
ordinary Poisson binomial distributions, including optimized versions of
the Normal, Refined Normal and Poisson approaches, and 5 approaches for
generalized PBDs. In addition, the implementation of the exact recursive
procedure for O-PBDs was rewritten so that it is considerably less
memory intensive: the <code>poibin</code> implementation needs the
memory equivalent of <span class="math inline">\((n + 1)^2\)</span>
values of type <code>double</code>, while ours only needs <span class="math inline">\(3 \cdot (n + 1)\)</span>.</p>
<hr />
</div>
</div>
<div id="exact-procedures" class="section level2">
<h2>Exact Procedures</h2>
<div id="ordinary-poisson-binomial-distribution-1" class="section level3">
<h3>Ordinary Poisson Binomial Distribution</h3>
<p>In this package implements the following exact algorithms for
computing ordinary Poisson binomial distributions:</p>
<ul>
<li>the <em>Direct Convolution</em> approach of <a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao &
Brunner (2018)</a>,</li>
<li>the <em>Divide & Conquer FFT Tree Convolution</em> procedure of
<a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao
& Brunner (2018)</a>,</li>
<li>the <em>Discrete Fourier Transformation of the Characteristic
Function</em> algorithm of <a href="http://dx.doi.org/10.1016/j.csda.2012.10.006">Hong (2013)</a>
and</li>
<li>the <em>Recursive Formula</em> of <a href="http://dx.doi.org/10.1109/TR.1984.5221843">Barlow & Heidtmann
(1984)</a>.</li>
</ul>
</div>
<div id="generalized-poisson-binomial-distribution-1" class="section level3">
<h3>Generalized Poisson Binomial Distribution</h3>
<p>For generalized Poisson binomial distributions, this package
provides:</p>
<ul>
<li>a generalized adaptation of the <em>Direct Convolution</em> approach
of <a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao
& Brunner (2018)</a>,</li>
<li>a generalized <em>Divide & Conquer FFT Tree Convolution</em>,
inspired by the respective procedure of <a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao &
Brunner (2018)</a> for O-PDBs,</li>
<li>the <em>Generalized Discrete Fourier Transformation of the
Characteristic Function</em> algorithm of <a href="https://doi.org/10.1080/00949655.2018.1440294">Zhang, Hong and
Balakrishnan (2018)</a>.</li>
</ul>
</div>
<div id="examples" class="section level3">
<h3>Examples</h3>
<p>Examples and performance comparisons of these procedures are
presented in a <a href="proc_exact.html">separate vignette</a>.</p>
<hr />
</div>
</div>
<div id="approximations" class="section level2">
<h2>Approximations</h2>
<div id="ordinary-poisson-binomial-distribution-2" class="section level3">
<h3>Ordinary Poisson Binomial Distribution</h3>
<p>In addition, the following O-PBD approximation methods are
included:</p>
<ul>
<li>the <em>Poisson Approximation</em> approach,</li>
<li>the <em>Arithmetic Mean Binomial Approximation</em> procedure,</li>
<li><em>Geometric Mean Binomial Approximation</em> algorithms,</li>
<li>the <em>Normal Approximation</em> and</li>
<li>the <em>Refined Normal Approximation</em>.</li>
</ul>
</div>
<div id="generalized-poisson-binomial-distribution-2" class="section level3">
<h3>Generalized Poisson Binomial Distribution</h3>
<p>For G-PBDs, there are</p>
<ul>
<li>the <em>Normal Approximation</em> and</li>
<li>the <em>Refined Normal Approximation</em>.</li>
</ul>
</div>
<div id="examples-1" class="section level3">
<h3>Examples</h3>
<p>Examples and performance comparisons of these approaches are provided
in a <a href="proc_approx.html">separate vignette</a> as well.</p>
<hr />
</div>
</div>
<div id="handling-special-cases-zeros-and-ones" class="section level2">
<h2>Handling special cases, zeros and ones</h2>
<p>Handling special cases, such as ordinary binomial distributions,
zeros and ones is useful to speed up performance. Unfortunately, some
approximations do not work well for Bernoulli trials with <span class="math inline">\(p_i \in \{0, 1\}\)</span>, e.g. the Geometric Mean
Binomial Approximations. This is why handling these values
<em>before</em> the actual computation of the distribution is not only a
performance tweak, but sometimes even a necessity. It is achieved by
some simple preliminary considerations.</p>
<div id="ordinary-poisson-binomial-distributions" class="section level3">
<h3>Ordinary Poisson Binomial Distributions</h3>
<ol style="list-style-type: decimal">
<li>All <span class="math inline">\(p_i = p\)</span> are equal?<br />
In this case, we have a usual binomial distribution. The specified
method of computation is then ignored. In particular, the following
applies:
<ol style="list-style-type: lower-alpha">
<li><span class="math inline">\(p = 0\)</span>: The only observable
value is <span class="math inline">\(0\)</span>, i.e. <span class="math inline">\(P(X = 0) = 1\)</span> and <span class="math inline">\(P(X \neq 0) = 0\)</span>.</li>
<li><span class="math inline">\(p = 1\)</span>: The only observable
value is <span class="math inline">\(n\)</span>, i.e. <span class="math inline">\(P(X = n) = 1\)</span> and <span class="math inline">\(P(X \neq n) = 0\)</span>.</li>
</ol></li>
<li>All <span class="math inline">\(p_i \in \{0, 1\} (i = 1, ...,
n)\)</span>?<br />
If one <span class="math inline">\(p_i\)</span> is 1, it is impossible
to measure 0 successes. Following the same logic, if two <span class="math inline">\(p_i\)</span> are 1, we cannot observe 0 and 1
successes and so on. In general, a number of <span class="math inline">\(n_1\)</span> values with <span class="math inline">\(p_i = 1\)</span> makes it impossible to measure
<span class="math inline">\(0, ..., n_1 - 1\)</span> successes.
Likewise, if there are <span class="math inline">\(n_0\)</span>
Bernoulli trials with <span class="math inline">\(p_i = 0\)</span>, we
cannot observe <span class="math inline">\(n - n_0 + 1, ..., n\)</span>
successes. If all <span class="math inline">\(p_i \in \{0, 1\}\)</span>,
it holds <span class="math inline">\(n = n_0 + n_1\)</span>. As a
result, the only observable value is <span class="math inline">\(n_1\)</span>, i.e. <span class="math inline">\(P(X
= n_1) = 1\)</span> and <span class="math inline">\(P(X \neq n_1) =
0\)</span>.</li>
<li>Are there <span class="math inline">\(p_i \notin \{0,
1\}\)</span>?<br />
Using the deductions from above, we can only observe an “inner”
distribution in the range of <span class="math inline">\(n_1, n_1 + 1,
..., n - n_0\)</span>, i.e. <span class="math inline">\(P(X \in \{n_1,
..., n - n_0\}) > 0\)</span> and <span class="math inline">\(P(X <
n_1) = P(X > n - n_0) = 0\)</span>. As a result, <span class="math inline">\(X\)</span> can be expressed as <span class="math inline">\(X = n_1 + Y\)</span> with <span class="math inline">\(Y \sim PBin(\{p_i|0 < p_i < 1\})\)</span>
and <span class="math inline">\(|\{p_i|0 < p_i < 1\}| = n - n_0 -
n_1\)</span>. Subsequently, the Poisson binomial distribution must only
be computed for <span class="math inline">\(Y\)</span>. Especially, if
there is only one <span class="math inline">\(p_i \notin \{0,
1\}\)</span>, <span class="math inline">\(Y\)</span> follows a Bernoulli
distribution with parameter <span class="math inline">\(p_i\)</span>,
i.e. <span class="math inline">\(P(X = n_1) = P(Y = 0) = 1 -
p_i\)</span> and <span class="math inline">\(P(X = n_1 + 1) = P(Y = 1) =
p_i\)</span>.</li>
</ol>
<p>These cases are illustrated in the following example:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="co"># Case 1</span></span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">rep</span>(<span class="fl">0.3</span>, <span class="dv">7</span>))</span>
<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a><span class="co">#> [1] 0.0823543 0.2470629 0.3176523 0.2268945 0.0972405 0.0250047 0.0035721</span></span>
<span id="cb1-4"><a href="#cb1-4" tabindex="-1"></a><span class="co">#> [8] 0.0002187</span></span>
<span id="cb1-5"><a href="#cb1-5" tabindex="-1"></a><span class="fu">dbinom</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">7</span>, <span class="dv">7</span>, <span class="fl">0.3</span>) <span class="co"># equal results</span></span>
<span id="cb1-6"><a href="#cb1-6" tabindex="-1"></a><span class="co">#> [1] 0.0823543 0.2470629 0.3176523 0.2268945 0.0972405 0.0250047 0.0035721</span></span>
<span id="cb1-7"><a href="#cb1-7" tabindex="-1"></a><span class="co">#> [8] 0.0002187</span></span>
<span id="cb1-8"><a href="#cb1-8" tabindex="-1"></a></span>
<span id="cb1-9"><a href="#cb1-9" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>)) <span class="co"># only 0 is observable</span></span>
<span id="cb1-10"><a href="#cb1-10" tabindex="-1"></a><span class="co">#> [1] 1 0 0 0 0 0 0 0</span></span>
<span id="cb1-11"><a href="#cb1-11" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="dv">0</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>)) <span class="co"># confirmation</span></span>
<span id="cb1-12"><a href="#cb1-12" tabindex="-1"></a><span class="co">#> [1] 1</span></span>
<span id="cb1-13"><a href="#cb1-13" tabindex="-1"></a></span>
<span id="cb1-14"><a href="#cb1-14" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>)) <span class="co"># only 7 is observable</span></span>
<span id="cb1-15"><a href="#cb1-15" tabindex="-1"></a><span class="co">#> [1] 0 0 0 0 0 0 0 1</span></span>
<span id="cb1-16"><a href="#cb1-16" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="dv">7</span>, <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>)) <span class="co"># confirmation</span></span>
<span id="cb1-17"><a href="#cb1-17" tabindex="-1"></a><span class="co">#> [1] 1</span></span>
<span id="cb1-18"><a href="#cb1-18" tabindex="-1"></a></span>
<span id="cb1-19"><a href="#cb1-19" tabindex="-1"></a><span class="co"># Case 2</span></span>
<span id="cb1-20"><a href="#cb1-20" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>)) <span class="co"># only 3 is observable</span></span>
<span id="cb1-21"><a href="#cb1-21" tabindex="-1"></a><span class="co">#> [1] 0 0 0 1 0 0 0 0</span></span>
<span id="cb1-22"><a href="#cb1-22" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="dv">3</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>)) <span class="co"># confirmation</span></span>
<span id="cb1-23"><a href="#cb1-23" tabindex="-1"></a><span class="co">#> [1] 1</span></span>
<span id="cb1-24"><a href="#cb1-24" tabindex="-1"></a></span>
<span id="cb1-25"><a href="#cb1-25" tabindex="-1"></a><span class="co"># Case 3</span></span>
<span id="cb1-26"><a href="#cb1-26" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="fl">0.1</span>, <span class="fl">0.2</span>, <span class="fl">0.4</span>, <span class="fl">0.8</span>, <span class="dv">1</span>)) <span class="co"># only 1-5 are observable</span></span>
<span id="cb1-27"><a href="#cb1-27" tabindex="-1"></a><span class="co">#> [1] 0.0000 0.0864 0.4344 0.3784 0.0944 0.0064 0.0000 0.0000</span></span>
<span id="cb1-28"><a href="#cb1-28" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">5</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="fl">0.1</span>, <span class="fl">0.2</span>, <span class="fl">0.4</span>, <span class="fl">0.8</span>, <span class="dv">1</span>)) <span class="co"># confirmation</span></span>
<span id="cb1-29"><a href="#cb1-29" tabindex="-1"></a><span class="co">#> [1] 0.0864 0.4344 0.3784 0.0944 0.0064</span></span>
<span id="cb1-30"><a href="#cb1-30" tabindex="-1"></a></span>
<span id="cb1-31"><a href="#cb1-31" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="fl">0.4</span>, <span class="dv">1</span>)) <span class="co"># only 1 and 2 are observable</span></span>
<span id="cb1-32"><a href="#cb1-32" tabindex="-1"></a><span class="co">#> [1] 0.0 0.6 0.4 0.0 0.0</span></span>
<span id="cb1-33"><a href="#cb1-33" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">2</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="fl">0.4</span>, <span class="dv">1</span>)) <span class="co"># confirmation</span></span>
<span id="cb1-34"><a href="#cb1-34" tabindex="-1"></a><span class="co">#> [1] 0.6 0.4</span></span></code></pre></div>
</div>
<div id="generalized-poisson-binomial-distributions" class="section level3">
<h3>Generalized Poisson Binomial Distributions</h3>
<ol style="list-style-type: decimal">
<li>All <span class="math inline">\(u_i \in \{0, 1\}\)</span> and all
<span class="math inline">\(v_i = 1 - u_i\)</span>?<br />
Then, it is an ordinary Poisson binomial distribution with parameters
<span class="math inline">\(p_i' = p_i\)</span> for all <span class="math inline">\(i\)</span> for which <span class="math inline">\(u_i = 1\)</span> and <span class="math inline">\(p_i' = 1 - p_i\)</span> otherwise. This
includes all the special cases described above.</li>
<li>All <span class="math inline">\(u_i = u\)</span> are equal and all
<span class="math inline">\(v_i = v\)</span> are equal?<br />
In this case, we have a linearly transformed ordinary Poisson binomial
distribution, i.e. <span class="math inline">\(X\)</span> can be
expressed as <span class="math inline">\(X = uY + v(n - Y)\)</span> with
<span class="math inline">\(Y \sim PBin(p_1, ..., p_n)\)</span>. In
particular, if all <span class="math inline">\(p_i = p\)</span> are also
the same, we have a linear transformation of the usual binomial
distribution, i.e. <span class="math inline">\(X = uZ + v(n -
Z)\)</span> with <span class="math inline">\(Z \sim Bin(n, p)\)</span>.
Summarizing this, the following applies:
<ol style="list-style-type: lower-alpha">
<li>All <span class="math inline">\(p_i = 0\)</span>: The only
observable value is <span class="math inline">\(n \cdot v\)</span>,
i.e. <span class="math inline">\(P(X = n \cdot v) = 1\)</span> and <span class="math inline">\(P(X \neq n \cdot v) = 0\)</span>.</li>
<li>All <span class="math inline">\(p_i = 1\)</span>: The only
observable value is <span class="math inline">\(n \cdot u\)</span>,
i.e. <span class="math inline">\(P(X = n \cdot u) = 1\)</span> and <span class="math inline">\(P(X \neq n \cdot u) = 0\)</span>.</li>
<li>All <span class="math inline">\(p_i = p\)</span>: Observable values
are in <span class="math inline">\(\{u \cdot k + v \cdot (n - k) | k =
0, ..., n\}\)</span> and <span class="math inline">\(P(X = u \cdot k + v
\cdot (n - k)) = P(Z = k)\)</span>.</li>
<li>Otherwise: Observable values are in <span class="math inline">\(\{u
\cdot k + v \cdot (n - k) | k = 0, ..., n\})\)</span> and <span class="math inline">\(P(X = u \cdot k + v(n - k)) = P(Y =
k)\)</span></li>
</ol></li>
<li>All <span class="math inline">\(p_i \in \{0, 1\}\)</span>?<br />
Let <span class="math inline">\(I = \{i\, |\, p_i = 1\} \subseteq \{1,
..., n\}\)</span> and <span class="math inline">\(J = \{i\, |\, p_i =
0\} \subseteq \{1, ..., n\}\)</span>. Then, we have:
<ol style="list-style-type: lower-alpha">
<li>All <span class="math inline">\(p_i = 0\)</span>: The only
observable value is <span class="math inline">\(v^* := \sum_{i =
1}^{n}{v_i}\)</span>, i.e. <span class="math inline">\(P(X = v^*) =
1\)</span> and <span class="math inline">\(P(X \neq v^*) =
0\)</span>.</li>
<li>All <span class="math inline">\(p_i = 1\)</span>: The only
observable value is <span class="math inline">\(u^* := \sum_{i =
1}^{n}{u_i}\)</span>, i.e. <span class="math inline">\(P(X = u^*) =
1\)</span> and <span class="math inline">\(P(X \neq u^*) =
0\)</span>.</li>
<li>Otherwise, The only observable value is <span class="math inline">\(w^* := \sum_{i \in I}{u_i} + \sum_{i \in
J}{v_i}\)</span>, i.e. <span class="math inline">\(P(X = w^*) =
1\)</span> and <span class="math inline">\(P(X \neq w^*) = 0\)</span>.
Note that the case that any <span class="math inline">\(u_i =
v_i\)</span> is equivalent to <span class="math inline">\(p_i =
1\)</span>, because the corresponding random variable <span class="math inline">\(X_i\)</span> has always the same (non-random)
value.<br />
</li>
</ol></li>
<li>Are there <span class="math inline">\(p_i \notin \{0,
1\}\)</span>?<br />
Let <span class="math inline">\(I\)</span>, <span class="math inline">\(J\)</span> and <span class="math inline">\(w^*\)</span> as above and <span class="math inline">\(K = \{i\, |\, p_i > 0 \, \wedge p_i < 1\}
\subseteq \{1, ..., n\}\)</span>. Then, <span class="math inline">\(X\)</span> can be expressed as <span class="math inline">\(X = w^* + Z\)</span> with <span class="math inline">\(Z = \sum_{i \in K}{X_i}\)</span> following a
(reduced) generalized Poisson Bernoulli distribution. In particular, if
only one <span class="math inline">\(p_i \notin \{0, 1\}\)</span>, Z
follows a linearly transformed Bernoulli distribution.</li>
</ol>
<p>These cases are illustrated in the following example:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a>pp <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">7</span>)</span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a>va <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">6</span>, <span class="dv">7</span>, <span class="cn">TRUE</span>)</span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a>vb <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">6</span>, <span class="dv">7</span>, <span class="cn">TRUE</span>)</span>
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a></span>
<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a><span class="co"># Case 1</span></span>
<span id="cb2-7"><a href="#cb2-7" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp, <span class="fu">rep</span>(<span class="dv">1</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">0</span>, <span class="dv">7</span>))</span>
<span id="cb2-8"><a href="#cb2-8" tabindex="-1"></a><span class="co">#> [1] 8.114776e-05 3.112722e-03 4.063146e-02 2.115237e-01 3.793308e-01</span></span>
<span id="cb2-9"><a href="#cb2-9" tabindex="-1"></a><span class="co">#> [6] 2.735489e-01 8.297278e-02 8.798512e-03</span></span>
<span id="cb2-10"><a href="#cb2-10" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp) <span class="co"># equal results</span></span>
<span id="cb2-11"><a href="#cb2-11" tabindex="-1"></a><span class="co">#> [1] 8.114776e-05 3.112722e-03 4.063146e-02 2.115237e-01 3.793308e-01</span></span>
<span id="cb2-12"><a href="#cb2-12" tabindex="-1"></a><span class="co">#> [6] 2.735489e-01 8.297278e-02 8.798512e-03</span></span>
<span id="cb2-13"><a href="#cb2-13" tabindex="-1"></a></span>
<span id="cb2-14"><a href="#cb2-14" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp, <span class="fu">rep</span>(<span class="dv">0</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">1</span>, <span class="dv">7</span>))</span>
<span id="cb2-15"><a href="#cb2-15" tabindex="-1"></a><span class="co">#> [1] 8.798512e-03 8.297278e-02 2.735489e-01 3.793308e-01 2.115237e-01</span></span>
<span id="cb2-16"><a href="#cb2-16" tabindex="-1"></a><span class="co">#> [6] 4.063146e-02 3.112722e-03 8.114776e-05</span></span>
<span id="cb2-17"><a href="#cb2-17" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="dv">1</span> <span class="sc">-</span> pp) <span class="co"># equal results</span></span>
<span id="cb2-18"><a href="#cb2-18" tabindex="-1"></a><span class="co">#> [1] 8.798512e-03 8.297278e-02 2.735489e-01 3.793308e-01 2.115237e-01</span></span>
<span id="cb2-19"><a href="#cb2-19" tabindex="-1"></a><span class="co">#> [6] 4.063146e-02 3.112722e-03 8.114776e-05</span></span>
<span id="cb2-20"><a href="#cb2-20" tabindex="-1"></a></span>
<span id="cb2-21"><a href="#cb2-21" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp, <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">1</span>, <span class="dv">3</span>), <span class="fu">rep</span>(<span class="dv">0</span>, <span class="dv">4</span>)), <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">0</span>, <span class="dv">3</span>), <span class="fu">rep</span>(<span class="dv">1</span>, <span class="dv">4</span>)))</span>
<span id="cb2-22"><a href="#cb2-22" tabindex="-1"></a><span class="co">#> [1] 3.062225e-02 1.998504e-01 3.769239e-01 2.828424e-01 9.450797e-02</span></span>
<span id="cb2-23"><a href="#cb2-23" tabindex="-1"></a><span class="co">#> [6] 1.426764e-02 9.620692e-04 2.331571e-05</span></span>
<span id="cb2-24"><a href="#cb2-24" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">c</span>(pp[<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>], <span class="dv">1</span> <span class="sc">-</span> pp[<span class="dv">4</span><span class="sc">:</span><span class="dv">7</span>])) <span class="co"># reorder for 0 and 1; equal results</span></span>
<span id="cb2-25"><a href="#cb2-25" tabindex="-1"></a><span class="co">#> [1] 3.062225e-02 1.998504e-01 3.769239e-01 2.828424e-01 9.450797e-02</span></span>
<span id="cb2-26"><a href="#cb2-26" tabindex="-1"></a><span class="co">#> [6] 1.426764e-02 9.620692e-04 2.331571e-05</span></span>
<span id="cb2-27"><a href="#cb2-27" tabindex="-1"></a></span>
<span id="cb2-28"><a href="#cb2-28" tabindex="-1"></a><span class="co"># Case 2 a)</span></span>
<span id="cb2-29"><a href="#cb2-29" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">rep</span>(<span class="dv">0</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">4</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">2</span>, <span class="dv">7</span>)) <span class="co"># only 14 is observable</span></span>
<span id="cb2-30"><a href="#cb2-30" tabindex="-1"></a><span class="co">#> [1] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0</span></span>
<span id="cb2-31"><a href="#cb2-31" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="dv">7</span> <span class="sc">*</span> <span class="dv">2</span>, <span class="fu">rep</span>(<span class="dv">0</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">4</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">2</span>, <span class="dv">7</span>)) <span class="co"># confirmation</span></span>
<span id="cb2-32"><a href="#cb2-32" tabindex="-1"></a><span class="co">#> [1] 1</span></span>
<span id="cb2-33"><a href="#cb2-33" tabindex="-1"></a></span>
<span id="cb2-34"><a href="#cb2-34" tabindex="-1"></a><span class="co"># Case 2 b)</span></span>
<span id="cb2-35"><a href="#cb2-35" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">rep</span>(<span class="dv">1</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">4</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">2</span>, <span class="dv">7</span>)) <span class="co"># only 28 is observable</span></span>
<span id="cb2-36"><a href="#cb2-36" tabindex="-1"></a><span class="co">#> [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1</span></span>
<span id="cb2-37"><a href="#cb2-37" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="dv">7</span> <span class="sc">*</span> <span class="dv">4</span>, <span class="fu">rep</span>(<span class="dv">1</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">4</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">2</span>, <span class="dv">7</span>)) <span class="co"># confirmation</span></span>
<span id="cb2-38"><a href="#cb2-38" tabindex="-1"></a><span class="co">#> [1] 1</span></span>
<span id="cb2-39"><a href="#cb2-39" tabindex="-1"></a></span>
<span id="cb2-40"><a href="#cb2-40" tabindex="-1"></a><span class="co"># Case 2 c)</span></span>
<span id="cb2-41"><a href="#cb2-41" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">rep</span>(<span class="fl">0.3</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">4</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">2</span>, <span class="dv">7</span>))</span>
<span id="cb2-42"><a href="#cb2-42" tabindex="-1"></a><span class="co">#> [1] 0.0823543 0.0000000 0.2470629 0.0000000 0.3176523 0.0000000 0.2268945</span></span>
<span id="cb2-43"><a href="#cb2-43" tabindex="-1"></a><span class="co">#> [8] 0.0000000 0.0972405 0.0000000 0.0250047 0.0000000 0.0035721 0.0000000</span></span>
<span id="cb2-44"><a href="#cb2-44" tabindex="-1"></a><span class="co">#> [15] 0.0002187</span></span>
<span id="cb2-45"><a href="#cb2-45" tabindex="-1"></a><span class="fu">dbinom</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">7</span>, <span class="dv">7</span>, <span class="fl">0.3</span>) <span class="co"># equal results, but on different support set</span></span>
<span id="cb2-46"><a href="#cb2-46" tabindex="-1"></a><span class="co">#> [1] 0.0823543 0.2470629 0.3176523 0.2268945 0.0972405 0.0250047 0.0035721</span></span>
<span id="cb2-47"><a href="#cb2-47" tabindex="-1"></a><span class="co">#> [8] 0.0002187</span></span>
<span id="cb2-48"><a href="#cb2-48" tabindex="-1"></a></span>
<span id="cb2-49"><a href="#cb2-49" tabindex="-1"></a><span class="co"># Case 2 d)</span></span>
<span id="cb2-50"><a href="#cb2-50" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp, <span class="fu">rep</span>(<span class="dv">4</span>, <span class="dv">7</span>), <span class="fu">rep</span>(<span class="dv">2</span>, <span class="dv">7</span>))</span>
<span id="cb2-51"><a href="#cb2-51" tabindex="-1"></a><span class="co">#> [1] 8.114776e-05 0.000000e+00 3.112722e-03 0.000000e+00 4.063146e-02</span></span>
<span id="cb2-52"><a href="#cb2-52" tabindex="-1"></a><span class="co">#> [6] 0.000000e+00 2.115237e-01 0.000000e+00 3.793308e-01 0.000000e+00</span></span>
<span id="cb2-53"><a href="#cb2-53" tabindex="-1"></a><span class="co">#> [11] 2.735489e-01 0.000000e+00 8.297278e-02 0.000000e+00 8.798512e-03</span></span>
<span id="cb2-54"><a href="#cb2-54" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp) <span class="co"># equal results, but on different support set</span></span>
<span id="cb2-55"><a href="#cb2-55" tabindex="-1"></a><span class="co">#> [1] 8.114776e-05 3.112722e-03 4.063146e-02 2.115237e-01 3.793308e-01</span></span>
<span id="cb2-56"><a href="#cb2-56" tabindex="-1"></a><span class="co">#> [6] 2.735489e-01 8.297278e-02 8.798512e-03</span></span>
<span id="cb2-57"><a href="#cb2-57" tabindex="-1"></a></span>
<span id="cb2-58"><a href="#cb2-58" tabindex="-1"></a><span class="co"># Case 3 a)</span></span>
<span id="cb2-59"><a href="#cb2-59" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>), va, vb) <span class="co"># only sum(vb) is observable</span></span>
<span id="cb2-60"><a href="#cb2-60" tabindex="-1"></a><span class="co">#> [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0</span></span>
<span id="cb2-61"><a href="#cb2-61" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="fu">sum</span>(vb), <span class="fu">rep</span>(<span class="dv">0</span>, <span class="dv">7</span>), va, vb) <span class="co"># confirmation</span></span>
<span id="cb2-62"><a href="#cb2-62" tabindex="-1"></a><span class="co">#> [1] 1</span></span>
<span id="cb2-63"><a href="#cb2-63" tabindex="-1"></a></span>
<span id="cb2-64"><a href="#cb2-64" tabindex="-1"></a><span class="co"># Case 3 b)</span></span>
<span id="cb2-65"><a href="#cb2-65" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>), va, vb) <span class="co"># only sum(va) is observable</span></span>
<span id="cb2-66"><a href="#cb2-66" tabindex="-1"></a><span class="co">#> [1] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</span></span>
<span id="cb2-67"><a href="#cb2-67" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="fu">sum</span>(va), <span class="fu">rep</span>(<span class="dv">1</span>, <span class="dv">7</span>), va, vb) <span class="co"># confirmation</span></span>
<span id="cb2-68"><a href="#cb2-68" tabindex="-1"></a><span class="co">#> [1] 1</span></span>
<span id="cb2-69"><a href="#cb2-69" tabindex="-1"></a></span>
<span id="cb2-70"><a href="#cb2-70" tabindex="-1"></a><span class="co"># Case 3 c)</span></span>
<span id="cb2-71"><a href="#cb2-71" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>), va, vb) <span class="co"># only sum(va[4:7], vb[1:3]) is observable</span></span>
<span id="cb2-72"><a href="#cb2-72" tabindex="-1"></a><span class="co">#> [1] 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0</span></span>
<span id="cb2-73"><a href="#cb2-73" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="fu">sum</span>(va[<span class="dv">4</span><span class="sc">:</span><span class="dv">7</span>], vb[<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>]), <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>), va, vb) <span class="co"># confirmation</span></span>
<span id="cb2-74"><a href="#cb2-74" tabindex="-1"></a><span class="co">#> [1] 1</span></span>
<span id="cb2-75"><a href="#cb2-75" tabindex="-1"></a></span>
<span id="cb2-76"><a href="#cb2-76" tabindex="-1"></a><span class="co"># Case 4</span></span>
<span id="cb2-77"><a href="#cb2-77" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="fl">0.3</span>, <span class="fl">0.6</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>), va, vb)</span>
<span id="cb2-78"><a href="#cb2-78" tabindex="-1"></a><span class="co">#> [1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.12 0.42 0.00 0.00 0.28</span></span>
<span id="cb2-79"><a href="#cb2-79" tabindex="-1"></a><span class="co">#> [16] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</span></span>
<span id="cb2-80"><a href="#cb2-80" tabindex="-1"></a>sure <span class="ot"><-</span> <span class="fu">sum</span>(va[<span class="dv">5</span><span class="sc">:</span><span class="dv">7</span>], vb[<span class="dv">1</span><span class="sc">:</span><span class="dv">2</span>])</span>
<span id="cb2-81"><a href="#cb2-81" tabindex="-1"></a>x.transf <span class="ot"><-</span> <span class="fu">sum</span>(<span class="fu">pmin</span>(va[<span class="dv">3</span><span class="sc">:</span><span class="dv">4</span>], vb[<span class="dv">3</span><span class="sc">:</span><span class="dv">4</span>]))<span class="sc">:</span><span class="fu">sum</span>(<span class="fu">pmax</span>(va[<span class="dv">3</span><span class="sc">:</span><span class="dv">4</span>], vb[<span class="dv">3</span><span class="sc">:</span><span class="dv">4</span>]))</span>
<span id="cb2-82"><a href="#cb2-82" tabindex="-1"></a><span class="fu">dgpbinom</span>(sure <span class="sc">+</span> x.transf, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="fl">0.3</span>, <span class="fl">0.6</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>), va, vb)</span>
<span id="cb2-83"><a href="#cb2-83" tabindex="-1"></a><span class="co">#> [1] 0.18 0.00 0.00 0.12 0.42 0.00 0.00 0.28</span></span>
<span id="cb2-84"><a href="#cb2-84" tabindex="-1"></a><span class="fu">dgpbinom</span>(x.transf, <span class="fu">c</span>(<span class="fl">0.3</span>, <span class="fl">0.6</span>), va[<span class="dv">3</span><span class="sc">:</span><span class="dv">4</span>], vb[<span class="dv">3</span><span class="sc">:</span><span class="dv">4</span>]) <span class="co"># equal results</span></span>
<span id="cb2-85"><a href="#cb2-85" tabindex="-1"></a><span class="co">#> [1] 0.18 0.00 0.00 0.12 0.42 0.00 0.00 0.28</span></span>
<span id="cb2-86"><a href="#cb2-86" tabindex="-1"></a></span>
<span id="cb2-87"><a href="#cb2-87" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="fl">0.6</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>), va, vb)</span>
<span id="cb2-88"><a href="#cb2-88" tabindex="-1"></a><span class="co">#> [1] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.4 0.0 0.0 0.0 0.0</span></span>
<span id="cb2-89"><a href="#cb2-89" tabindex="-1"></a><span class="co">#> [20] 0.0 0.0 0.0 0.0 0.0 0.0</span></span>
<span id="cb2-90"><a href="#cb2-90" tabindex="-1"></a>sure <span class="ot"><-</span> <span class="fu">sum</span>(va[<span class="dv">5</span><span class="sc">:</span><span class="dv">7</span>], vb[<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>])</span>
<span id="cb2-91"><a href="#cb2-91" tabindex="-1"></a>x.transf <span class="ot"><-</span> va[<span class="dv">4</span>]<span class="sc">:</span>vb[<span class="dv">4</span>]</span>
<span id="cb2-92"><a href="#cb2-92" tabindex="-1"></a><span class="fu">dgpbinom</span>(sure <span class="sc">+</span> x.transf, <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="fl">0.6</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>), va, vb)</span>
<span id="cb2-93"><a href="#cb2-93" tabindex="-1"></a><span class="co">#> [1] 0.6 0.0 0.0 0.4</span></span>
<span id="cb2-94"><a href="#cb2-94" tabindex="-1"></a><span class="fu">dgpbinom</span>(x.transf, <span class="fl">0.6</span>, va[<span class="dv">4</span>], vb[<span class="dv">4</span>]) <span class="co"># equal results; essentially transformed Bernoulli</span></span>
<span id="cb2-95"><a href="#cb2-95" tabindex="-1"></a><span class="co">#> [1] 0.6 0.0 0.0 0.4</span></span></code></pre></div>
<hr />
</div>
</div>
<div id="usage-with-rcpp" class="section level2">
<h2>Usage with Rcpp</h2>
<p>How to import and use the internal C++ functions in <code>Rcpp</code>
based packages is described in a <a href="use_with_rcpp.html">separate
vignette</a>.</p>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|