1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Exact Procedures</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Exact Procedures</h1>
<div id="TOC">
<ul>
<li><a href="#ordinary-poisson-binomial-distribution" id="toc-ordinary-poisson-binomial-distribution">Ordinary Poisson
Binomial Distribution</a>
<ul>
<li><a href="#direct-convolution" id="toc-direct-convolution">Direct
Convolution</a></li>
<li><a href="#divide-conquer-fft-tree-convolution" id="toc-divide-conquer-fft-tree-convolution">Divide & Conquer FFT
Tree Convolution</a></li>
<li><a href="#discrete-fourier-transformation-of-the-characteristic-function" id="toc-discrete-fourier-transformation-of-the-characteristic-function">Discrete
Fourier Transformation of the Characteristic Function</a></li>
<li><a href="#recursive-formula" id="toc-recursive-formula">Recursive
Formula</a></li>
<li><a href="#processing-speed-comparisons" id="toc-processing-speed-comparisons">Processing Speed
Comparisons</a></li>
</ul></li>
<li><a href="#generalized-poisson-binomial-distribution" id="toc-generalized-poisson-binomial-distribution">Generalized Poisson
Binomial Distribution</a>
<ul>
<li><a href="#generalized-direct-convolution" id="toc-generalized-direct-convolution">Generalized Direct
Convolution</a></li>
<li><a href="#generalized-divide-conquer-fft-tree-convolution" id="toc-generalized-divide-conquer-fft-tree-convolution">Generalized
Divide & Conquer FFT Tree Convolution</a></li>
<li><a href="#generalized-discrete-fourier-transformation-of-the-characteristic-function" id="toc-generalized-discrete-fourier-transformation-of-the-characteristic-function">Generalized
Discrete Fourier Transformation of the Characteristic Function</a></li>
<li><a href="#processing-speed-comparisons-1" id="toc-processing-speed-comparisons-1">Processing Speed
Comparisons</a></li>
</ul></li>
</ul>
</div>
<div id="ordinary-poisson-binomial-distribution" class="section level2">
<h2>Ordinary Poisson Binomial Distribution</h2>
<div id="direct-convolution" class="section level3">
<h3>Direct Convolution</h3>
<p>The <em>Direct Convolution</em> (DC) approach is requested with
<code>method = "Convolve"</code>.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a>pp <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a>wt <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb1-4"><a href="#cb1-4" tabindex="-1"></a></span>
<span id="cb1-5"><a href="#cb1-5" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">"Convolve"</span>)</span>
<span id="cb1-6"><a href="#cb1-6" tabindex="-1"></a><span class="co">#> [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26</span></span>
<span id="cb1-7"><a href="#cb1-7" tabindex="-1"></a><span class="co">#> [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19</span></span>
<span id="cb1-8"><a href="#cb1-8" tabindex="-1"></a><span class="co">#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13</span></span>
<span id="cb1-9"><a href="#cb1-9" tabindex="-1"></a><span class="co">#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08</span></span>
<span id="cb1-10"><a href="#cb1-10" tabindex="-1"></a><span class="co">#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05</span></span>
<span id="cb1-11"><a href="#cb1-11" tabindex="-1"></a><span class="co">#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03</span></span>
<span id="cb1-12"><a href="#cb1-12" tabindex="-1"></a><span class="co">#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01</span></span>
<span id="cb1-13"><a href="#cb1-13" tabindex="-1"></a><span class="co">#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02</span></span>
<span id="cb1-14"><a href="#cb1-14" tabindex="-1"></a><span class="co">#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03</span></span>
<span id="cb1-15"><a href="#cb1-15" tabindex="-1"></a><span class="co">#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06</span></span>
<span id="cb1-16"><a href="#cb1-16" tabindex="-1"></a><span class="co">#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10</span></span>
<span id="cb1-17"><a href="#cb1-17" tabindex="-1"></a><span class="co">#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17</span></span>
<span id="cb1-18"><a href="#cb1-18" tabindex="-1"></a><span class="co">#> [61] 9.411166e-19 6.727527e-21</span></span>
<span id="cb1-19"><a href="#cb1-19" tabindex="-1"></a><span class="fu">ppbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">"Convolve"</span>)</span>
<span id="cb1-20"><a href="#cb1-20" tabindex="-1"></a><span class="co">#> [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26</span></span>
<span id="cb1-21"><a href="#cb1-21" tabindex="-1"></a><span class="co">#> [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19</span></span>
<span id="cb1-22"><a href="#cb1-22" tabindex="-1"></a><span class="co">#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13</span></span>
<span id="cb1-23"><a href="#cb1-23" tabindex="-1"></a><span class="co">#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08</span></span>
<span id="cb1-24"><a href="#cb1-24" tabindex="-1"></a><span class="co">#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05</span></span>
<span id="cb1-25"><a href="#cb1-25" tabindex="-1"></a><span class="co">#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02</span></span>
<span id="cb1-26"><a href="#cb1-26" tabindex="-1"></a><span class="co">#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01</span></span>
<span id="cb1-27"><a href="#cb1-27" tabindex="-1"></a><span class="co">#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01</span></span>
<span id="cb1-28"><a href="#cb1-28" tabindex="-1"></a><span class="co">#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01</span></span>
<span id="cb1-29"><a href="#cb1-29" tabindex="-1"></a><span class="co">#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01</span></span>
<span id="cb1-30"><a href="#cb1-30" tabindex="-1"></a><span class="co">#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb1-31"><a href="#cb1-31" tabindex="-1"></a><span class="co">#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb1-32"><a href="#cb1-32" tabindex="-1"></a><span class="co">#> [61] 1.000000e+00 1.000000e+00</span></span></code></pre></div>
</div>
<div id="divide-conquer-fft-tree-convolution" class="section level3">
<h3>Divide & Conquer FFT Tree Convolution</h3>
<p>The <em>Divide & Conquer FFT Tree Convolution</em> (DC-FFT)
approach is requested with <code>method = "DivideFFT"</code>.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a>pp <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a>wt <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a></span>
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">"DivideFFT"</span>)</span>
<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a><span class="co">#> [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26</span></span>
<span id="cb2-7"><a href="#cb2-7" tabindex="-1"></a><span class="co">#> [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19</span></span>
<span id="cb2-8"><a href="#cb2-8" tabindex="-1"></a><span class="co">#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13</span></span>
<span id="cb2-9"><a href="#cb2-9" tabindex="-1"></a><span class="co">#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08</span></span>
<span id="cb2-10"><a href="#cb2-10" tabindex="-1"></a><span class="co">#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05</span></span>
<span id="cb2-11"><a href="#cb2-11" tabindex="-1"></a><span class="co">#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03</span></span>
<span id="cb2-12"><a href="#cb2-12" tabindex="-1"></a><span class="co">#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01</span></span>
<span id="cb2-13"><a href="#cb2-13" tabindex="-1"></a><span class="co">#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02</span></span>
<span id="cb2-14"><a href="#cb2-14" tabindex="-1"></a><span class="co">#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03</span></span>
<span id="cb2-15"><a href="#cb2-15" tabindex="-1"></a><span class="co">#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06</span></span>
<span id="cb2-16"><a href="#cb2-16" tabindex="-1"></a><span class="co">#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10</span></span>
<span id="cb2-17"><a href="#cb2-17" tabindex="-1"></a><span class="co">#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17</span></span>
<span id="cb2-18"><a href="#cb2-18" tabindex="-1"></a><span class="co">#> [61] 9.411166e-19 6.727527e-21</span></span>
<span id="cb2-19"><a href="#cb2-19" tabindex="-1"></a><span class="fu">ppbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">"DivideFFT"</span>)</span>
<span id="cb2-20"><a href="#cb2-20" tabindex="-1"></a><span class="co">#> [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26</span></span>
<span id="cb2-21"><a href="#cb2-21" tabindex="-1"></a><span class="co">#> [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19</span></span>
<span id="cb2-22"><a href="#cb2-22" tabindex="-1"></a><span class="co">#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13</span></span>
<span id="cb2-23"><a href="#cb2-23" tabindex="-1"></a><span class="co">#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08</span></span>
<span id="cb2-24"><a href="#cb2-24" tabindex="-1"></a><span class="co">#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05</span></span>
<span id="cb2-25"><a href="#cb2-25" tabindex="-1"></a><span class="co">#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02</span></span>
<span id="cb2-26"><a href="#cb2-26" tabindex="-1"></a><span class="co">#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01</span></span>
<span id="cb2-27"><a href="#cb2-27" tabindex="-1"></a><span class="co">#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01</span></span>
<span id="cb2-28"><a href="#cb2-28" tabindex="-1"></a><span class="co">#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01</span></span>
<span id="cb2-29"><a href="#cb2-29" tabindex="-1"></a><span class="co">#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01</span></span>
<span id="cb2-30"><a href="#cb2-30" tabindex="-1"></a><span class="co">#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb2-31"><a href="#cb2-31" tabindex="-1"></a><span class="co">#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb2-32"><a href="#cb2-32" tabindex="-1"></a><span class="co">#> [61] 1.000000e+00 1.000000e+00</span></span></code></pre></div>
<p>By design, as proposed by <a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao &
Brunner (2018)</a>, its results are identical to the DC procedure, if
<span class="math inline">\(n \leq 750\)</span>. Thus, differences can
be observed for larger <span class="math inline">\(n >
750\)</span>:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a>pp1 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">751</span>)</span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a>pp2 <span class="ot"><-</span> pp1[<span class="dv">1</span><span class="sc">:</span><span class="dv">750</span>]</span>
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a></span>
<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a><span class="fu">sum</span>(<span class="fu">abs</span>(<span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp2, <span class="at">method =</span> <span class="st">"DivideFFT"</span>) <span class="sc">-</span> <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp2, <span class="at">method =</span> <span class="st">"Convolve"</span>)))</span>
<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a><span class="co">#> [1] 0</span></span>
<span id="cb3-7"><a href="#cb3-7" tabindex="-1"></a><span class="fu">sum</span>(<span class="fu">abs</span>(<span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp1, <span class="at">method =</span> <span class="st">"DivideFFT"</span>) <span class="sc">-</span> <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp1, <span class="at">method =</span> <span class="st">"Convolve"</span>)))</span>
<span id="cb3-8"><a href="#cb3-8" tabindex="-1"></a><span class="co">#> [1] 0</span></span></code></pre></div>
<p>The reason is that the DC-FFT method splits the input
<code>probs</code> vector into as equally sized parts as possible and
computes their distributions separately with the DC approach. The
results of the portions are then convoluted by means of the Fast Fourier
Transformation. As proposed by <a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao &
Brunner (2018)</a>, no splitting is done for <span class="math inline">\(n \leq 750\)</span>. In addition, the DC-FFT
procedure does not produce probabilities <span class="math inline">\(\leq 5.55e\text{-}17\)</span>, i.e. smaller values
are rounded off to 0, if <span class="math inline">\(n >
750\)</span>, whereas the smallest possible result of the DC algorithm
is <span class="math inline">\(\sim 1e\text{-}323\)</span>. This is most
likely caused by the used FFTW3 library.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a>pp1 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">751</span>)</span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a></span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a>d1 <span class="ot"><-</span> <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp1, <span class="at">method =</span> <span class="st">"DivideFFT"</span>)</span>
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a>d2 <span class="ot"><-</span> <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp1, <span class="at">method =</span> <span class="st">"Convolve"</span>)</span>
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a></span>
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a><span class="fu">min</span>(d1[d1 <span class="sc">></span> <span class="dv">0</span>])</span>
<span id="cb4-8"><a href="#cb4-8" tabindex="-1"></a><span class="co">#> [1] 1.635357e-321</span></span>
<span id="cb4-9"><a href="#cb4-9" tabindex="-1"></a><span class="fu">min</span>(d2[d2 <span class="sc">></span> <span class="dv">0</span>])</span>
<span id="cb4-10"><a href="#cb4-10" tabindex="-1"></a><span class="co">#> [1] 1.635357e-321</span></span></code></pre></div>
</div>
<div id="discrete-fourier-transformation-of-the-characteristic-function" class="section level3">
<h3>Discrete Fourier Transformation of the Characteristic Function</h3>
<p>The <em>Discrete Fourier Transformation of the Characteristic
Function</em> (DFT-CF) approach is requested with
<code>method = "Characteristic"</code>.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a>pp <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a>wt <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a></span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">"Characteristic"</span>)</span>
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a><span class="co">#> [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a><span class="co">#> [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a><span class="co">#> [11] 0.000000e+00 2.238353e-16 3.549132e-15 4.829828e-14 5.804377e-13</span></span>
<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a><span class="co">#> [16] 6.158818e-12 5.784702e-11 4.822438e-10 3.576566e-09 2.364563e-08</span></span>
<span id="cb5-10"><a href="#cb5-10" tabindex="-1"></a><span class="co">#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05</span></span>
<span id="cb5-11"><a href="#cb5-11" tabindex="-1"></a><span class="co">#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03</span></span>
<span id="cb5-12"><a href="#cb5-12" tabindex="-1"></a><span class="co">#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01</span></span>
<span id="cb5-13"><a href="#cb5-13" tabindex="-1"></a><span class="co">#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02</span></span>
<span id="cb5-14"><a href="#cb5-14" tabindex="-1"></a><span class="co">#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03</span></span>
<span id="cb5-15"><a href="#cb5-15" tabindex="-1"></a><span class="co">#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06</span></span>
<span id="cb5-16"><a href="#cb5-16" tabindex="-1"></a><span class="co">#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110923e-10</span></span>
<span id="cb5-17"><a href="#cb5-17" tabindex="-1"></a><span class="co">#> [56] 2.392079e-11 1.468354e-12 6.994931e-14 2.513558e-15 0.000000e+00</span></span>
<span id="cb5-18"><a href="#cb5-18" tabindex="-1"></a><span class="co">#> [61] 0.000000e+00 0.000000e+00</span></span>
<span id="cb5-19"><a href="#cb5-19" tabindex="-1"></a><span class="fu">ppbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">"Characteristic"</span>)</span>
<span id="cb5-20"><a href="#cb5-20" tabindex="-1"></a><span class="co">#> [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb5-21"><a href="#cb5-21" tabindex="-1"></a><span class="co">#> [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb5-22"><a href="#cb5-22" tabindex="-1"></a><span class="co">#> [11] 0.000000e+00 2.238353e-16 3.772968e-15 5.207125e-14 6.325089e-13</span></span>
<span id="cb5-23"><a href="#cb5-23" tabindex="-1"></a><span class="co">#> [16] 6.791327e-12 6.463834e-11 5.468822e-10 4.123448e-09 2.776908e-08</span></span>
<span id="cb5-24"><a href="#cb5-24" tabindex="-1"></a><span class="co">#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05</span></span>
<span id="cb5-25"><a href="#cb5-25" tabindex="-1"></a><span class="co">#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02</span></span>
<span id="cb5-26"><a href="#cb5-26" tabindex="-1"></a><span class="co">#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01</span></span>
<span id="cb5-27"><a href="#cb5-27" tabindex="-1"></a><span class="co">#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01</span></span>
<span id="cb5-28"><a href="#cb5-28" tabindex="-1"></a><span class="co">#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01</span></span>
<span id="cb5-29"><a href="#cb5-29" tabindex="-1"></a><span class="co">#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01</span></span>
<span id="cb5-30"><a href="#cb5-30" tabindex="-1"></a><span class="co">#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb5-31"><a href="#cb5-31" tabindex="-1"></a><span class="co">#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb5-32"><a href="#cb5-32" tabindex="-1"></a><span class="co">#> [61] 1.000000e+00 1.000000e+00</span></span></code></pre></div>
<p>As can be seen, the DFT-CF procedure does not produce probabilities
<span class="math inline">\(\leq 2.22e\text{-}16\)</span>, i.e. smaller
values are rounded off to 0, most likely due to the used FFTW3
library.</p>
</div>
<div id="recursive-formula" class="section level3">
<h3>Recursive Formula</h3>
<p>The <em>Recursive Formula</em> (RF) approach is requested with
<code>method = "Recursive"</code>.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a>pp <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a>wt <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a></span>
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">"Recursive"</span>)</span>
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="co">#> [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26</span></span>
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a><span class="co">#> [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19</span></span>
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a><span class="co">#> [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13</span></span>
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a><span class="co">#> [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08</span></span>
<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a><span class="co">#> [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05</span></span>
<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a><span class="co">#> [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03</span></span>
<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a><span class="co">#> [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01</span></span>
<span id="cb6-13"><a href="#cb6-13" tabindex="-1"></a><span class="co">#> [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02</span></span>
<span id="cb6-14"><a href="#cb6-14" tabindex="-1"></a><span class="co">#> [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03</span></span>
<span id="cb6-15"><a href="#cb6-15" tabindex="-1"></a><span class="co">#> [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06</span></span>
<span id="cb6-16"><a href="#cb6-16" tabindex="-1"></a><span class="co">#> [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10</span></span>
<span id="cb6-17"><a href="#cb6-17" tabindex="-1"></a><span class="co">#> [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17</span></span>
<span id="cb6-18"><a href="#cb6-18" tabindex="-1"></a><span class="co">#> [61] 9.411166e-19 6.727527e-21</span></span>
<span id="cb6-19"><a href="#cb6-19" tabindex="-1"></a><span class="fu">ppbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">"Recursive"</span>)</span>
<span id="cb6-20"><a href="#cb6-20" tabindex="-1"></a><span class="co">#> [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26</span></span>
<span id="cb6-21"><a href="#cb6-21" tabindex="-1"></a><span class="co">#> [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19</span></span>
<span id="cb6-22"><a href="#cb6-22" tabindex="-1"></a><span class="co">#> [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13</span></span>
<span id="cb6-23"><a href="#cb6-23" tabindex="-1"></a><span class="co">#> [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08</span></span>
<span id="cb6-24"><a href="#cb6-24" tabindex="-1"></a><span class="co">#> [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05</span></span>
<span id="cb6-25"><a href="#cb6-25" tabindex="-1"></a><span class="co">#> [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02</span></span>
<span id="cb6-26"><a href="#cb6-26" tabindex="-1"></a><span class="co">#> [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01</span></span>
<span id="cb6-27"><a href="#cb6-27" tabindex="-1"></a><span class="co">#> [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01</span></span>
<span id="cb6-28"><a href="#cb6-28" tabindex="-1"></a><span class="co">#> [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01</span></span>
<span id="cb6-29"><a href="#cb6-29" tabindex="-1"></a><span class="co">#> [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01</span></span>
<span id="cb6-30"><a href="#cb6-30" tabindex="-1"></a><span class="co">#> [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb6-31"><a href="#cb6-31" tabindex="-1"></a><span class="co">#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb6-32"><a href="#cb6-32" tabindex="-1"></a><span class="co">#> [61] 1.000000e+00 1.000000e+00</span></span></code></pre></div>
<p>Obviously, the RF procedure does produce probabilities <span class="math inline">\(\leq 5.55e\text{-}17\)</span>, because it does not
rely on the FFTW3 library. Furthermore, it yields the same results as
the DC method.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a>pp <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">1000</span>)</span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a>wt <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">1000</span>, <span class="cn">TRUE</span>)</span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a></span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="fu">sum</span>(<span class="fu">abs</span>(<span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">"Convolve"</span>) <span class="sc">-</span> <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">"Recursive"</span>)))</span>
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a><span class="co">#> [1] 0</span></span></code></pre></div>
</div>
<div id="processing-speed-comparisons" class="section level3">
<h3>Processing Speed Comparisons</h3>
<p>To assess the performance of the exact procedures, we use the
<code>microbenchmark</code> package. Each algorithm has to calculate the
PMF repeatedly based on random probability vectors. The run times are
then summarized in a table that presents, among other statistics, their
minima, maxima and means. The following results were recorded on an AMD
Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">library</span>(microbenchmark)</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a></span>
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a>f1 <span class="ot"><-</span> <span class="cf">function</span>() <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(<span class="dv">6000</span>), <span class="at">method =</span> <span class="st">"DivideFFT"</span>)</span>
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a>f2 <span class="ot"><-</span> <span class="cf">function</span>() <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(<span class="dv">6000</span>), <span class="at">method =</span> <span class="st">"Convolve"</span>)</span>
<span id="cb8-6"><a href="#cb8-6" tabindex="-1"></a>f3 <span class="ot"><-</span> <span class="cf">function</span>() <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(<span class="dv">6000</span>), <span class="at">method =</span> <span class="st">"Recursive"</span>)</span>
<span id="cb8-7"><a href="#cb8-7" tabindex="-1"></a>f4 <span class="ot"><-</span> <span class="cf">function</span>() <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(<span class="dv">6000</span>), <span class="at">method =</span> <span class="st">"Characteristic"</span>)</span>
<span id="cb8-8"><a href="#cb8-8" tabindex="-1"></a></span>
<span id="cb8-9"><a href="#cb8-9" tabindex="-1"></a><span class="fu">microbenchmark</span>(<span class="fu">f1</span>(), <span class="fu">f2</span>(), <span class="fu">f3</span>(), <span class="fu">f4</span>(), <span class="at">times =</span> <span class="dv">51</span>)</span>
<span id="cb8-10"><a href="#cb8-10" tabindex="-1"></a><span class="co">#> Unit: milliseconds</span></span>
<span id="cb8-11"><a href="#cb8-11" tabindex="-1"></a><span class="co">#> expr min lq mean median uq max neval</span></span>
<span id="cb8-12"><a href="#cb8-12" tabindex="-1"></a><span class="co">#> f1() 20.9010 21.82365 23.03580 22.3124 22.60315 33.6471 51</span></span>
<span id="cb8-13"><a href="#cb8-13" tabindex="-1"></a><span class="co">#> f2() 44.1096 44.98895 45.64250 45.2764 45.94010 53.8505 51</span></span>
<span id="cb8-14"><a href="#cb8-14" tabindex="-1"></a><span class="co">#> f3() 80.0998 80.81575 83.09995 81.6625 82.49565 129.9786 51</span></span>
<span id="cb8-15"><a href="#cb8-15" tabindex="-1"></a><span class="co">#> f4() 198.8036 203.35170 206.31347 205.5394 207.87380 237.2220 51</span></span></code></pre></div>
<p>Clearly, the DC-FFT procedure is the fastest, followed by DC, RF and
DFT-CF methods.</p>
</div>
</div>
<div id="generalized-poisson-binomial-distribution" class="section level2">
<h2>Generalized Poisson Binomial Distribution</h2>
<div id="generalized-direct-convolution" class="section level3">
<h3>Generalized Direct Convolution</h3>
<p>The <em>Generalized Direct Convolution</em> (G-DC) approach is
requested with <code>method = "Convolve"</code>.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>pp <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a>wt <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a>va <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a>vb <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a></span>
<span id="cb9-7"><a href="#cb9-7" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">"Convolve"</span>)</span>
<span id="cb9-8"><a href="#cb9-8" tabindex="-1"></a><span class="co">#> [1] 1.140600e-31 5.349930e-30 1.164698e-28 1.572037e-27 1.491024e-26</span></span>
<span id="cb9-9"><a href="#cb9-9" tabindex="-1"></a><span class="co">#> [6] 1.077204e-25 6.336147e-25 3.215011e-24 1.466295e-23 6.127671e-23</span></span>
<span id="cb9-10"><a href="#cb9-10" tabindex="-1"></a><span class="co">#> [11] 2.363402e-22 8.484857e-22 2.866109e-21 9.171228e-21 2.788507e-20</span></span>
<span id="cb9-11"><a href="#cb9-11" tabindex="-1"></a><span class="co">#> [16] 8.091940e-20 2.254155e-19 6.051395e-19 1.570129e-18 3.953458e-18</span></span>
<span id="cb9-12"><a href="#cb9-12" tabindex="-1"></a><span class="co">#> [21] 9.696098e-18 2.321913e-17 5.442392e-17 1.251302e-16 2.824507e-16</span></span>
<span id="cb9-13"><a href="#cb9-13" tabindex="-1"></a><span class="co">#> [26] 6.264454e-16 1.366745e-15 2.934598e-15 6.203639e-15 1.292697e-14</span></span>
<span id="cb9-14"><a href="#cb9-14" tabindex="-1"></a><span class="co">#> [31] 2.657759e-14 5.394727e-14 1.081983e-13 2.144873e-13 4.201625e-13</span></span>
<span id="cb9-15"><a href="#cb9-15" tabindex="-1"></a><span class="co">#> [36] 8.135609e-13 1.557745e-12 2.949821e-12 5.527695e-12 1.025815e-11</span></span>
<span id="cb9-16"><a href="#cb9-16" tabindex="-1"></a><span class="co">#> [41] 1.885777e-11 3.434641e-11 6.196981e-11 1.106787e-10 1.956340e-10</span></span>
<span id="cb9-17"><a href="#cb9-17" tabindex="-1"></a><span class="co">#> [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753751e-09 2.972596e-09</span></span>
<span id="cb9-18"><a href="#cb9-18" tabindex="-1"></a><span class="co">#> [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08</span></span>
<span id="cb9-19"><a href="#cb9-19" tabindex="-1"></a><span class="co">#> [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07</span></span>
<span id="cb9-20"><a href="#cb9-20" tabindex="-1"></a><span class="co">#> [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06</span></span>
<span id="cb9-21"><a href="#cb9-21" tabindex="-1"></a><span class="co">#> [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05</span></span>
<span id="cb9-22"><a href="#cb9-22" tabindex="-1"></a><span class="co">#> [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05</span></span>
<span id="cb9-23"><a href="#cb9-23" tabindex="-1"></a><span class="co">#> [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04</span></span>
<span id="cb9-24"><a href="#cb9-24" tabindex="-1"></a><span class="co">#> [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03</span></span>
<span id="cb9-25"><a href="#cb9-25" tabindex="-1"></a><span class="co">#> [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03</span></span>
<span id="cb9-26"><a href="#cb9-26" tabindex="-1"></a><span class="co">#> [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03</span></span>
<span id="cb9-27"><a href="#cb9-27" tabindex="-1"></a><span class="co">#> [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02</span></span>
<span id="cb9-28"><a href="#cb9-28" tabindex="-1"></a><span class="co">#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02</span></span>
<span id="cb9-29"><a href="#cb9-29" tabindex="-1"></a><span class="co">#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02</span></span>
<span id="cb9-30"><a href="#cb9-30" tabindex="-1"></a><span class="co">#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02</span></span>
<span id="cb9-31"><a href="#cb9-31" tabindex="-1"></a><span class="co">#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02</span></span>
<span id="cb9-32"><a href="#cb9-32" tabindex="-1"></a><span class="co">#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02</span></span>
<span id="cb9-33"><a href="#cb9-33" tabindex="-1"></a><span class="co">#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02</span></span>
<span id="cb9-34"><a href="#cb9-34" tabindex="-1"></a><span class="co">#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02</span></span>
<span id="cb9-35"><a href="#cb9-35" tabindex="-1"></a><span class="co">#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03</span></span>
<span id="cb9-36"><a href="#cb9-36" tabindex="-1"></a><span class="co">#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03</span></span>
<span id="cb9-37"><a href="#cb9-37" tabindex="-1"></a><span class="co">#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03</span></span>
<span id="cb9-38"><a href="#cb9-38" tabindex="-1"></a><span class="co">#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04</span></span>
<span id="cb9-39"><a href="#cb9-39" tabindex="-1"></a><span class="co">#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04</span></span>
<span id="cb9-40"><a href="#cb9-40" tabindex="-1"></a><span class="co">#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05</span></span>
<span id="cb9-41"><a href="#cb9-41" tabindex="-1"></a><span class="co">#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05</span></span>
<span id="cb9-42"><a href="#cb9-42" tabindex="-1"></a><span class="co">#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06</span></span>
<span id="cb9-43"><a href="#cb9-43" tabindex="-1"></a><span class="co">#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07</span></span>
<span id="cb9-44"><a href="#cb9-44" tabindex="-1"></a><span class="co">#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08</span></span>
<span id="cb9-45"><a href="#cb9-45" tabindex="-1"></a><span class="co">#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09</span></span>
<span id="cb9-46"><a href="#cb9-46" tabindex="-1"></a><span class="co">#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11</span></span>
<span id="cb9-47"><a href="#cb9-47" tabindex="-1"></a><span class="co">#> [196] 1.676154e-11 7.585978e-12 3.326429e-12 1.407527e-12 5.717370e-13</span></span>
<span id="cb9-48"><a href="#cb9-48" tabindex="-1"></a><span class="co">#> [201] 2.216349e-13 8.149241e-14 2.824954e-14 9.179165e-15 2.780017e-15</span></span>
<span id="cb9-49"><a href="#cb9-49" tabindex="-1"></a><span class="co">#> [206] 7.803525e-16 2.018046e-16 4.775552e-17 1.025798e-17 1.979767e-18</span></span>
<span id="cb9-50"><a href="#cb9-50" tabindex="-1"></a><span class="co">#> [211] 3.386554e-19 5.038594e-20 6.336865e-21 6.424747e-22 4.821385e-23</span></span>
<span id="cb9-51"><a href="#cb9-51" tabindex="-1"></a><span class="co">#> [216] 2.108301e-24</span></span>
<span id="cb9-52"><a href="#cb9-52" tabindex="-1"></a><span class="fu">pgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">"Convolve"</span>)</span>
<span id="cb9-53"><a href="#cb9-53" tabindex="-1"></a><span class="co">#> [1] 1.140600e-31 5.463990e-30 1.219337e-28 1.693971e-27 1.660421e-26</span></span>
<span id="cb9-54"><a href="#cb9-54" tabindex="-1"></a><span class="co">#> [6] 1.243246e-25 7.579393e-25 3.972950e-24 1.863590e-23 7.991261e-23</span></span>
<span id="cb9-55"><a href="#cb9-55" tabindex="-1"></a><span class="co">#> [11] 3.162528e-22 1.164739e-21 4.030847e-21 1.320208e-20 4.108715e-20</span></span>
<span id="cb9-56"><a href="#cb9-56" tabindex="-1"></a><span class="co">#> [16] 1.220065e-19 3.474220e-19 9.525615e-19 2.522691e-18 6.476149e-18</span></span>
<span id="cb9-57"><a href="#cb9-57" tabindex="-1"></a><span class="co">#> [21] 1.617225e-17 3.939138e-17 9.381530e-17 2.189455e-16 5.013962e-16</span></span>
<span id="cb9-58"><a href="#cb9-58" tabindex="-1"></a><span class="co">#> [26] 1.127842e-15 2.494586e-15 5.429184e-15 1.163282e-14 2.455979e-14</span></span>
<span id="cb9-59"><a href="#cb9-59" tabindex="-1"></a><span class="co">#> [31] 5.113739e-14 1.050847e-13 2.132829e-13 4.277703e-13 8.479327e-13</span></span>
<span id="cb9-60"><a href="#cb9-60" tabindex="-1"></a><span class="co">#> [36] 1.661494e-12 3.219239e-12 6.169059e-12 1.169675e-11 2.195491e-11</span></span>
<span id="cb9-61"><a href="#cb9-61" tabindex="-1"></a><span class="co">#> [41] 4.081268e-11 7.515909e-11 1.371289e-10 2.478076e-10 4.434415e-10</span></span>
<span id="cb9-62"><a href="#cb9-62" tabindex="-1"></a><span class="co">#> [46] 7.859810e-10 1.380789e-09 2.406013e-09 4.159763e-09 7.132360e-09</span></span>
<span id="cb9-63"><a href="#cb9-63" tabindex="-1"></a><span class="co">#> [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08</span></span>
<span id="cb9-64"><a href="#cb9-64" tabindex="-1"></a><span class="co">#> [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07</span></span>
<span id="cb9-65"><a href="#cb9-65" tabindex="-1"></a><span class="co">#> [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06</span></span>
<span id="cb9-66"><a href="#cb9-66" tabindex="-1"></a><span class="co">#> [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05</span></span>
<span id="cb9-67"><a href="#cb9-67" tabindex="-1"></a><span class="co">#> [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04</span></span>
<span id="cb9-68"><a href="#cb9-68" tabindex="-1"></a><span class="co">#> [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03</span></span>
<span id="cb9-69"><a href="#cb9-69" tabindex="-1"></a><span class="co">#> [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03</span></span>
<span id="cb9-70"><a href="#cb9-70" tabindex="-1"></a><span class="co">#> [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02</span></span>
<span id="cb9-71"><a href="#cb9-71" tabindex="-1"></a><span class="co">#> [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02</span></span>
<span id="cb9-72"><a href="#cb9-72" tabindex="-1"></a><span class="co">#> [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01</span></span>
<span id="cb9-73"><a href="#cb9-73" tabindex="-1"></a><span class="co">#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01</span></span>
<span id="cb9-74"><a href="#cb9-74" tabindex="-1"></a><span class="co">#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01</span></span>
<span id="cb9-75"><a href="#cb9-75" tabindex="-1"></a><span class="co">#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01</span></span>
<span id="cb9-76"><a href="#cb9-76" tabindex="-1"></a><span class="co">#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01</span></span>
<span id="cb9-77"><a href="#cb9-77" tabindex="-1"></a><span class="co">#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01</span></span>
<span id="cb9-78"><a href="#cb9-78" tabindex="-1"></a><span class="co">#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01</span></span>
<span id="cb9-79"><a href="#cb9-79" tabindex="-1"></a><span class="co">#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01</span></span>
<span id="cb9-80"><a href="#cb9-80" tabindex="-1"></a><span class="co">#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01</span></span>
<span id="cb9-81"><a href="#cb9-81" tabindex="-1"></a><span class="co">#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01</span></span>
<span id="cb9-82"><a href="#cb9-82" tabindex="-1"></a><span class="co">#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01</span></span>
<span id="cb9-83"><a href="#cb9-83" tabindex="-1"></a><span class="co">#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01</span></span>
<span id="cb9-84"><a href="#cb9-84" tabindex="-1"></a><span class="co">#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01</span></span>
<span id="cb9-85"><a href="#cb9-85" tabindex="-1"></a><span class="co">#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01</span></span>
<span id="cb9-86"><a href="#cb9-86" tabindex="-1"></a><span class="co">#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01</span></span>
<span id="cb9-87"><a href="#cb9-87" tabindex="-1"></a><span class="co">#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01</span></span>
<span id="cb9-88"><a href="#cb9-88" tabindex="-1"></a><span class="co">#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01</span></span>
<span id="cb9-89"><a href="#cb9-89" tabindex="-1"></a><span class="co">#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-90"><a href="#cb9-90" tabindex="-1"></a><span class="co">#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-91"><a href="#cb9-91" tabindex="-1"></a><span class="co">#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-92"><a href="#cb9-92" tabindex="-1"></a><span class="co">#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-93"><a href="#cb9-93" tabindex="-1"></a><span class="co">#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-94"><a href="#cb9-94" tabindex="-1"></a><span class="co">#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-95"><a href="#cb9-95" tabindex="-1"></a><span class="co">#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-96"><a href="#cb9-96" tabindex="-1"></a><span class="co">#> [216] 1.000000e+00</span></span></code></pre></div>
</div>
<div id="generalized-divide-conquer-fft-tree-convolution" class="section level3">
<h3>Generalized Divide & Conquer FFT Tree Convolution</h3>
<p>The <em>Generalized Divide & Conquer FFT Tree Convolution</em>
(G-DC-FFT) approach is requested with
<code>method = "DivideFFT"</code>.</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a>pp <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a>wt <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb10-4"><a href="#cb10-4" tabindex="-1"></a>va <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb10-5"><a href="#cb10-5" tabindex="-1"></a>vb <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb10-6"><a href="#cb10-6" tabindex="-1"></a></span>
<span id="cb10-7"><a href="#cb10-7" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">"DivideFFT"</span>)</span>
<span id="cb10-8"><a href="#cb10-8" tabindex="-1"></a><span class="co">#> [1] 1.140600e-31 5.349930e-30 1.164698e-28 1.572037e-27 1.491024e-26</span></span>
<span id="cb10-9"><a href="#cb10-9" tabindex="-1"></a><span class="co">#> [6] 1.077204e-25 6.336147e-25 3.215011e-24 1.466295e-23 6.127671e-23</span></span>
<span id="cb10-10"><a href="#cb10-10" tabindex="-1"></a><span class="co">#> [11] 2.363402e-22 8.484857e-22 2.866109e-21 9.171228e-21 2.788507e-20</span></span>
<span id="cb10-11"><a href="#cb10-11" tabindex="-1"></a><span class="co">#> [16] 8.091940e-20 2.254155e-19 6.051395e-19 1.570129e-18 3.953458e-18</span></span>
<span id="cb10-12"><a href="#cb10-12" tabindex="-1"></a><span class="co">#> [21] 9.696098e-18 2.321913e-17 5.442392e-17 1.251302e-16 2.824507e-16</span></span>
<span id="cb10-13"><a href="#cb10-13" tabindex="-1"></a><span class="co">#> [26] 6.264454e-16 1.366745e-15 2.934598e-15 6.203639e-15 1.292697e-14</span></span>
<span id="cb10-14"><a href="#cb10-14" tabindex="-1"></a><span class="co">#> [31] 2.657759e-14 5.394727e-14 1.081983e-13 2.144873e-13 4.201625e-13</span></span>
<span id="cb10-15"><a href="#cb10-15" tabindex="-1"></a><span class="co">#> [36] 8.135609e-13 1.557745e-12 2.949821e-12 5.527695e-12 1.025815e-11</span></span>
<span id="cb10-16"><a href="#cb10-16" tabindex="-1"></a><span class="co">#> [41] 1.885777e-11 3.434641e-11 6.196981e-11 1.106787e-10 1.956340e-10</span></span>
<span id="cb10-17"><a href="#cb10-17" tabindex="-1"></a><span class="co">#> [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753751e-09 2.972596e-09</span></span>
<span id="cb10-18"><a href="#cb10-18" tabindex="-1"></a><span class="co">#> [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08</span></span>
<span id="cb10-19"><a href="#cb10-19" tabindex="-1"></a><span class="co">#> [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07</span></span>
<span id="cb10-20"><a href="#cb10-20" tabindex="-1"></a><span class="co">#> [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06</span></span>
<span id="cb10-21"><a href="#cb10-21" tabindex="-1"></a><span class="co">#> [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05</span></span>
<span id="cb10-22"><a href="#cb10-22" tabindex="-1"></a><span class="co">#> [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05</span></span>
<span id="cb10-23"><a href="#cb10-23" tabindex="-1"></a><span class="co">#> [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04</span></span>
<span id="cb10-24"><a href="#cb10-24" tabindex="-1"></a><span class="co">#> [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03</span></span>
<span id="cb10-25"><a href="#cb10-25" tabindex="-1"></a><span class="co">#> [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03</span></span>
<span id="cb10-26"><a href="#cb10-26" tabindex="-1"></a><span class="co">#> [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03</span></span>
<span id="cb10-27"><a href="#cb10-27" tabindex="-1"></a><span class="co">#> [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02</span></span>
<span id="cb10-28"><a href="#cb10-28" tabindex="-1"></a><span class="co">#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02</span></span>
<span id="cb10-29"><a href="#cb10-29" tabindex="-1"></a><span class="co">#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02</span></span>
<span id="cb10-30"><a href="#cb10-30" tabindex="-1"></a><span class="co">#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02</span></span>
<span id="cb10-31"><a href="#cb10-31" tabindex="-1"></a><span class="co">#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02</span></span>
<span id="cb10-32"><a href="#cb10-32" tabindex="-1"></a><span class="co">#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02</span></span>
<span id="cb10-33"><a href="#cb10-33" tabindex="-1"></a><span class="co">#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02</span></span>
<span id="cb10-34"><a href="#cb10-34" tabindex="-1"></a><span class="co">#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02</span></span>
<span id="cb10-35"><a href="#cb10-35" tabindex="-1"></a><span class="co">#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03</span></span>
<span id="cb10-36"><a href="#cb10-36" tabindex="-1"></a><span class="co">#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03</span></span>
<span id="cb10-37"><a href="#cb10-37" tabindex="-1"></a><span class="co">#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03</span></span>
<span id="cb10-38"><a href="#cb10-38" tabindex="-1"></a><span class="co">#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04</span></span>
<span id="cb10-39"><a href="#cb10-39" tabindex="-1"></a><span class="co">#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04</span></span>
<span id="cb10-40"><a href="#cb10-40" tabindex="-1"></a><span class="co">#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05</span></span>
<span id="cb10-41"><a href="#cb10-41" tabindex="-1"></a><span class="co">#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05</span></span>
<span id="cb10-42"><a href="#cb10-42" tabindex="-1"></a><span class="co">#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06</span></span>
<span id="cb10-43"><a href="#cb10-43" tabindex="-1"></a><span class="co">#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07</span></span>
<span id="cb10-44"><a href="#cb10-44" tabindex="-1"></a><span class="co">#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08</span></span>
<span id="cb10-45"><a href="#cb10-45" tabindex="-1"></a><span class="co">#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09</span></span>
<span id="cb10-46"><a href="#cb10-46" tabindex="-1"></a><span class="co">#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11</span></span>
<span id="cb10-47"><a href="#cb10-47" tabindex="-1"></a><span class="co">#> [196] 1.676154e-11 7.585978e-12 3.326429e-12 1.407527e-12 5.717370e-13</span></span>
<span id="cb10-48"><a href="#cb10-48" tabindex="-1"></a><span class="co">#> [201] 2.216349e-13 8.149241e-14 2.824954e-14 9.179165e-15 2.780017e-15</span></span>
<span id="cb10-49"><a href="#cb10-49" tabindex="-1"></a><span class="co">#> [206] 7.803525e-16 2.018046e-16 4.775552e-17 1.025798e-17 1.979767e-18</span></span>
<span id="cb10-50"><a href="#cb10-50" tabindex="-1"></a><span class="co">#> [211] 3.386554e-19 5.038594e-20 6.336865e-21 6.424747e-22 4.821385e-23</span></span>
<span id="cb10-51"><a href="#cb10-51" tabindex="-1"></a><span class="co">#> [216] 2.108301e-24</span></span>
<span id="cb10-52"><a href="#cb10-52" tabindex="-1"></a><span class="fu">pgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">"DivideFFT"</span>)</span>
<span id="cb10-53"><a href="#cb10-53" tabindex="-1"></a><span class="co">#> [1] 1.140600e-31 5.463990e-30 1.219337e-28 1.693971e-27 1.660421e-26</span></span>
<span id="cb10-54"><a href="#cb10-54" tabindex="-1"></a><span class="co">#> [6] 1.243246e-25 7.579393e-25 3.972950e-24 1.863590e-23 7.991261e-23</span></span>
<span id="cb10-55"><a href="#cb10-55" tabindex="-1"></a><span class="co">#> [11] 3.162528e-22 1.164739e-21 4.030847e-21 1.320208e-20 4.108715e-20</span></span>
<span id="cb10-56"><a href="#cb10-56" tabindex="-1"></a><span class="co">#> [16] 1.220065e-19 3.474220e-19 9.525615e-19 2.522691e-18 6.476149e-18</span></span>
<span id="cb10-57"><a href="#cb10-57" tabindex="-1"></a><span class="co">#> [21] 1.617225e-17 3.939138e-17 9.381530e-17 2.189455e-16 5.013962e-16</span></span>
<span id="cb10-58"><a href="#cb10-58" tabindex="-1"></a><span class="co">#> [26] 1.127842e-15 2.494586e-15 5.429184e-15 1.163282e-14 2.455979e-14</span></span>
<span id="cb10-59"><a href="#cb10-59" tabindex="-1"></a><span class="co">#> [31] 5.113739e-14 1.050847e-13 2.132829e-13 4.277703e-13 8.479327e-13</span></span>
<span id="cb10-60"><a href="#cb10-60" tabindex="-1"></a><span class="co">#> [36] 1.661494e-12 3.219239e-12 6.169059e-12 1.169675e-11 2.195491e-11</span></span>
<span id="cb10-61"><a href="#cb10-61" tabindex="-1"></a><span class="co">#> [41] 4.081268e-11 7.515909e-11 1.371289e-10 2.478076e-10 4.434415e-10</span></span>
<span id="cb10-62"><a href="#cb10-62" tabindex="-1"></a><span class="co">#> [46] 7.859810e-10 1.380789e-09 2.406013e-09 4.159763e-09 7.132360e-09</span></span>
<span id="cb10-63"><a href="#cb10-63" tabindex="-1"></a><span class="co">#> [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08</span></span>
<span id="cb10-64"><a href="#cb10-64" tabindex="-1"></a><span class="co">#> [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07</span></span>
<span id="cb10-65"><a href="#cb10-65" tabindex="-1"></a><span class="co">#> [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06</span></span>
<span id="cb10-66"><a href="#cb10-66" tabindex="-1"></a><span class="co">#> [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05</span></span>
<span id="cb10-67"><a href="#cb10-67" tabindex="-1"></a><span class="co">#> [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04</span></span>
<span id="cb10-68"><a href="#cb10-68" tabindex="-1"></a><span class="co">#> [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03</span></span>
<span id="cb10-69"><a href="#cb10-69" tabindex="-1"></a><span class="co">#> [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03</span></span>
<span id="cb10-70"><a href="#cb10-70" tabindex="-1"></a><span class="co">#> [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02</span></span>
<span id="cb10-71"><a href="#cb10-71" tabindex="-1"></a><span class="co">#> [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02</span></span>
<span id="cb10-72"><a href="#cb10-72" tabindex="-1"></a><span class="co">#> [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01</span></span>
<span id="cb10-73"><a href="#cb10-73" tabindex="-1"></a><span class="co">#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01</span></span>
<span id="cb10-74"><a href="#cb10-74" tabindex="-1"></a><span class="co">#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01</span></span>
<span id="cb10-75"><a href="#cb10-75" tabindex="-1"></a><span class="co">#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01</span></span>
<span id="cb10-76"><a href="#cb10-76" tabindex="-1"></a><span class="co">#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01</span></span>
<span id="cb10-77"><a href="#cb10-77" tabindex="-1"></a><span class="co">#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01</span></span>
<span id="cb10-78"><a href="#cb10-78" tabindex="-1"></a><span class="co">#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01</span></span>
<span id="cb10-79"><a href="#cb10-79" tabindex="-1"></a><span class="co">#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01</span></span>
<span id="cb10-80"><a href="#cb10-80" tabindex="-1"></a><span class="co">#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01</span></span>
<span id="cb10-81"><a href="#cb10-81" tabindex="-1"></a><span class="co">#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01</span></span>
<span id="cb10-82"><a href="#cb10-82" tabindex="-1"></a><span class="co">#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01</span></span>
<span id="cb10-83"><a href="#cb10-83" tabindex="-1"></a><span class="co">#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01</span></span>
<span id="cb10-84"><a href="#cb10-84" tabindex="-1"></a><span class="co">#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01</span></span>
<span id="cb10-85"><a href="#cb10-85" tabindex="-1"></a><span class="co">#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01</span></span>
<span id="cb10-86"><a href="#cb10-86" tabindex="-1"></a><span class="co">#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01</span></span>
<span id="cb10-87"><a href="#cb10-87" tabindex="-1"></a><span class="co">#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01</span></span>
<span id="cb10-88"><a href="#cb10-88" tabindex="-1"></a><span class="co">#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01</span></span>
<span id="cb10-89"><a href="#cb10-89" tabindex="-1"></a><span class="co">#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-90"><a href="#cb10-90" tabindex="-1"></a><span class="co">#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-91"><a href="#cb10-91" tabindex="-1"></a><span class="co">#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-92"><a href="#cb10-92" tabindex="-1"></a><span class="co">#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-93"><a href="#cb10-93" tabindex="-1"></a><span class="co">#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-94"><a href="#cb10-94" tabindex="-1"></a><span class="co">#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-95"><a href="#cb10-95" tabindex="-1"></a><span class="co">#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-96"><a href="#cb10-96" tabindex="-1"></a><span class="co">#> [216] 1.000000e+00</span></span></code></pre></div>
<p>By design, similar to the ordinary DC-FFT algorithm by <a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao &
Brunner (2018)</a>, its results are identical to the G-DC procedure, if
<span class="math inline">\(n\)</span> and the number of possible
observed values is small. Thus, differences can be observed for larger
numbers:</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb11-2"><a href="#cb11-2" tabindex="-1"></a>pp1 <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">250</span>)</span>
<span id="cb11-3"><a href="#cb11-3" tabindex="-1"></a>va1 <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">50</span>, <span class="dv">250</span>, <span class="cn">TRUE</span>)</span>
<span id="cb11-4"><a href="#cb11-4" tabindex="-1"></a>vb1 <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">50</span>, <span class="dv">250</span>, <span class="cn">TRUE</span>)</span>
<span id="cb11-5"><a href="#cb11-5" tabindex="-1"></a>pp2 <span class="ot"><-</span> pp1[<span class="dv">1</span><span class="sc">:</span><span class="dv">248</span>]</span>
<span id="cb11-6"><a href="#cb11-6" tabindex="-1"></a>va2 <span class="ot"><-</span> va1[<span class="dv">1</span><span class="sc">:</span><span class="dv">248</span>]</span>
<span id="cb11-7"><a href="#cb11-7" tabindex="-1"></a>vb2 <span class="ot"><-</span> vb1[<span class="dv">1</span><span class="sc">:</span><span class="dv">248</span>]</span>
<span id="cb11-8"><a href="#cb11-8" tabindex="-1"></a></span>
<span id="cb11-9"><a href="#cb11-9" tabindex="-1"></a><span class="fu">sum</span>(<span class="fu">abs</span>(<span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp1, va1, vb1, <span class="at">method =</span> <span class="st">"DivideFFT"</span>)</span>
<span id="cb11-10"><a href="#cb11-10" tabindex="-1"></a> <span class="sc">-</span> <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp1, va1, vb1, <span class="at">method =</span> <span class="st">"Convolve"</span>)))</span>
<span id="cb11-11"><a href="#cb11-11" tabindex="-1"></a><span class="co">#> [1] 0</span></span>
<span id="cb11-12"><a href="#cb11-12" tabindex="-1"></a></span>
<span id="cb11-13"><a href="#cb11-13" tabindex="-1"></a><span class="fu">sum</span>(<span class="fu">abs</span>(<span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp2, va2, vb2, <span class="at">method =</span> <span class="st">"DivideFFT"</span>)</span>
<span id="cb11-14"><a href="#cb11-14" tabindex="-1"></a> <span class="sc">-</span> <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp2, va2, vb2, <span class="at">method =</span> <span class="st">"Convolve"</span>)))</span>
<span id="cb11-15"><a href="#cb11-15" tabindex="-1"></a><span class="co">#> [1] 0</span></span></code></pre></div>
<p>The reason is that the G-DC-FFT method splits the input
<code>probs</code>, <code>val_p</code> and <code>val_q</code> vectors
into parts such that the numbers of possible observations of all parts
are as equally sized as possible. Their distributions are then computed
separately with the G-DC approach. The results of the portions are then
convoluted by means of the Fast Fourier Transformation. For small <span class="math inline">\(n\)</span> and small distribution sizes, no
splitting is needed. In addition, the G-DC-FFT procedure, just like the
DC-FFT method, does not produce probabilities <span class="math inline">\(\leq 5.55e\text{-}17\)</span>, i.e. smaller values
are rounded off to <span class="math inline">\(0\)</span>, if the total
number of possible observations is smaller than <span class="math inline">\(750\)</span>, whereas the smallest possible result
of the DC algorithm is <span class="math inline">\(\sim
1e\text{-}323\)</span>. This is most likely caused by the used FFTW3
library.</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a>d1 <span class="ot"><-</span> <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp1, va1, vb1, <span class="at">method =</span> <span class="st">"DivideFFT"</span>)</span>
<span id="cb12-2"><a href="#cb12-2" tabindex="-1"></a>d2 <span class="ot"><-</span> <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp1, va1, vb1, <span class="at">method =</span> <span class="st">"Convolve"</span>)</span>
<span id="cb12-3"><a href="#cb12-3" tabindex="-1"></a></span>
<span id="cb12-4"><a href="#cb12-4" tabindex="-1"></a><span class="fu">min</span>(d1[d1 <span class="sc">></span> <span class="dv">0</span>])</span>
<span id="cb12-5"><a href="#cb12-5" tabindex="-1"></a><span class="co">#> [1] 2.839368e-99</span></span>
<span id="cb12-6"><a href="#cb12-6" tabindex="-1"></a><span class="fu">min</span>(d2[d2 <span class="sc">></span> <span class="dv">0</span>])</span>
<span id="cb12-7"><a href="#cb12-7" tabindex="-1"></a><span class="co">#> [1] 2.839368e-99</span></span></code></pre></div>
</div>
<div id="generalized-discrete-fourier-transformation-of-the-characteristic-function" class="section level3">
<h3>Generalized Discrete Fourier Transformation of the Characteristic
Function</h3>
<p>The <em>Generalized Discrete Fourier Transformation of the
Characteristic Function</em> (G-DFT-CF) approach is requested with
<code>method = "Characteristic"</code>.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb13-2"><a href="#cb13-2" tabindex="-1"></a>pp <span class="ot"><-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb13-3"><a href="#cb13-3" tabindex="-1"></a>wt <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb13-4"><a href="#cb13-4" tabindex="-1"></a>va <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb13-5"><a href="#cb13-5" tabindex="-1"></a>vb <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb13-6"><a href="#cb13-6" tabindex="-1"></a></span>
<span id="cb13-7"><a href="#cb13-7" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">"Characteristic"</span>)</span>
<span id="cb13-8"><a href="#cb13-8" tabindex="-1"></a><span class="co">#> [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-9"><a href="#cb13-9" tabindex="-1"></a><span class="co">#> [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-10"><a href="#cb13-10" tabindex="-1"></a><span class="co">#> [11] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-11"><a href="#cb13-11" tabindex="-1"></a><span class="co">#> [16] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-12"><a href="#cb13-12" tabindex="-1"></a><span class="co">#> [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.837237e-16</span></span>
<span id="cb13-13"><a href="#cb13-13" tabindex="-1"></a><span class="co">#> [26] 6.250144e-16 1.365163e-15 2.931811e-15 6.199773e-15 1.292382e-14</span></span>
<span id="cb13-14"><a href="#cb13-14" tabindex="-1"></a><span class="co">#> [31] 2.657288e-14 5.394142e-14 1.081912e-13 2.144812e-13 4.201536e-13</span></span>
<span id="cb13-15"><a href="#cb13-15" tabindex="-1"></a><span class="co">#> [36] 8.135511e-13 1.557734e-12 2.949810e-12 5.527683e-12 1.025814e-11</span></span>
<span id="cb13-16"><a href="#cb13-16" tabindex="-1"></a><span class="co">#> [41] 1.885776e-11 3.434640e-11 6.196980e-11 1.106787e-10 1.956340e-10</span></span>
<span id="cb13-17"><a href="#cb13-17" tabindex="-1"></a><span class="co">#> [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753750e-09 2.972596e-09</span></span>
<span id="cb13-18"><a href="#cb13-18" tabindex="-1"></a><span class="co">#> [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08</span></span>
<span id="cb13-19"><a href="#cb13-19" tabindex="-1"></a><span class="co">#> [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07</span></span>
<span id="cb13-20"><a href="#cb13-20" tabindex="-1"></a><span class="co">#> [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06</span></span>
<span id="cb13-21"><a href="#cb13-21" tabindex="-1"></a><span class="co">#> [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05</span></span>
<span id="cb13-22"><a href="#cb13-22" tabindex="-1"></a><span class="co">#> [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05</span></span>
<span id="cb13-23"><a href="#cb13-23" tabindex="-1"></a><span class="co">#> [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04</span></span>
<span id="cb13-24"><a href="#cb13-24" tabindex="-1"></a><span class="co">#> [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03</span></span>
<span id="cb13-25"><a href="#cb13-25" tabindex="-1"></a><span class="co">#> [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03</span></span>
<span id="cb13-26"><a href="#cb13-26" tabindex="-1"></a><span class="co">#> [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03</span></span>
<span id="cb13-27"><a href="#cb13-27" tabindex="-1"></a><span class="co">#> [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02</span></span>
<span id="cb13-28"><a href="#cb13-28" tabindex="-1"></a><span class="co">#> [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02</span></span>
<span id="cb13-29"><a href="#cb13-29" tabindex="-1"></a><span class="co">#> [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02</span></span>
<span id="cb13-30"><a href="#cb13-30" tabindex="-1"></a><span class="co">#> [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02</span></span>
<span id="cb13-31"><a href="#cb13-31" tabindex="-1"></a><span class="co">#> [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02</span></span>
<span id="cb13-32"><a href="#cb13-32" tabindex="-1"></a><span class="co">#> [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02</span></span>
<span id="cb13-33"><a href="#cb13-33" tabindex="-1"></a><span class="co">#> [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02</span></span>
<span id="cb13-34"><a href="#cb13-34" tabindex="-1"></a><span class="co">#> [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02</span></span>
<span id="cb13-35"><a href="#cb13-35" tabindex="-1"></a><span class="co">#> [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03</span></span>
<span id="cb13-36"><a href="#cb13-36" tabindex="-1"></a><span class="co">#> [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03</span></span>
<span id="cb13-37"><a href="#cb13-37" tabindex="-1"></a><span class="co">#> [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03</span></span>
<span id="cb13-38"><a href="#cb13-38" tabindex="-1"></a><span class="co">#> [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04</span></span>
<span id="cb13-39"><a href="#cb13-39" tabindex="-1"></a><span class="co">#> [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04</span></span>
<span id="cb13-40"><a href="#cb13-40" tabindex="-1"></a><span class="co">#> [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05</span></span>
<span id="cb13-41"><a href="#cb13-41" tabindex="-1"></a><span class="co">#> [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05</span></span>
<span id="cb13-42"><a href="#cb13-42" tabindex="-1"></a><span class="co">#> [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06</span></span>
<span id="cb13-43"><a href="#cb13-43" tabindex="-1"></a><span class="co">#> [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07</span></span>
<span id="cb13-44"><a href="#cb13-44" tabindex="-1"></a><span class="co">#> [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08</span></span>
<span id="cb13-45"><a href="#cb13-45" tabindex="-1"></a><span class="co">#> [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09</span></span>
<span id="cb13-46"><a href="#cb13-46" tabindex="-1"></a><span class="co">#> [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11</span></span>
<span id="cb13-47"><a href="#cb13-47" tabindex="-1"></a><span class="co">#> [196] 1.676155e-11 7.585978e-12 3.326431e-12 1.407528e-12 5.717366e-13</span></span>
<span id="cb13-48"><a href="#cb13-48" tabindex="-1"></a><span class="co">#> [201] 2.216380e-13 8.149294e-14 2.825106e-14 9.182984e-15 2.782753e-15</span></span>
<span id="cb13-49"><a href="#cb13-49" tabindex="-1"></a><span class="co">#> [206] 7.822960e-16 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-50"><a href="#cb13-50" tabindex="-1"></a><span class="co">#> [211] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-51"><a href="#cb13-51" tabindex="-1"></a><span class="co">#> [216] 0.000000e+00</span></span>
<span id="cb13-52"><a href="#cb13-52" tabindex="-1"></a><span class="fu">pgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">"Characteristic"</span>)</span>
<span id="cb13-53"><a href="#cb13-53" tabindex="-1"></a><span class="co">#> [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-54"><a href="#cb13-54" tabindex="-1"></a><span class="co">#> [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-55"><a href="#cb13-55" tabindex="-1"></a><span class="co">#> [11] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-56"><a href="#cb13-56" tabindex="-1"></a><span class="co">#> [16] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-57"><a href="#cb13-57" tabindex="-1"></a><span class="co">#> [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.837237e-16</span></span>
<span id="cb13-58"><a href="#cb13-58" tabindex="-1"></a><span class="co">#> [26] 9.087381e-16 2.273901e-15 5.205712e-15 1.140549e-14 2.432930e-14</span></span>
<span id="cb13-59"><a href="#cb13-59" tabindex="-1"></a><span class="co">#> [31] 5.090218e-14 1.048436e-13 2.130348e-13 4.275160e-13 8.476697e-13</span></span>
<span id="cb13-60"><a href="#cb13-60" tabindex="-1"></a><span class="co">#> [36] 1.661221e-12 3.218955e-12 6.168765e-12 1.169645e-11 2.195459e-11</span></span>
<span id="cb13-61"><a href="#cb13-61" tabindex="-1"></a><span class="co">#> [41] 4.081235e-11 7.515874e-11 1.371285e-10 2.478072e-10 4.434412e-10</span></span>
<span id="cb13-62"><a href="#cb13-62" tabindex="-1"></a><span class="co">#> [46] 7.859806e-10 1.380788e-09 2.406013e-09 4.159763e-09 7.132359e-09</span></span>
<span id="cb13-63"><a href="#cb13-63" tabindex="-1"></a><span class="co">#> [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08</span></span>
<span id="cb13-64"><a href="#cb13-64" tabindex="-1"></a><span class="co">#> [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07</span></span>
<span id="cb13-65"><a href="#cb13-65" tabindex="-1"></a><span class="co">#> [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06</span></span>
<span id="cb13-66"><a href="#cb13-66" tabindex="-1"></a><span class="co">#> [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05</span></span>
<span id="cb13-67"><a href="#cb13-67" tabindex="-1"></a><span class="co">#> [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04</span></span>
<span id="cb13-68"><a href="#cb13-68" tabindex="-1"></a><span class="co">#> [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03</span></span>
<span id="cb13-69"><a href="#cb13-69" tabindex="-1"></a><span class="co">#> [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03</span></span>
<span id="cb13-70"><a href="#cb13-70" tabindex="-1"></a><span class="co">#> [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02</span></span>
<span id="cb13-71"><a href="#cb13-71" tabindex="-1"></a><span class="co">#> [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02</span></span>
<span id="cb13-72"><a href="#cb13-72" tabindex="-1"></a><span class="co">#> [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01</span></span>
<span id="cb13-73"><a href="#cb13-73" tabindex="-1"></a><span class="co">#> [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01</span></span>
<span id="cb13-74"><a href="#cb13-74" tabindex="-1"></a><span class="co">#> [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01</span></span>
<span id="cb13-75"><a href="#cb13-75" tabindex="-1"></a><span class="co">#> [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01</span></span>
<span id="cb13-76"><a href="#cb13-76" tabindex="-1"></a><span class="co">#> [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01</span></span>
<span id="cb13-77"><a href="#cb13-77" tabindex="-1"></a><span class="co">#> [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01</span></span>
<span id="cb13-78"><a href="#cb13-78" tabindex="-1"></a><span class="co">#> [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01</span></span>
<span id="cb13-79"><a href="#cb13-79" tabindex="-1"></a><span class="co">#> [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01</span></span>
<span id="cb13-80"><a href="#cb13-80" tabindex="-1"></a><span class="co">#> [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01</span></span>
<span id="cb13-81"><a href="#cb13-81" tabindex="-1"></a><span class="co">#> [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01</span></span>
<span id="cb13-82"><a href="#cb13-82" tabindex="-1"></a><span class="co">#> [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01</span></span>
<span id="cb13-83"><a href="#cb13-83" tabindex="-1"></a><span class="co">#> [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01</span></span>
<span id="cb13-84"><a href="#cb13-84" tabindex="-1"></a><span class="co">#> [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01</span></span>
<span id="cb13-85"><a href="#cb13-85" tabindex="-1"></a><span class="co">#> [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01</span></span>
<span id="cb13-86"><a href="#cb13-86" tabindex="-1"></a><span class="co">#> [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01</span></span>
<span id="cb13-87"><a href="#cb13-87" tabindex="-1"></a><span class="co">#> [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01</span></span>
<span id="cb13-88"><a href="#cb13-88" tabindex="-1"></a><span class="co">#> [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01</span></span>
<span id="cb13-89"><a href="#cb13-89" tabindex="-1"></a><span class="co">#> [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-90"><a href="#cb13-90" tabindex="-1"></a><span class="co">#> [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-91"><a href="#cb13-91" tabindex="-1"></a><span class="co">#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-92"><a href="#cb13-92" tabindex="-1"></a><span class="co">#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-93"><a href="#cb13-93" tabindex="-1"></a><span class="co">#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-94"><a href="#cb13-94" tabindex="-1"></a><span class="co">#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-95"><a href="#cb13-95" tabindex="-1"></a><span class="co">#> [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-96"><a href="#cb13-96" tabindex="-1"></a><span class="co">#> [216] 1.000000e+00</span></span></code></pre></div>
<p>As can be seen, the G-DFT-CF procedure does not produce probabilities
<span class="math inline">\(\leq 2.2e\text{-}16\)</span>, i.e. smaller
values are rounded off to 0, most likely due to the used FFTW3
library.</p>
</div>
<div id="processing-speed-comparisons-1" class="section level3">
<h3>Processing Speed Comparisons</h3>
<p>To assess the performance of the exact procedures, we use the
<code>microbenchmark</code> package. Each algorithm has to calculate the
PMF repeatedly based on random probability and value vectors. The run
times are then summarized in a table that presents, among other
statistics, their minima, maxima and means. The following results were
recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10
Education (22H2).</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a><span class="fu">library</span>(microbenchmark)</span>
<span id="cb14-2"><a href="#cb14-2" tabindex="-1"></a>n <span class="ot"><-</span> <span class="dv">2500</span></span>
<span id="cb14-3"><a href="#cb14-3" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb14-4"><a href="#cb14-4" tabindex="-1"></a>va <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">50</span>, n, <span class="cn">TRUE</span>)</span>
<span id="cb14-5"><a href="#cb14-5" tabindex="-1"></a>vb <span class="ot"><-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">50</span>, n, <span class="cn">TRUE</span>)</span>
<span id="cb14-6"><a href="#cb14-6" tabindex="-1"></a></span>
<span id="cb14-7"><a href="#cb14-7" tabindex="-1"></a>f1 <span class="ot"><-</span> <span class="cf">function</span>() <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(n), va, vb, <span class="at">method =</span> <span class="st">"DivideFFT"</span>)</span>
<span id="cb14-8"><a href="#cb14-8" tabindex="-1"></a>f2 <span class="ot"><-</span> <span class="cf">function</span>() <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(n), va, vb, <span class="at">method =</span> <span class="st">"Convolve"</span>)</span>
<span id="cb14-9"><a href="#cb14-9" tabindex="-1"></a>f3 <span class="ot"><-</span> <span class="cf">function</span>() <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(n), va, vb, <span class="at">method =</span> <span class="st">"Characteristic"</span>)</span>
<span id="cb14-10"><a href="#cb14-10" tabindex="-1"></a></span>
<span id="cb14-11"><a href="#cb14-11" tabindex="-1"></a><span class="fu">microbenchmark</span>(<span class="fu">f1</span>(), <span class="fu">f2</span>(), <span class="fu">f3</span>(), <span class="at">times =</span> <span class="dv">51</span>)</span>
<span id="cb14-12"><a href="#cb14-12" tabindex="-1"></a><span class="co">#> Unit: milliseconds</span></span>
<span id="cb14-13"><a href="#cb14-13" tabindex="-1"></a><span class="co">#> expr min lq mean median uq max neval</span></span>
<span id="cb14-14"><a href="#cb14-14" tabindex="-1"></a><span class="co">#> f1() 78.0103 80.94265 85.83106 82.3256 84.77965 222.4554 51</span></span>
<span id="cb14-15"><a href="#cb14-15" tabindex="-1"></a><span class="co">#> f2() 185.1651 189.36355 192.53650 191.5913 194.92825 216.8803 51</span></span>
<span id="cb14-16"><a href="#cb14-16" tabindex="-1"></a><span class="co">#> f3() 639.9733 721.50785 739.89051 747.7238 764.83850 801.4566 51</span></span></code></pre></div>
<p>Clearly, the G-DC-FFT procedure is the fastest one. It outperforms
both the G-DC and G-DFT-CF approaches. The latter one needs a lot more
time than the others. Generally, the computational speed advantage of
the G-DC-FFT procedure increases with larger <span class="math inline">\(n\)</span> (and <span class="math inline">\(m\)</span>).</p>
</div>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|