File: proc_exact.html

package info (click to toggle)
r-cran-poissonbinomial 1.2.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 736 kB
  • sloc: cpp: 719; makefile: 3
file content (998 lines) | stat: -rw-r--r-- 100,496 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />



<title>Exact Procedures</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>

<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>



<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } 
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.at { color: #7d9029; } 
code span.bn { color: #40a070; } 
code span.bu { color: #008000; } 
code span.cf { color: #007020; font-weight: bold; } 
code span.ch { color: #4070a0; } 
code span.cn { color: #880000; } 
code span.co { color: #60a0b0; font-style: italic; } 
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.do { color: #ba2121; font-style: italic; } 
code span.dt { color: #902000; } 
code span.dv { color: #40a070; } 
code span.er { color: #ff0000; font-weight: bold; } 
code span.ex { } 
code span.fl { color: #40a070; } 
code span.fu { color: #06287e; } 
code span.im { color: #008000; font-weight: bold; } 
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.kw { color: #007020; font-weight: bold; } 
code span.op { color: #666666; } 
code span.ot { color: #007020; } 
code span.pp { color: #bc7a00; } 
code span.sc { color: #4070a0; } 
code span.ss { color: #bb6688; } 
code span.st { color: #4070a0; } 
code span.va { color: #19177c; } 
code span.vs { color: #4070a0; } 
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } 
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    var j = 0;
    while (j < rules.length) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
        j++;
        continue;
      }
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') {
        j++;
        continue;
      }
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">Exact Procedures</h1>


<div id="TOC">
<ul>
<li><a href="#ordinary-poisson-binomial-distribution" id="toc-ordinary-poisson-binomial-distribution">Ordinary Poisson
Binomial Distribution</a>
<ul>
<li><a href="#direct-convolution" id="toc-direct-convolution">Direct
Convolution</a></li>
<li><a href="#divide-conquer-fft-tree-convolution" id="toc-divide-conquer-fft-tree-convolution">Divide &amp; Conquer FFT
Tree Convolution</a></li>
<li><a href="#discrete-fourier-transformation-of-the-characteristic-function" id="toc-discrete-fourier-transformation-of-the-characteristic-function">Discrete
Fourier Transformation of the Characteristic Function</a></li>
<li><a href="#recursive-formula" id="toc-recursive-formula">Recursive
Formula</a></li>
<li><a href="#processing-speed-comparisons" id="toc-processing-speed-comparisons">Processing Speed
Comparisons</a></li>
</ul></li>
<li><a href="#generalized-poisson-binomial-distribution" id="toc-generalized-poisson-binomial-distribution">Generalized Poisson
Binomial Distribution</a>
<ul>
<li><a href="#generalized-direct-convolution" id="toc-generalized-direct-convolution">Generalized Direct
Convolution</a></li>
<li><a href="#generalized-divide-conquer-fft-tree-convolution" id="toc-generalized-divide-conquer-fft-tree-convolution">Generalized
Divide &amp; Conquer FFT Tree Convolution</a></li>
<li><a href="#generalized-discrete-fourier-transformation-of-the-characteristic-function" id="toc-generalized-discrete-fourier-transformation-of-the-characteristic-function">Generalized
Discrete Fourier Transformation of the Characteristic Function</a></li>
<li><a href="#processing-speed-comparisons-1" id="toc-processing-speed-comparisons-1">Processing Speed
Comparisons</a></li>
</ul></li>
</ul>
</div>

<div id="ordinary-poisson-binomial-distribution" class="section level2">
<h2>Ordinary Poisson Binomial Distribution</h2>
<div id="direct-convolution" class="section level3">
<h3>Direct Convolution</h3>
<p>The <em>Direct Convolution</em> (DC) approach is requested with
<code>method = &quot;Convolve&quot;</code>.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a>pp <span class="ot">&lt;-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a>wt <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb1-4"><a href="#cb1-4" tabindex="-1"></a></span>
<span id="cb1-5"><a href="#cb1-5" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">&quot;Convolve&quot;</span>)</span>
<span id="cb1-6"><a href="#cb1-6" tabindex="-1"></a><span class="co">#&gt;  [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26</span></span>
<span id="cb1-7"><a href="#cb1-7" tabindex="-1"></a><span class="co">#&gt;  [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19</span></span>
<span id="cb1-8"><a href="#cb1-8" tabindex="-1"></a><span class="co">#&gt; [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13</span></span>
<span id="cb1-9"><a href="#cb1-9" tabindex="-1"></a><span class="co">#&gt; [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08</span></span>
<span id="cb1-10"><a href="#cb1-10" tabindex="-1"></a><span class="co">#&gt; [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05</span></span>
<span id="cb1-11"><a href="#cb1-11" tabindex="-1"></a><span class="co">#&gt; [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03</span></span>
<span id="cb1-12"><a href="#cb1-12" tabindex="-1"></a><span class="co">#&gt; [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01</span></span>
<span id="cb1-13"><a href="#cb1-13" tabindex="-1"></a><span class="co">#&gt; [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02</span></span>
<span id="cb1-14"><a href="#cb1-14" tabindex="-1"></a><span class="co">#&gt; [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03</span></span>
<span id="cb1-15"><a href="#cb1-15" tabindex="-1"></a><span class="co">#&gt; [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06</span></span>
<span id="cb1-16"><a href="#cb1-16" tabindex="-1"></a><span class="co">#&gt; [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10</span></span>
<span id="cb1-17"><a href="#cb1-17" tabindex="-1"></a><span class="co">#&gt; [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17</span></span>
<span id="cb1-18"><a href="#cb1-18" tabindex="-1"></a><span class="co">#&gt; [61] 9.411166e-19 6.727527e-21</span></span>
<span id="cb1-19"><a href="#cb1-19" tabindex="-1"></a><span class="fu">ppbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">&quot;Convolve&quot;</span>)</span>
<span id="cb1-20"><a href="#cb1-20" tabindex="-1"></a><span class="co">#&gt;  [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26</span></span>
<span id="cb1-21"><a href="#cb1-21" tabindex="-1"></a><span class="co">#&gt;  [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19</span></span>
<span id="cb1-22"><a href="#cb1-22" tabindex="-1"></a><span class="co">#&gt; [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13</span></span>
<span id="cb1-23"><a href="#cb1-23" tabindex="-1"></a><span class="co">#&gt; [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08</span></span>
<span id="cb1-24"><a href="#cb1-24" tabindex="-1"></a><span class="co">#&gt; [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05</span></span>
<span id="cb1-25"><a href="#cb1-25" tabindex="-1"></a><span class="co">#&gt; [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02</span></span>
<span id="cb1-26"><a href="#cb1-26" tabindex="-1"></a><span class="co">#&gt; [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01</span></span>
<span id="cb1-27"><a href="#cb1-27" tabindex="-1"></a><span class="co">#&gt; [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01</span></span>
<span id="cb1-28"><a href="#cb1-28" tabindex="-1"></a><span class="co">#&gt; [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01</span></span>
<span id="cb1-29"><a href="#cb1-29" tabindex="-1"></a><span class="co">#&gt; [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01</span></span>
<span id="cb1-30"><a href="#cb1-30" tabindex="-1"></a><span class="co">#&gt; [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb1-31"><a href="#cb1-31" tabindex="-1"></a><span class="co">#&gt; [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb1-32"><a href="#cb1-32" tabindex="-1"></a><span class="co">#&gt; [61] 1.000000e+00 1.000000e+00</span></span></code></pre></div>
</div>
<div id="divide-conquer-fft-tree-convolution" class="section level3">
<h3>Divide &amp; Conquer FFT Tree Convolution</h3>
<p>The <em>Divide &amp; Conquer FFT Tree Convolution</em> (DC-FFT)
approach is requested with <code>method = &quot;DivideFFT&quot;</code>.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a>pp <span class="ot">&lt;-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a>wt <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a></span>
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">&quot;DivideFFT&quot;</span>)</span>
<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a><span class="co">#&gt;  [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26</span></span>
<span id="cb2-7"><a href="#cb2-7" tabindex="-1"></a><span class="co">#&gt;  [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19</span></span>
<span id="cb2-8"><a href="#cb2-8" tabindex="-1"></a><span class="co">#&gt; [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13</span></span>
<span id="cb2-9"><a href="#cb2-9" tabindex="-1"></a><span class="co">#&gt; [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08</span></span>
<span id="cb2-10"><a href="#cb2-10" tabindex="-1"></a><span class="co">#&gt; [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05</span></span>
<span id="cb2-11"><a href="#cb2-11" tabindex="-1"></a><span class="co">#&gt; [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03</span></span>
<span id="cb2-12"><a href="#cb2-12" tabindex="-1"></a><span class="co">#&gt; [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01</span></span>
<span id="cb2-13"><a href="#cb2-13" tabindex="-1"></a><span class="co">#&gt; [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02</span></span>
<span id="cb2-14"><a href="#cb2-14" tabindex="-1"></a><span class="co">#&gt; [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03</span></span>
<span id="cb2-15"><a href="#cb2-15" tabindex="-1"></a><span class="co">#&gt; [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06</span></span>
<span id="cb2-16"><a href="#cb2-16" tabindex="-1"></a><span class="co">#&gt; [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10</span></span>
<span id="cb2-17"><a href="#cb2-17" tabindex="-1"></a><span class="co">#&gt; [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17</span></span>
<span id="cb2-18"><a href="#cb2-18" tabindex="-1"></a><span class="co">#&gt; [61] 9.411166e-19 6.727527e-21</span></span>
<span id="cb2-19"><a href="#cb2-19" tabindex="-1"></a><span class="fu">ppbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">&quot;DivideFFT&quot;</span>)</span>
<span id="cb2-20"><a href="#cb2-20" tabindex="-1"></a><span class="co">#&gt;  [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26</span></span>
<span id="cb2-21"><a href="#cb2-21" tabindex="-1"></a><span class="co">#&gt;  [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19</span></span>
<span id="cb2-22"><a href="#cb2-22" tabindex="-1"></a><span class="co">#&gt; [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13</span></span>
<span id="cb2-23"><a href="#cb2-23" tabindex="-1"></a><span class="co">#&gt; [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08</span></span>
<span id="cb2-24"><a href="#cb2-24" tabindex="-1"></a><span class="co">#&gt; [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05</span></span>
<span id="cb2-25"><a href="#cb2-25" tabindex="-1"></a><span class="co">#&gt; [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02</span></span>
<span id="cb2-26"><a href="#cb2-26" tabindex="-1"></a><span class="co">#&gt; [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01</span></span>
<span id="cb2-27"><a href="#cb2-27" tabindex="-1"></a><span class="co">#&gt; [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01</span></span>
<span id="cb2-28"><a href="#cb2-28" tabindex="-1"></a><span class="co">#&gt; [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01</span></span>
<span id="cb2-29"><a href="#cb2-29" tabindex="-1"></a><span class="co">#&gt; [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01</span></span>
<span id="cb2-30"><a href="#cb2-30" tabindex="-1"></a><span class="co">#&gt; [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb2-31"><a href="#cb2-31" tabindex="-1"></a><span class="co">#&gt; [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb2-32"><a href="#cb2-32" tabindex="-1"></a><span class="co">#&gt; [61] 1.000000e+00 1.000000e+00</span></span></code></pre></div>
<p>By design, as proposed by <a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao &amp;
Brunner (2018)</a>, its results are identical to the DC procedure, if
<span class="math inline">\(n \leq 750\)</span>. Thus, differences can
be observed for larger <span class="math inline">\(n &gt;
750\)</span>:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a>pp1 <span class="ot">&lt;-</span> <span class="fu">runif</span>(<span class="dv">751</span>)</span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a>pp2 <span class="ot">&lt;-</span> pp1[<span class="dv">1</span><span class="sc">:</span><span class="dv">750</span>]</span>
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a></span>
<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a><span class="fu">sum</span>(<span class="fu">abs</span>(<span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp2, <span class="at">method =</span> <span class="st">&quot;DivideFFT&quot;</span>) <span class="sc">-</span> <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp2, <span class="at">method =</span> <span class="st">&quot;Convolve&quot;</span>)))</span>
<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a><span class="co">#&gt; [1] 0</span></span>
<span id="cb3-7"><a href="#cb3-7" tabindex="-1"></a><span class="fu">sum</span>(<span class="fu">abs</span>(<span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp1, <span class="at">method =</span> <span class="st">&quot;DivideFFT&quot;</span>) <span class="sc">-</span> <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp1, <span class="at">method =</span> <span class="st">&quot;Convolve&quot;</span>)))</span>
<span id="cb3-8"><a href="#cb3-8" tabindex="-1"></a><span class="co">#&gt; [1] 0</span></span></code></pre></div>
<p>The reason is that the DC-FFT method splits the input
<code>probs</code> vector into as equally sized parts as possible and
computes their distributions separately with the DC approach. The
results of the portions are then convoluted by means of the Fast Fourier
Transformation. As proposed by <a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao &amp;
Brunner (2018)</a>, no splitting is done for <span class="math inline">\(n \leq 750\)</span>. In addition, the DC-FFT
procedure does not produce probabilities <span class="math inline">\(\leq 5.55e\text{-}17\)</span>, i.e. smaller values
are rounded off to 0, if <span class="math inline">\(n &gt;
750\)</span>, whereas the smallest possible result of the DC algorithm
is <span class="math inline">\(\sim 1e\text{-}323\)</span>. This is most
likely caused by the used FFTW3 library.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a>pp1 <span class="ot">&lt;-</span> <span class="fu">runif</span>(<span class="dv">751</span>)</span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a></span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a>d1 <span class="ot">&lt;-</span> <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp1, <span class="at">method =</span> <span class="st">&quot;DivideFFT&quot;</span>)</span>
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a>d2 <span class="ot">&lt;-</span> <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp1, <span class="at">method =</span> <span class="st">&quot;Convolve&quot;</span>)</span>
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a></span>
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a><span class="fu">min</span>(d1[d1 <span class="sc">&gt;</span> <span class="dv">0</span>])</span>
<span id="cb4-8"><a href="#cb4-8" tabindex="-1"></a><span class="co">#&gt; [1] 1.635357e-321</span></span>
<span id="cb4-9"><a href="#cb4-9" tabindex="-1"></a><span class="fu">min</span>(d2[d2 <span class="sc">&gt;</span> <span class="dv">0</span>])</span>
<span id="cb4-10"><a href="#cb4-10" tabindex="-1"></a><span class="co">#&gt; [1] 1.635357e-321</span></span></code></pre></div>
</div>
<div id="discrete-fourier-transformation-of-the-characteristic-function" class="section level3">
<h3>Discrete Fourier Transformation of the Characteristic Function</h3>
<p>The <em>Discrete Fourier Transformation of the Characteristic
Function</em> (DFT-CF) approach is requested with
<code>method = &quot;Characteristic&quot;</code>.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a>pp <span class="ot">&lt;-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a>wt <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a></span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">&quot;Characteristic&quot;</span>)</span>
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a><span class="co">#&gt;  [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a><span class="co">#&gt;  [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a><span class="co">#&gt; [11] 0.000000e+00 2.238353e-16 3.549132e-15 4.829828e-14 5.804377e-13</span></span>
<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a><span class="co">#&gt; [16] 6.158818e-12 5.784702e-11 4.822438e-10 3.576566e-09 2.364563e-08</span></span>
<span id="cb5-10"><a href="#cb5-10" tabindex="-1"></a><span class="co">#&gt; [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05</span></span>
<span id="cb5-11"><a href="#cb5-11" tabindex="-1"></a><span class="co">#&gt; [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03</span></span>
<span id="cb5-12"><a href="#cb5-12" tabindex="-1"></a><span class="co">#&gt; [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01</span></span>
<span id="cb5-13"><a href="#cb5-13" tabindex="-1"></a><span class="co">#&gt; [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02</span></span>
<span id="cb5-14"><a href="#cb5-14" tabindex="-1"></a><span class="co">#&gt; [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03</span></span>
<span id="cb5-15"><a href="#cb5-15" tabindex="-1"></a><span class="co">#&gt; [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06</span></span>
<span id="cb5-16"><a href="#cb5-16" tabindex="-1"></a><span class="co">#&gt; [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110923e-10</span></span>
<span id="cb5-17"><a href="#cb5-17" tabindex="-1"></a><span class="co">#&gt; [56] 2.392079e-11 1.468354e-12 6.994931e-14 2.513558e-15 0.000000e+00</span></span>
<span id="cb5-18"><a href="#cb5-18" tabindex="-1"></a><span class="co">#&gt; [61] 0.000000e+00 0.000000e+00</span></span>
<span id="cb5-19"><a href="#cb5-19" tabindex="-1"></a><span class="fu">ppbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">&quot;Characteristic&quot;</span>)</span>
<span id="cb5-20"><a href="#cb5-20" tabindex="-1"></a><span class="co">#&gt;  [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb5-21"><a href="#cb5-21" tabindex="-1"></a><span class="co">#&gt;  [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb5-22"><a href="#cb5-22" tabindex="-1"></a><span class="co">#&gt; [11] 0.000000e+00 2.238353e-16 3.772968e-15 5.207125e-14 6.325089e-13</span></span>
<span id="cb5-23"><a href="#cb5-23" tabindex="-1"></a><span class="co">#&gt; [16] 6.791327e-12 6.463834e-11 5.468822e-10 4.123448e-09 2.776908e-08</span></span>
<span id="cb5-24"><a href="#cb5-24" tabindex="-1"></a><span class="co">#&gt; [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05</span></span>
<span id="cb5-25"><a href="#cb5-25" tabindex="-1"></a><span class="co">#&gt; [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02</span></span>
<span id="cb5-26"><a href="#cb5-26" tabindex="-1"></a><span class="co">#&gt; [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01</span></span>
<span id="cb5-27"><a href="#cb5-27" tabindex="-1"></a><span class="co">#&gt; [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01</span></span>
<span id="cb5-28"><a href="#cb5-28" tabindex="-1"></a><span class="co">#&gt; [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01</span></span>
<span id="cb5-29"><a href="#cb5-29" tabindex="-1"></a><span class="co">#&gt; [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01</span></span>
<span id="cb5-30"><a href="#cb5-30" tabindex="-1"></a><span class="co">#&gt; [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb5-31"><a href="#cb5-31" tabindex="-1"></a><span class="co">#&gt; [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb5-32"><a href="#cb5-32" tabindex="-1"></a><span class="co">#&gt; [61] 1.000000e+00 1.000000e+00</span></span></code></pre></div>
<p>As can be seen, the DFT-CF procedure does not produce probabilities
<span class="math inline">\(\leq 2.22e\text{-}16\)</span>, i.e. smaller
values are rounded off to 0, most likely due to the used FFTW3
library.</p>
</div>
<div id="recursive-formula" class="section level3">
<h3>Recursive Formula</h3>
<p>The <em>Recursive Formula</em> (RF) approach is requested with
<code>method = &quot;Recursive&quot;</code>.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a>pp <span class="ot">&lt;-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a>wt <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a></span>
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a><span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">&quot;Recursive&quot;</span>)</span>
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="co">#&gt;  [1] 3.574462e-35 1.120280e-32 1.685184e-30 1.620524e-28 1.119523e-26</span></span>
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a><span class="co">#&gt;  [6] 5.920060e-25 2.493263e-23 8.591850e-22 2.470125e-20 6.011429e-19</span></span>
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a><span class="co">#&gt; [11] 1.252345e-17 2.253115e-16 3.525477e-15 4.825171e-14 5.803728e-13</span></span>
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a><span class="co">#&gt; [16] 6.158735e-12 5.784692e-11 4.822437e-10 3.576566e-09 2.364563e-08</span></span>
<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a><span class="co">#&gt; [21] 1.395965e-07 7.370448e-07 3.484836e-06 1.477208e-05 5.619632e-05</span></span>
<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a><span class="co">#&gt; [26] 1.920240e-04 5.897928e-04 1.629272e-03 4.049768e-03 9.060183e-03</span></span>
<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a><span class="co">#&gt; [31] 1.824629e-02 3.307754e-02 5.396724e-02 7.921491e-02 1.045505e-01</span></span>
<span id="cb6-13"><a href="#cb6-13" tabindex="-1"></a><span class="co">#&gt; [36] 1.239854e-01 1.319896e-01 1.259938e-01 1.077029e-01 8.232174e-02</span></span>
<span id="cb6-14"><a href="#cb6-14" tabindex="-1"></a><span class="co">#&gt; [41] 5.616422e-02 3.413623e-02 1.844304e-02 8.835890e-03 3.743554e-03</span></span>
<span id="cb6-15"><a href="#cb6-15" tabindex="-1"></a><span class="co">#&gt; [46] 1.398320e-03 4.589049e-04 1.318064e-04 3.298425e-05 7.154649e-06</span></span>
<span id="cb6-16"><a href="#cb6-16" tabindex="-1"></a><span class="co">#&gt; [51] 1.337083e-06 2.137543e-07 2.898296e-08 3.298587e-09 3.110922e-10</span></span>
<span id="cb6-17"><a href="#cb6-17" tabindex="-1"></a><span class="co">#&gt; [56] 2.392070e-11 1.468267e-12 6.991155e-14 2.478218e-15 6.130807e-17</span></span>
<span id="cb6-18"><a href="#cb6-18" tabindex="-1"></a><span class="co">#&gt; [61] 9.411166e-19 6.727527e-21</span></span>
<span id="cb6-19"><a href="#cb6-19" tabindex="-1"></a><span class="fu">ppbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">&quot;Recursive&quot;</span>)</span>
<span id="cb6-20"><a href="#cb6-20" tabindex="-1"></a><span class="co">#&gt;  [1] 3.574462e-35 1.123854e-32 1.696423e-30 1.637488e-28 1.135898e-26</span></span>
<span id="cb6-21"><a href="#cb6-21" tabindex="-1"></a><span class="co">#&gt;  [6] 6.033650e-25 2.553600e-23 8.847210e-22 2.558597e-20 6.267289e-19</span></span>
<span id="cb6-22"><a href="#cb6-22" tabindex="-1"></a><span class="co">#&gt; [11] 1.315018e-17 2.384617e-16 3.763939e-15 5.201565e-14 6.323884e-13</span></span>
<span id="cb6-23"><a href="#cb6-23" tabindex="-1"></a><span class="co">#&gt; [16] 6.791123e-12 6.463805e-11 5.468818e-10 4.123448e-09 2.776908e-08</span></span>
<span id="cb6-24"><a href="#cb6-24" tabindex="-1"></a><span class="co">#&gt; [21] 1.673656e-07 9.044104e-07 4.389247e-06 1.916133e-05 7.535765e-05</span></span>
<span id="cb6-25"><a href="#cb6-25" tabindex="-1"></a><span class="co">#&gt; [26] 2.673817e-04 8.571745e-04 2.486446e-03 6.536215e-03 1.559640e-02</span></span>
<span id="cb6-26"><a href="#cb6-26" tabindex="-1"></a><span class="co">#&gt; [31] 3.384269e-02 6.692022e-02 1.208875e-01 2.001024e-01 3.046529e-01</span></span>
<span id="cb6-27"><a href="#cb6-27" tabindex="-1"></a><span class="co">#&gt; [36] 4.286383e-01 5.606280e-01 6.866217e-01 7.943246e-01 8.766463e-01</span></span>
<span id="cb6-28"><a href="#cb6-28" tabindex="-1"></a><span class="co">#&gt; [41] 9.328105e-01 9.669468e-01 9.853898e-01 9.942257e-01 9.979692e-01</span></span>
<span id="cb6-29"><a href="#cb6-29" tabindex="-1"></a><span class="co">#&gt; [46] 9.993676e-01 9.998265e-01 9.999583e-01 9.999913e-01 9.999984e-01</span></span>
<span id="cb6-30"><a href="#cb6-30" tabindex="-1"></a><span class="co">#&gt; [51] 9.999998e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb6-31"><a href="#cb6-31" tabindex="-1"></a><span class="co">#&gt; [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb6-32"><a href="#cb6-32" tabindex="-1"></a><span class="co">#&gt; [61] 1.000000e+00 1.000000e+00</span></span></code></pre></div>
<p>Obviously, the RF procedure does produce probabilities <span class="math inline">\(\leq 5.55e\text{-}17\)</span>, because it does not
rely on the FFTW3 library. Furthermore, it yields the same results as
the DC method.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a>pp <span class="ot">&lt;-</span> <span class="fu">runif</span>(<span class="dv">1000</span>)</span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a>wt <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">1000</span>, <span class="cn">TRUE</span>)</span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a></span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="fu">sum</span>(<span class="fu">abs</span>(<span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">&quot;Convolve&quot;</span>) <span class="sc">-</span> <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, pp, wt, <span class="st">&quot;Recursive&quot;</span>)))</span>
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a><span class="co">#&gt; [1] 0</span></span></code></pre></div>
</div>
<div id="processing-speed-comparisons" class="section level3">
<h3>Processing Speed Comparisons</h3>
<p>To assess the performance of the exact procedures, we use the
<code>microbenchmark</code> package. Each algorithm has to calculate the
PMF repeatedly based on random probability vectors. The run times are
then summarized in a table that presents, among other statistics, their
minima, maxima and means. The following results were recorded on an AMD
Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">library</span>(microbenchmark)</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a></span>
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a>f1 <span class="ot">&lt;-</span> <span class="cf">function</span>() <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(<span class="dv">6000</span>), <span class="at">method =</span> <span class="st">&quot;DivideFFT&quot;</span>)</span>
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a>f2 <span class="ot">&lt;-</span> <span class="cf">function</span>() <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(<span class="dv">6000</span>), <span class="at">method =</span> <span class="st">&quot;Convolve&quot;</span>)</span>
<span id="cb8-6"><a href="#cb8-6" tabindex="-1"></a>f3 <span class="ot">&lt;-</span> <span class="cf">function</span>() <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(<span class="dv">6000</span>), <span class="at">method =</span> <span class="st">&quot;Recursive&quot;</span>)</span>
<span id="cb8-7"><a href="#cb8-7" tabindex="-1"></a>f4 <span class="ot">&lt;-</span> <span class="cf">function</span>() <span class="fu">dpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(<span class="dv">6000</span>), <span class="at">method =</span> <span class="st">&quot;Characteristic&quot;</span>)</span>
<span id="cb8-8"><a href="#cb8-8" tabindex="-1"></a></span>
<span id="cb8-9"><a href="#cb8-9" tabindex="-1"></a><span class="fu">microbenchmark</span>(<span class="fu">f1</span>(), <span class="fu">f2</span>(), <span class="fu">f3</span>(), <span class="fu">f4</span>(), <span class="at">times =</span> <span class="dv">51</span>)</span>
<span id="cb8-10"><a href="#cb8-10" tabindex="-1"></a><span class="co">#&gt; Unit: milliseconds</span></span>
<span id="cb8-11"><a href="#cb8-11" tabindex="-1"></a><span class="co">#&gt;  expr      min        lq      mean   median        uq      max neval</span></span>
<span id="cb8-12"><a href="#cb8-12" tabindex="-1"></a><span class="co">#&gt;  f1()  20.9010  21.82365  23.03580  22.3124  22.60315  33.6471    51</span></span>
<span id="cb8-13"><a href="#cb8-13" tabindex="-1"></a><span class="co">#&gt;  f2()  44.1096  44.98895  45.64250  45.2764  45.94010  53.8505    51</span></span>
<span id="cb8-14"><a href="#cb8-14" tabindex="-1"></a><span class="co">#&gt;  f3()  80.0998  80.81575  83.09995  81.6625  82.49565 129.9786    51</span></span>
<span id="cb8-15"><a href="#cb8-15" tabindex="-1"></a><span class="co">#&gt;  f4() 198.8036 203.35170 206.31347 205.5394 207.87380 237.2220    51</span></span></code></pre></div>
<p>Clearly, the DC-FFT procedure is the fastest, followed by DC, RF and
DFT-CF methods.</p>
</div>
</div>
<div id="generalized-poisson-binomial-distribution" class="section level2">
<h2>Generalized Poisson Binomial Distribution</h2>
<div id="generalized-direct-convolution" class="section level3">
<h3>Generalized Direct Convolution</h3>
<p>The <em>Generalized Direct Convolution</em> (G-DC) approach is
requested with <code>method = &quot;Convolve&quot;</code>.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>pp <span class="ot">&lt;-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a>wt <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a>va <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a>vb <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a></span>
<span id="cb9-7"><a href="#cb9-7" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">&quot;Convolve&quot;</span>)</span>
<span id="cb9-8"><a href="#cb9-8" tabindex="-1"></a><span class="co">#&gt;   [1] 1.140600e-31 5.349930e-30 1.164698e-28 1.572037e-27 1.491024e-26</span></span>
<span id="cb9-9"><a href="#cb9-9" tabindex="-1"></a><span class="co">#&gt;   [6] 1.077204e-25 6.336147e-25 3.215011e-24 1.466295e-23 6.127671e-23</span></span>
<span id="cb9-10"><a href="#cb9-10" tabindex="-1"></a><span class="co">#&gt;  [11] 2.363402e-22 8.484857e-22 2.866109e-21 9.171228e-21 2.788507e-20</span></span>
<span id="cb9-11"><a href="#cb9-11" tabindex="-1"></a><span class="co">#&gt;  [16] 8.091940e-20 2.254155e-19 6.051395e-19 1.570129e-18 3.953458e-18</span></span>
<span id="cb9-12"><a href="#cb9-12" tabindex="-1"></a><span class="co">#&gt;  [21] 9.696098e-18 2.321913e-17 5.442392e-17 1.251302e-16 2.824507e-16</span></span>
<span id="cb9-13"><a href="#cb9-13" tabindex="-1"></a><span class="co">#&gt;  [26] 6.264454e-16 1.366745e-15 2.934598e-15 6.203639e-15 1.292697e-14</span></span>
<span id="cb9-14"><a href="#cb9-14" tabindex="-1"></a><span class="co">#&gt;  [31] 2.657759e-14 5.394727e-14 1.081983e-13 2.144873e-13 4.201625e-13</span></span>
<span id="cb9-15"><a href="#cb9-15" tabindex="-1"></a><span class="co">#&gt;  [36] 8.135609e-13 1.557745e-12 2.949821e-12 5.527695e-12 1.025815e-11</span></span>
<span id="cb9-16"><a href="#cb9-16" tabindex="-1"></a><span class="co">#&gt;  [41] 1.885777e-11 3.434641e-11 6.196981e-11 1.106787e-10 1.956340e-10</span></span>
<span id="cb9-17"><a href="#cb9-17" tabindex="-1"></a><span class="co">#&gt;  [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753751e-09 2.972596e-09</span></span>
<span id="cb9-18"><a href="#cb9-18" tabindex="-1"></a><span class="co">#&gt;  [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08</span></span>
<span id="cb9-19"><a href="#cb9-19" tabindex="-1"></a><span class="co">#&gt;  [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07</span></span>
<span id="cb9-20"><a href="#cb9-20" tabindex="-1"></a><span class="co">#&gt;  [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06</span></span>
<span id="cb9-21"><a href="#cb9-21" tabindex="-1"></a><span class="co">#&gt;  [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05</span></span>
<span id="cb9-22"><a href="#cb9-22" tabindex="-1"></a><span class="co">#&gt;  [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05</span></span>
<span id="cb9-23"><a href="#cb9-23" tabindex="-1"></a><span class="co">#&gt;  [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04</span></span>
<span id="cb9-24"><a href="#cb9-24" tabindex="-1"></a><span class="co">#&gt;  [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03</span></span>
<span id="cb9-25"><a href="#cb9-25" tabindex="-1"></a><span class="co">#&gt;  [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03</span></span>
<span id="cb9-26"><a href="#cb9-26" tabindex="-1"></a><span class="co">#&gt;  [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03</span></span>
<span id="cb9-27"><a href="#cb9-27" tabindex="-1"></a><span class="co">#&gt;  [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02</span></span>
<span id="cb9-28"><a href="#cb9-28" tabindex="-1"></a><span class="co">#&gt; [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02</span></span>
<span id="cb9-29"><a href="#cb9-29" tabindex="-1"></a><span class="co">#&gt; [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02</span></span>
<span id="cb9-30"><a href="#cb9-30" tabindex="-1"></a><span class="co">#&gt; [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02</span></span>
<span id="cb9-31"><a href="#cb9-31" tabindex="-1"></a><span class="co">#&gt; [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02</span></span>
<span id="cb9-32"><a href="#cb9-32" tabindex="-1"></a><span class="co">#&gt; [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02</span></span>
<span id="cb9-33"><a href="#cb9-33" tabindex="-1"></a><span class="co">#&gt; [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02</span></span>
<span id="cb9-34"><a href="#cb9-34" tabindex="-1"></a><span class="co">#&gt; [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02</span></span>
<span id="cb9-35"><a href="#cb9-35" tabindex="-1"></a><span class="co">#&gt; [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03</span></span>
<span id="cb9-36"><a href="#cb9-36" tabindex="-1"></a><span class="co">#&gt; [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03</span></span>
<span id="cb9-37"><a href="#cb9-37" tabindex="-1"></a><span class="co">#&gt; [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03</span></span>
<span id="cb9-38"><a href="#cb9-38" tabindex="-1"></a><span class="co">#&gt; [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04</span></span>
<span id="cb9-39"><a href="#cb9-39" tabindex="-1"></a><span class="co">#&gt; [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04</span></span>
<span id="cb9-40"><a href="#cb9-40" tabindex="-1"></a><span class="co">#&gt; [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05</span></span>
<span id="cb9-41"><a href="#cb9-41" tabindex="-1"></a><span class="co">#&gt; [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05</span></span>
<span id="cb9-42"><a href="#cb9-42" tabindex="-1"></a><span class="co">#&gt; [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06</span></span>
<span id="cb9-43"><a href="#cb9-43" tabindex="-1"></a><span class="co">#&gt; [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07</span></span>
<span id="cb9-44"><a href="#cb9-44" tabindex="-1"></a><span class="co">#&gt; [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08</span></span>
<span id="cb9-45"><a href="#cb9-45" tabindex="-1"></a><span class="co">#&gt; [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09</span></span>
<span id="cb9-46"><a href="#cb9-46" tabindex="-1"></a><span class="co">#&gt; [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11</span></span>
<span id="cb9-47"><a href="#cb9-47" tabindex="-1"></a><span class="co">#&gt; [196] 1.676154e-11 7.585978e-12 3.326429e-12 1.407527e-12 5.717370e-13</span></span>
<span id="cb9-48"><a href="#cb9-48" tabindex="-1"></a><span class="co">#&gt; [201] 2.216349e-13 8.149241e-14 2.824954e-14 9.179165e-15 2.780017e-15</span></span>
<span id="cb9-49"><a href="#cb9-49" tabindex="-1"></a><span class="co">#&gt; [206] 7.803525e-16 2.018046e-16 4.775552e-17 1.025798e-17 1.979767e-18</span></span>
<span id="cb9-50"><a href="#cb9-50" tabindex="-1"></a><span class="co">#&gt; [211] 3.386554e-19 5.038594e-20 6.336865e-21 6.424747e-22 4.821385e-23</span></span>
<span id="cb9-51"><a href="#cb9-51" tabindex="-1"></a><span class="co">#&gt; [216] 2.108301e-24</span></span>
<span id="cb9-52"><a href="#cb9-52" tabindex="-1"></a><span class="fu">pgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">&quot;Convolve&quot;</span>)</span>
<span id="cb9-53"><a href="#cb9-53" tabindex="-1"></a><span class="co">#&gt;   [1] 1.140600e-31 5.463990e-30 1.219337e-28 1.693971e-27 1.660421e-26</span></span>
<span id="cb9-54"><a href="#cb9-54" tabindex="-1"></a><span class="co">#&gt;   [6] 1.243246e-25 7.579393e-25 3.972950e-24 1.863590e-23 7.991261e-23</span></span>
<span id="cb9-55"><a href="#cb9-55" tabindex="-1"></a><span class="co">#&gt;  [11] 3.162528e-22 1.164739e-21 4.030847e-21 1.320208e-20 4.108715e-20</span></span>
<span id="cb9-56"><a href="#cb9-56" tabindex="-1"></a><span class="co">#&gt;  [16] 1.220065e-19 3.474220e-19 9.525615e-19 2.522691e-18 6.476149e-18</span></span>
<span id="cb9-57"><a href="#cb9-57" tabindex="-1"></a><span class="co">#&gt;  [21] 1.617225e-17 3.939138e-17 9.381530e-17 2.189455e-16 5.013962e-16</span></span>
<span id="cb9-58"><a href="#cb9-58" tabindex="-1"></a><span class="co">#&gt;  [26] 1.127842e-15 2.494586e-15 5.429184e-15 1.163282e-14 2.455979e-14</span></span>
<span id="cb9-59"><a href="#cb9-59" tabindex="-1"></a><span class="co">#&gt;  [31] 5.113739e-14 1.050847e-13 2.132829e-13 4.277703e-13 8.479327e-13</span></span>
<span id="cb9-60"><a href="#cb9-60" tabindex="-1"></a><span class="co">#&gt;  [36] 1.661494e-12 3.219239e-12 6.169059e-12 1.169675e-11 2.195491e-11</span></span>
<span id="cb9-61"><a href="#cb9-61" tabindex="-1"></a><span class="co">#&gt;  [41] 4.081268e-11 7.515909e-11 1.371289e-10 2.478076e-10 4.434415e-10</span></span>
<span id="cb9-62"><a href="#cb9-62" tabindex="-1"></a><span class="co">#&gt;  [46] 7.859810e-10 1.380789e-09 2.406013e-09 4.159763e-09 7.132360e-09</span></span>
<span id="cb9-63"><a href="#cb9-63" tabindex="-1"></a><span class="co">#&gt;  [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08</span></span>
<span id="cb9-64"><a href="#cb9-64" tabindex="-1"></a><span class="co">#&gt;  [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07</span></span>
<span id="cb9-65"><a href="#cb9-65" tabindex="-1"></a><span class="co">#&gt;  [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06</span></span>
<span id="cb9-66"><a href="#cb9-66" tabindex="-1"></a><span class="co">#&gt;  [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05</span></span>
<span id="cb9-67"><a href="#cb9-67" tabindex="-1"></a><span class="co">#&gt;  [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04</span></span>
<span id="cb9-68"><a href="#cb9-68" tabindex="-1"></a><span class="co">#&gt;  [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03</span></span>
<span id="cb9-69"><a href="#cb9-69" tabindex="-1"></a><span class="co">#&gt;  [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03</span></span>
<span id="cb9-70"><a href="#cb9-70" tabindex="-1"></a><span class="co">#&gt;  [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02</span></span>
<span id="cb9-71"><a href="#cb9-71" tabindex="-1"></a><span class="co">#&gt;  [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02</span></span>
<span id="cb9-72"><a href="#cb9-72" tabindex="-1"></a><span class="co">#&gt;  [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01</span></span>
<span id="cb9-73"><a href="#cb9-73" tabindex="-1"></a><span class="co">#&gt; [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01</span></span>
<span id="cb9-74"><a href="#cb9-74" tabindex="-1"></a><span class="co">#&gt; [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01</span></span>
<span id="cb9-75"><a href="#cb9-75" tabindex="-1"></a><span class="co">#&gt; [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01</span></span>
<span id="cb9-76"><a href="#cb9-76" tabindex="-1"></a><span class="co">#&gt; [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01</span></span>
<span id="cb9-77"><a href="#cb9-77" tabindex="-1"></a><span class="co">#&gt; [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01</span></span>
<span id="cb9-78"><a href="#cb9-78" tabindex="-1"></a><span class="co">#&gt; [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01</span></span>
<span id="cb9-79"><a href="#cb9-79" tabindex="-1"></a><span class="co">#&gt; [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01</span></span>
<span id="cb9-80"><a href="#cb9-80" tabindex="-1"></a><span class="co">#&gt; [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01</span></span>
<span id="cb9-81"><a href="#cb9-81" tabindex="-1"></a><span class="co">#&gt; [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01</span></span>
<span id="cb9-82"><a href="#cb9-82" tabindex="-1"></a><span class="co">#&gt; [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01</span></span>
<span id="cb9-83"><a href="#cb9-83" tabindex="-1"></a><span class="co">#&gt; [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01</span></span>
<span id="cb9-84"><a href="#cb9-84" tabindex="-1"></a><span class="co">#&gt; [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01</span></span>
<span id="cb9-85"><a href="#cb9-85" tabindex="-1"></a><span class="co">#&gt; [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01</span></span>
<span id="cb9-86"><a href="#cb9-86" tabindex="-1"></a><span class="co">#&gt; [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01</span></span>
<span id="cb9-87"><a href="#cb9-87" tabindex="-1"></a><span class="co">#&gt; [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01</span></span>
<span id="cb9-88"><a href="#cb9-88" tabindex="-1"></a><span class="co">#&gt; [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01</span></span>
<span id="cb9-89"><a href="#cb9-89" tabindex="-1"></a><span class="co">#&gt; [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-90"><a href="#cb9-90" tabindex="-1"></a><span class="co">#&gt; [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-91"><a href="#cb9-91" tabindex="-1"></a><span class="co">#&gt; [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-92"><a href="#cb9-92" tabindex="-1"></a><span class="co">#&gt; [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-93"><a href="#cb9-93" tabindex="-1"></a><span class="co">#&gt; [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-94"><a href="#cb9-94" tabindex="-1"></a><span class="co">#&gt; [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-95"><a href="#cb9-95" tabindex="-1"></a><span class="co">#&gt; [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb9-96"><a href="#cb9-96" tabindex="-1"></a><span class="co">#&gt; [216] 1.000000e+00</span></span></code></pre></div>
</div>
<div id="generalized-divide-conquer-fft-tree-convolution" class="section level3">
<h3>Generalized Divide &amp; Conquer FFT Tree Convolution</h3>
<p>The <em>Generalized Divide &amp; Conquer FFT Tree Convolution</em>
(G-DC-FFT) approach is requested with
<code>method = &quot;DivideFFT&quot;</code>.</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a>pp <span class="ot">&lt;-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a>wt <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb10-4"><a href="#cb10-4" tabindex="-1"></a>va <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb10-5"><a href="#cb10-5" tabindex="-1"></a>vb <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb10-6"><a href="#cb10-6" tabindex="-1"></a></span>
<span id="cb10-7"><a href="#cb10-7" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">&quot;DivideFFT&quot;</span>)</span>
<span id="cb10-8"><a href="#cb10-8" tabindex="-1"></a><span class="co">#&gt;   [1] 1.140600e-31 5.349930e-30 1.164698e-28 1.572037e-27 1.491024e-26</span></span>
<span id="cb10-9"><a href="#cb10-9" tabindex="-1"></a><span class="co">#&gt;   [6] 1.077204e-25 6.336147e-25 3.215011e-24 1.466295e-23 6.127671e-23</span></span>
<span id="cb10-10"><a href="#cb10-10" tabindex="-1"></a><span class="co">#&gt;  [11] 2.363402e-22 8.484857e-22 2.866109e-21 9.171228e-21 2.788507e-20</span></span>
<span id="cb10-11"><a href="#cb10-11" tabindex="-1"></a><span class="co">#&gt;  [16] 8.091940e-20 2.254155e-19 6.051395e-19 1.570129e-18 3.953458e-18</span></span>
<span id="cb10-12"><a href="#cb10-12" tabindex="-1"></a><span class="co">#&gt;  [21] 9.696098e-18 2.321913e-17 5.442392e-17 1.251302e-16 2.824507e-16</span></span>
<span id="cb10-13"><a href="#cb10-13" tabindex="-1"></a><span class="co">#&gt;  [26] 6.264454e-16 1.366745e-15 2.934598e-15 6.203639e-15 1.292697e-14</span></span>
<span id="cb10-14"><a href="#cb10-14" tabindex="-1"></a><span class="co">#&gt;  [31] 2.657759e-14 5.394727e-14 1.081983e-13 2.144873e-13 4.201625e-13</span></span>
<span id="cb10-15"><a href="#cb10-15" tabindex="-1"></a><span class="co">#&gt;  [36] 8.135609e-13 1.557745e-12 2.949821e-12 5.527695e-12 1.025815e-11</span></span>
<span id="cb10-16"><a href="#cb10-16" tabindex="-1"></a><span class="co">#&gt;  [41] 1.885777e-11 3.434641e-11 6.196981e-11 1.106787e-10 1.956340e-10</span></span>
<span id="cb10-17"><a href="#cb10-17" tabindex="-1"></a><span class="co">#&gt;  [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753751e-09 2.972596e-09</span></span>
<span id="cb10-18"><a href="#cb10-18" tabindex="-1"></a><span class="co">#&gt;  [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08</span></span>
<span id="cb10-19"><a href="#cb10-19" tabindex="-1"></a><span class="co">#&gt;  [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07</span></span>
<span id="cb10-20"><a href="#cb10-20" tabindex="-1"></a><span class="co">#&gt;  [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06</span></span>
<span id="cb10-21"><a href="#cb10-21" tabindex="-1"></a><span class="co">#&gt;  [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05</span></span>
<span id="cb10-22"><a href="#cb10-22" tabindex="-1"></a><span class="co">#&gt;  [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05</span></span>
<span id="cb10-23"><a href="#cb10-23" tabindex="-1"></a><span class="co">#&gt;  [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04</span></span>
<span id="cb10-24"><a href="#cb10-24" tabindex="-1"></a><span class="co">#&gt;  [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03</span></span>
<span id="cb10-25"><a href="#cb10-25" tabindex="-1"></a><span class="co">#&gt;  [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03</span></span>
<span id="cb10-26"><a href="#cb10-26" tabindex="-1"></a><span class="co">#&gt;  [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03</span></span>
<span id="cb10-27"><a href="#cb10-27" tabindex="-1"></a><span class="co">#&gt;  [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02</span></span>
<span id="cb10-28"><a href="#cb10-28" tabindex="-1"></a><span class="co">#&gt; [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02</span></span>
<span id="cb10-29"><a href="#cb10-29" tabindex="-1"></a><span class="co">#&gt; [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02</span></span>
<span id="cb10-30"><a href="#cb10-30" tabindex="-1"></a><span class="co">#&gt; [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02</span></span>
<span id="cb10-31"><a href="#cb10-31" tabindex="-1"></a><span class="co">#&gt; [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02</span></span>
<span id="cb10-32"><a href="#cb10-32" tabindex="-1"></a><span class="co">#&gt; [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02</span></span>
<span id="cb10-33"><a href="#cb10-33" tabindex="-1"></a><span class="co">#&gt; [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02</span></span>
<span id="cb10-34"><a href="#cb10-34" tabindex="-1"></a><span class="co">#&gt; [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02</span></span>
<span id="cb10-35"><a href="#cb10-35" tabindex="-1"></a><span class="co">#&gt; [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03</span></span>
<span id="cb10-36"><a href="#cb10-36" tabindex="-1"></a><span class="co">#&gt; [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03</span></span>
<span id="cb10-37"><a href="#cb10-37" tabindex="-1"></a><span class="co">#&gt; [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03</span></span>
<span id="cb10-38"><a href="#cb10-38" tabindex="-1"></a><span class="co">#&gt; [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04</span></span>
<span id="cb10-39"><a href="#cb10-39" tabindex="-1"></a><span class="co">#&gt; [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04</span></span>
<span id="cb10-40"><a href="#cb10-40" tabindex="-1"></a><span class="co">#&gt; [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05</span></span>
<span id="cb10-41"><a href="#cb10-41" tabindex="-1"></a><span class="co">#&gt; [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05</span></span>
<span id="cb10-42"><a href="#cb10-42" tabindex="-1"></a><span class="co">#&gt; [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06</span></span>
<span id="cb10-43"><a href="#cb10-43" tabindex="-1"></a><span class="co">#&gt; [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07</span></span>
<span id="cb10-44"><a href="#cb10-44" tabindex="-1"></a><span class="co">#&gt; [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08</span></span>
<span id="cb10-45"><a href="#cb10-45" tabindex="-1"></a><span class="co">#&gt; [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09</span></span>
<span id="cb10-46"><a href="#cb10-46" tabindex="-1"></a><span class="co">#&gt; [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11</span></span>
<span id="cb10-47"><a href="#cb10-47" tabindex="-1"></a><span class="co">#&gt; [196] 1.676154e-11 7.585978e-12 3.326429e-12 1.407527e-12 5.717370e-13</span></span>
<span id="cb10-48"><a href="#cb10-48" tabindex="-1"></a><span class="co">#&gt; [201] 2.216349e-13 8.149241e-14 2.824954e-14 9.179165e-15 2.780017e-15</span></span>
<span id="cb10-49"><a href="#cb10-49" tabindex="-1"></a><span class="co">#&gt; [206] 7.803525e-16 2.018046e-16 4.775552e-17 1.025798e-17 1.979767e-18</span></span>
<span id="cb10-50"><a href="#cb10-50" tabindex="-1"></a><span class="co">#&gt; [211] 3.386554e-19 5.038594e-20 6.336865e-21 6.424747e-22 4.821385e-23</span></span>
<span id="cb10-51"><a href="#cb10-51" tabindex="-1"></a><span class="co">#&gt; [216] 2.108301e-24</span></span>
<span id="cb10-52"><a href="#cb10-52" tabindex="-1"></a><span class="fu">pgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">&quot;DivideFFT&quot;</span>)</span>
<span id="cb10-53"><a href="#cb10-53" tabindex="-1"></a><span class="co">#&gt;   [1] 1.140600e-31 5.463990e-30 1.219337e-28 1.693971e-27 1.660421e-26</span></span>
<span id="cb10-54"><a href="#cb10-54" tabindex="-1"></a><span class="co">#&gt;   [6] 1.243246e-25 7.579393e-25 3.972950e-24 1.863590e-23 7.991261e-23</span></span>
<span id="cb10-55"><a href="#cb10-55" tabindex="-1"></a><span class="co">#&gt;  [11] 3.162528e-22 1.164739e-21 4.030847e-21 1.320208e-20 4.108715e-20</span></span>
<span id="cb10-56"><a href="#cb10-56" tabindex="-1"></a><span class="co">#&gt;  [16] 1.220065e-19 3.474220e-19 9.525615e-19 2.522691e-18 6.476149e-18</span></span>
<span id="cb10-57"><a href="#cb10-57" tabindex="-1"></a><span class="co">#&gt;  [21] 1.617225e-17 3.939138e-17 9.381530e-17 2.189455e-16 5.013962e-16</span></span>
<span id="cb10-58"><a href="#cb10-58" tabindex="-1"></a><span class="co">#&gt;  [26] 1.127842e-15 2.494586e-15 5.429184e-15 1.163282e-14 2.455979e-14</span></span>
<span id="cb10-59"><a href="#cb10-59" tabindex="-1"></a><span class="co">#&gt;  [31] 5.113739e-14 1.050847e-13 2.132829e-13 4.277703e-13 8.479327e-13</span></span>
<span id="cb10-60"><a href="#cb10-60" tabindex="-1"></a><span class="co">#&gt;  [36] 1.661494e-12 3.219239e-12 6.169059e-12 1.169675e-11 2.195491e-11</span></span>
<span id="cb10-61"><a href="#cb10-61" tabindex="-1"></a><span class="co">#&gt;  [41] 4.081268e-11 7.515909e-11 1.371289e-10 2.478076e-10 4.434415e-10</span></span>
<span id="cb10-62"><a href="#cb10-62" tabindex="-1"></a><span class="co">#&gt;  [46] 7.859810e-10 1.380789e-09 2.406013e-09 4.159763e-09 7.132360e-09</span></span>
<span id="cb10-63"><a href="#cb10-63" tabindex="-1"></a><span class="co">#&gt;  [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08</span></span>
<span id="cb10-64"><a href="#cb10-64" tabindex="-1"></a><span class="co">#&gt;  [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07</span></span>
<span id="cb10-65"><a href="#cb10-65" tabindex="-1"></a><span class="co">#&gt;  [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06</span></span>
<span id="cb10-66"><a href="#cb10-66" tabindex="-1"></a><span class="co">#&gt;  [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05</span></span>
<span id="cb10-67"><a href="#cb10-67" tabindex="-1"></a><span class="co">#&gt;  [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04</span></span>
<span id="cb10-68"><a href="#cb10-68" tabindex="-1"></a><span class="co">#&gt;  [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03</span></span>
<span id="cb10-69"><a href="#cb10-69" tabindex="-1"></a><span class="co">#&gt;  [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03</span></span>
<span id="cb10-70"><a href="#cb10-70" tabindex="-1"></a><span class="co">#&gt;  [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02</span></span>
<span id="cb10-71"><a href="#cb10-71" tabindex="-1"></a><span class="co">#&gt;  [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02</span></span>
<span id="cb10-72"><a href="#cb10-72" tabindex="-1"></a><span class="co">#&gt;  [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01</span></span>
<span id="cb10-73"><a href="#cb10-73" tabindex="-1"></a><span class="co">#&gt; [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01</span></span>
<span id="cb10-74"><a href="#cb10-74" tabindex="-1"></a><span class="co">#&gt; [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01</span></span>
<span id="cb10-75"><a href="#cb10-75" tabindex="-1"></a><span class="co">#&gt; [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01</span></span>
<span id="cb10-76"><a href="#cb10-76" tabindex="-1"></a><span class="co">#&gt; [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01</span></span>
<span id="cb10-77"><a href="#cb10-77" tabindex="-1"></a><span class="co">#&gt; [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01</span></span>
<span id="cb10-78"><a href="#cb10-78" tabindex="-1"></a><span class="co">#&gt; [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01</span></span>
<span id="cb10-79"><a href="#cb10-79" tabindex="-1"></a><span class="co">#&gt; [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01</span></span>
<span id="cb10-80"><a href="#cb10-80" tabindex="-1"></a><span class="co">#&gt; [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01</span></span>
<span id="cb10-81"><a href="#cb10-81" tabindex="-1"></a><span class="co">#&gt; [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01</span></span>
<span id="cb10-82"><a href="#cb10-82" tabindex="-1"></a><span class="co">#&gt; [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01</span></span>
<span id="cb10-83"><a href="#cb10-83" tabindex="-1"></a><span class="co">#&gt; [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01</span></span>
<span id="cb10-84"><a href="#cb10-84" tabindex="-1"></a><span class="co">#&gt; [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01</span></span>
<span id="cb10-85"><a href="#cb10-85" tabindex="-1"></a><span class="co">#&gt; [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01</span></span>
<span id="cb10-86"><a href="#cb10-86" tabindex="-1"></a><span class="co">#&gt; [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01</span></span>
<span id="cb10-87"><a href="#cb10-87" tabindex="-1"></a><span class="co">#&gt; [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01</span></span>
<span id="cb10-88"><a href="#cb10-88" tabindex="-1"></a><span class="co">#&gt; [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01</span></span>
<span id="cb10-89"><a href="#cb10-89" tabindex="-1"></a><span class="co">#&gt; [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-90"><a href="#cb10-90" tabindex="-1"></a><span class="co">#&gt; [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-91"><a href="#cb10-91" tabindex="-1"></a><span class="co">#&gt; [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-92"><a href="#cb10-92" tabindex="-1"></a><span class="co">#&gt; [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-93"><a href="#cb10-93" tabindex="-1"></a><span class="co">#&gt; [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-94"><a href="#cb10-94" tabindex="-1"></a><span class="co">#&gt; [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-95"><a href="#cb10-95" tabindex="-1"></a><span class="co">#&gt; [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb10-96"><a href="#cb10-96" tabindex="-1"></a><span class="co">#&gt; [216] 1.000000e+00</span></span></code></pre></div>
<p>By design, similar to the ordinary DC-FFT algorithm by <a href="http://dx.doi.org/10.1016/j.csda.2018.01.007">Biscarri, Zhao &amp;
Brunner (2018)</a>, its results are identical to the G-DC procedure, if
<span class="math inline">\(n\)</span> and the number of possible
observed values is small. Thus, differences can be observed for larger
numbers:</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb11-2"><a href="#cb11-2" tabindex="-1"></a>pp1 <span class="ot">&lt;-</span> <span class="fu">runif</span>(<span class="dv">250</span>)</span>
<span id="cb11-3"><a href="#cb11-3" tabindex="-1"></a>va1 <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">50</span>, <span class="dv">250</span>, <span class="cn">TRUE</span>)</span>
<span id="cb11-4"><a href="#cb11-4" tabindex="-1"></a>vb1 <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">50</span>, <span class="dv">250</span>, <span class="cn">TRUE</span>)</span>
<span id="cb11-5"><a href="#cb11-5" tabindex="-1"></a>pp2 <span class="ot">&lt;-</span> pp1[<span class="dv">1</span><span class="sc">:</span><span class="dv">248</span>]</span>
<span id="cb11-6"><a href="#cb11-6" tabindex="-1"></a>va2 <span class="ot">&lt;-</span> va1[<span class="dv">1</span><span class="sc">:</span><span class="dv">248</span>]</span>
<span id="cb11-7"><a href="#cb11-7" tabindex="-1"></a>vb2 <span class="ot">&lt;-</span> vb1[<span class="dv">1</span><span class="sc">:</span><span class="dv">248</span>]</span>
<span id="cb11-8"><a href="#cb11-8" tabindex="-1"></a></span>
<span id="cb11-9"><a href="#cb11-9" tabindex="-1"></a><span class="fu">sum</span>(<span class="fu">abs</span>(<span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp1, va1, vb1, <span class="at">method =</span> <span class="st">&quot;DivideFFT&quot;</span>)</span>
<span id="cb11-10"><a href="#cb11-10" tabindex="-1"></a>        <span class="sc">-</span> <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp1, va1, vb1, <span class="at">method =</span> <span class="st">&quot;Convolve&quot;</span>)))</span>
<span id="cb11-11"><a href="#cb11-11" tabindex="-1"></a><span class="co">#&gt; [1] 0</span></span>
<span id="cb11-12"><a href="#cb11-12" tabindex="-1"></a></span>
<span id="cb11-13"><a href="#cb11-13" tabindex="-1"></a><span class="fu">sum</span>(<span class="fu">abs</span>(<span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp2, va2, vb2, <span class="at">method =</span> <span class="st">&quot;DivideFFT&quot;</span>)</span>
<span id="cb11-14"><a href="#cb11-14" tabindex="-1"></a>        <span class="sc">-</span> <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp2, va2, vb2, <span class="at">method =</span> <span class="st">&quot;Convolve&quot;</span>)))</span>
<span id="cb11-15"><a href="#cb11-15" tabindex="-1"></a><span class="co">#&gt; [1] 0</span></span></code></pre></div>
<p>The reason is that the G-DC-FFT method splits the input
<code>probs</code>, <code>val_p</code> and <code>val_q</code> vectors
into parts such that the numbers of possible observations of all parts
are as equally sized as possible. Their distributions are then computed
separately with the G-DC approach. The results of the portions are then
convoluted by means of the Fast Fourier Transformation. For small <span class="math inline">\(n\)</span> and small distribution sizes, no
splitting is needed. In addition, the G-DC-FFT procedure, just like the
DC-FFT method, does not produce probabilities <span class="math inline">\(\leq 5.55e\text{-}17\)</span>, i.e. smaller values
are rounded off to <span class="math inline">\(0\)</span>, if the total
number of possible observations is smaller than <span class="math inline">\(750\)</span>, whereas the smallest possible result
of the DC algorithm is <span class="math inline">\(\sim
1e\text{-}323\)</span>. This is most likely caused by the used FFTW3
library.</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a>d1 <span class="ot">&lt;-</span> <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp1, va1, vb1, <span class="at">method =</span> <span class="st">&quot;DivideFFT&quot;</span>)</span>
<span id="cb12-2"><a href="#cb12-2" tabindex="-1"></a>d2 <span class="ot">&lt;-</span> <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp1, va1, vb1, <span class="at">method =</span> <span class="st">&quot;Convolve&quot;</span>)</span>
<span id="cb12-3"><a href="#cb12-3" tabindex="-1"></a></span>
<span id="cb12-4"><a href="#cb12-4" tabindex="-1"></a><span class="fu">min</span>(d1[d1 <span class="sc">&gt;</span> <span class="dv">0</span>])</span>
<span id="cb12-5"><a href="#cb12-5" tabindex="-1"></a><span class="co">#&gt; [1] 2.839368e-99</span></span>
<span id="cb12-6"><a href="#cb12-6" tabindex="-1"></a><span class="fu">min</span>(d2[d2 <span class="sc">&gt;</span> <span class="dv">0</span>])</span>
<span id="cb12-7"><a href="#cb12-7" tabindex="-1"></a><span class="co">#&gt; [1] 2.839368e-99</span></span></code></pre></div>
</div>
<div id="generalized-discrete-fourier-transformation-of-the-characteristic-function" class="section level3">
<h3>Generalized Discrete Fourier Transformation of the Characteristic
Function</h3>
<p>The <em>Generalized Discrete Fourier Transformation of the
Characteristic Function</em> (G-DFT-CF) approach is requested with
<code>method = &quot;Characteristic&quot;</code>.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb13-2"><a href="#cb13-2" tabindex="-1"></a>pp <span class="ot">&lt;-</span> <span class="fu">runif</span>(<span class="dv">10</span>)</span>
<span id="cb13-3"><a href="#cb13-3" tabindex="-1"></a>wt <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb13-4"><a href="#cb13-4" tabindex="-1"></a>va <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb13-5"><a href="#cb13-5" tabindex="-1"></a>vb <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">10</span>, <span class="dv">10</span>, <span class="cn">TRUE</span>)</span>
<span id="cb13-6"><a href="#cb13-6" tabindex="-1"></a></span>
<span id="cb13-7"><a href="#cb13-7" tabindex="-1"></a><span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">&quot;Characteristic&quot;</span>)</span>
<span id="cb13-8"><a href="#cb13-8" tabindex="-1"></a><span class="co">#&gt;   [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-9"><a href="#cb13-9" tabindex="-1"></a><span class="co">#&gt;   [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-10"><a href="#cb13-10" tabindex="-1"></a><span class="co">#&gt;  [11] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-11"><a href="#cb13-11" tabindex="-1"></a><span class="co">#&gt;  [16] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-12"><a href="#cb13-12" tabindex="-1"></a><span class="co">#&gt;  [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.837237e-16</span></span>
<span id="cb13-13"><a href="#cb13-13" tabindex="-1"></a><span class="co">#&gt;  [26] 6.250144e-16 1.365163e-15 2.931811e-15 6.199773e-15 1.292382e-14</span></span>
<span id="cb13-14"><a href="#cb13-14" tabindex="-1"></a><span class="co">#&gt;  [31] 2.657288e-14 5.394142e-14 1.081912e-13 2.144812e-13 4.201536e-13</span></span>
<span id="cb13-15"><a href="#cb13-15" tabindex="-1"></a><span class="co">#&gt;  [36] 8.135511e-13 1.557734e-12 2.949810e-12 5.527683e-12 1.025814e-11</span></span>
<span id="cb13-16"><a href="#cb13-16" tabindex="-1"></a><span class="co">#&gt;  [41] 1.885776e-11 3.434640e-11 6.196980e-11 1.106787e-10 1.956340e-10</span></span>
<span id="cb13-17"><a href="#cb13-17" tabindex="-1"></a><span class="co">#&gt;  [46] 3.425394e-10 5.948077e-10 1.025224e-09 1.753750e-09 2.972596e-09</span></span>
<span id="cb13-18"><a href="#cb13-18" tabindex="-1"></a><span class="co">#&gt;  [51] 4.985314e-09 8.275458e-09 1.362195e-08 2.227979e-08 3.622799e-08</span></span>
<span id="cb13-19"><a href="#cb13-19" tabindex="-1"></a><span class="co">#&gt;  [56] 5.845270e-08 9.332219e-08 1.473012e-07 2.302797e-07 3.576650e-07</span></span>
<span id="cb13-20"><a href="#cb13-20" tabindex="-1"></a><span class="co">#&gt;  [61] 5.529336e-07 8.496291e-07 1.292864e-06 1.943382e-06 2.888042e-06</span></span>
<span id="cb13-21"><a href="#cb13-21" tabindex="-1"></a><span class="co">#&gt;  [66] 4.257944e-06 6.248675e-06 9.128095e-06 1.322640e-05 1.893515e-05</span></span>
<span id="cb13-22"><a href="#cb13-22" tabindex="-1"></a><span class="co">#&gt;  [71] 2.675612e-05 3.741507e-05 5.199255e-05 7.194684e-05 9.895330e-05</span></span>
<span id="cb13-23"><a href="#cb13-23" tabindex="-1"></a><span class="co">#&gt;  [76] 1.347017e-04 1.809349e-04 2.399008e-04 3.150314e-04 4.112231e-04</span></span>
<span id="cb13-24"><a href="#cb13-24" tabindex="-1"></a><span class="co">#&gt;  [81] 5.341537e-04 6.888863e-04 8.788234e-04 1.106198e-03 1.374340e-03</span></span>
<span id="cb13-25"><a href="#cb13-25" tabindex="-1"></a><span class="co">#&gt;  [86] 1.690272e-03 2.065290e-03 2.511885e-03 3.037800e-03 3.641214e-03</span></span>
<span id="cb13-26"><a href="#cb13-26" tabindex="-1"></a><span class="co">#&gt;  [91] 4.311837e-03 5.039293e-03 5.824625e-03 6.686091e-03 7.651765e-03</span></span>
<span id="cb13-27"><a href="#cb13-27" tabindex="-1"></a><span class="co">#&gt;  [96] 8.740859e-03 9.945159e-03 1.122411e-02 1.252016e-02 1.378863e-02</span></span>
<span id="cb13-28"><a href="#cb13-28" tabindex="-1"></a><span class="co">#&gt; [101] 1.502576e-02 1.627450e-02 1.759663e-02 1.902489e-02 2.052786e-02</span></span>
<span id="cb13-29"><a href="#cb13-29" tabindex="-1"></a><span class="co">#&gt; [106] 2.201243e-02 2.336424e-02 2.450429e-02 2.543095e-02 2.622065e-02</span></span>
<span id="cb13-30"><a href="#cb13-30" tabindex="-1"></a><span class="co">#&gt; [111] 2.697857e-02 2.776636e-02 2.855637e-02 2.924236e-02 2.969655e-02</span></span>
<span id="cb13-31"><a href="#cb13-31" tabindex="-1"></a><span class="co">#&gt; [116] 2.983772e-02 2.967384e-02 2.929746e-02 2.883252e-02 2.836282e-02</span></span>
<span id="cb13-32"><a href="#cb13-32" tabindex="-1"></a><span class="co">#&gt; [121] 2.788971e-02 2.734351e-02 2.663438e-02 2.570794e-02 2.457639e-02</span></span>
<span id="cb13-33"><a href="#cb13-33" tabindex="-1"></a><span class="co">#&gt; [126] 2.331289e-02 2.201380e-02 2.075053e-02 1.954176e-02 1.836001e-02</span></span>
<span id="cb13-34"><a href="#cb13-34" tabindex="-1"></a><span class="co">#&gt; [131] 1.716200e-02 1.592047e-02 1.464084e-02 1.335803e-02 1.211826e-02</span></span>
<span id="cb13-35"><a href="#cb13-35" tabindex="-1"></a><span class="co">#&gt; [136] 1.095708e-02 9.886542e-03 8.897658e-03 7.972694e-03 7.098018e-03</span></span>
<span id="cb13-36"><a href="#cb13-36" tabindex="-1"></a><span class="co">#&gt; [141] 6.270583e-03 5.496952e-03 4.787457e-03 4.149442e-03 3.583427e-03</span></span>
<span id="cb13-37"><a href="#cb13-37" tabindex="-1"></a><span class="co">#&gt; [146] 3.083701e-03 2.641746e-03 2.249767e-03 1.902455e-03 1.596805e-03</span></span>
<span id="cb13-38"><a href="#cb13-38" tabindex="-1"></a><span class="co">#&gt; [151] 1.330879e-03 1.102475e-03 9.084265e-04 7.447312e-04 6.071616e-04</span></span>
<span id="cb13-39"><a href="#cb13-39" tabindex="-1"></a><span class="co">#&gt; [156] 4.918629e-04 3.956251e-04 3.158260e-04 2.502339e-04 1.968330e-04</span></span>
<span id="cb13-40"><a href="#cb13-40" tabindex="-1"></a><span class="co">#&gt; [161] 1.537458e-04 1.192445e-04 9.179821e-05 7.010494e-05 5.308547e-05</span></span>
<span id="cb13-41"><a href="#cb13-41" tabindex="-1"></a><span class="co">#&gt; [166] 3.984854e-05 2.965115e-05 2.187013e-05 1.598631e-05 1.157497e-05</span></span>
<span id="cb13-42"><a href="#cb13-42" tabindex="-1"></a><span class="co">#&gt; [171] 8.295941e-06 5.881266e-06 4.121776e-06 2.854642e-06 1.953341e-06</span></span>
<span id="cb13-43"><a href="#cb13-43" tabindex="-1"></a><span class="co">#&gt; [176] 1.320224e-06 8.809465e-07 5.799307e-07 3.763587e-07 2.406488e-07</span></span>
<span id="cb13-44"><a href="#cb13-44" tabindex="-1"></a><span class="co">#&gt; [181] 1.515662e-07 9.401686e-08 5.742327e-08 3.451481e-08 2.039831e-08</span></span>
<span id="cb13-45"><a href="#cb13-45" tabindex="-1"></a><span class="co">#&gt; [186] 1.184350e-08 6.751380e-09 3.777327e-09 2.073644e-09 1.116337e-09</span></span>
<span id="cb13-46"><a href="#cb13-46" tabindex="-1"></a><span class="co">#&gt; [191] 5.887148e-10 3.036829e-10 1.529887e-10 7.516829e-11 3.598151e-11</span></span>
<span id="cb13-47"><a href="#cb13-47" tabindex="-1"></a><span class="co">#&gt; [196] 1.676155e-11 7.585978e-12 3.326431e-12 1.407528e-12 5.717366e-13</span></span>
<span id="cb13-48"><a href="#cb13-48" tabindex="-1"></a><span class="co">#&gt; [201] 2.216380e-13 8.149294e-14 2.825106e-14 9.182984e-15 2.782753e-15</span></span>
<span id="cb13-49"><a href="#cb13-49" tabindex="-1"></a><span class="co">#&gt; [206] 7.822960e-16 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-50"><a href="#cb13-50" tabindex="-1"></a><span class="co">#&gt; [211] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-51"><a href="#cb13-51" tabindex="-1"></a><span class="co">#&gt; [216] 0.000000e+00</span></span>
<span id="cb13-52"><a href="#cb13-52" tabindex="-1"></a><span class="fu">pgpbinom</span>(<span class="cn">NULL</span>, pp, va, vb, wt, <span class="st">&quot;Characteristic&quot;</span>)</span>
<span id="cb13-53"><a href="#cb13-53" tabindex="-1"></a><span class="co">#&gt;   [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-54"><a href="#cb13-54" tabindex="-1"></a><span class="co">#&gt;   [6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-55"><a href="#cb13-55" tabindex="-1"></a><span class="co">#&gt;  [11] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-56"><a href="#cb13-56" tabindex="-1"></a><span class="co">#&gt;  [16] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00</span></span>
<span id="cb13-57"><a href="#cb13-57" tabindex="-1"></a><span class="co">#&gt;  [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.837237e-16</span></span>
<span id="cb13-58"><a href="#cb13-58" tabindex="-1"></a><span class="co">#&gt;  [26] 9.087381e-16 2.273901e-15 5.205712e-15 1.140549e-14 2.432930e-14</span></span>
<span id="cb13-59"><a href="#cb13-59" tabindex="-1"></a><span class="co">#&gt;  [31] 5.090218e-14 1.048436e-13 2.130348e-13 4.275160e-13 8.476697e-13</span></span>
<span id="cb13-60"><a href="#cb13-60" tabindex="-1"></a><span class="co">#&gt;  [36] 1.661221e-12 3.218955e-12 6.168765e-12 1.169645e-11 2.195459e-11</span></span>
<span id="cb13-61"><a href="#cb13-61" tabindex="-1"></a><span class="co">#&gt;  [41] 4.081235e-11 7.515874e-11 1.371285e-10 2.478072e-10 4.434412e-10</span></span>
<span id="cb13-62"><a href="#cb13-62" tabindex="-1"></a><span class="co">#&gt;  [46] 7.859806e-10 1.380788e-09 2.406013e-09 4.159763e-09 7.132359e-09</span></span>
<span id="cb13-63"><a href="#cb13-63" tabindex="-1"></a><span class="co">#&gt;  [51] 1.211767e-08 2.039313e-08 3.401508e-08 5.629487e-08 9.252285e-08</span></span>
<span id="cb13-64"><a href="#cb13-64" tabindex="-1"></a><span class="co">#&gt;  [56] 1.509756e-07 2.442977e-07 3.915989e-07 6.218786e-07 9.795436e-07</span></span>
<span id="cb13-65"><a href="#cb13-65" tabindex="-1"></a><span class="co">#&gt;  [61] 1.532477e-06 2.382106e-06 3.674970e-06 5.618352e-06 8.506394e-06</span></span>
<span id="cb13-66"><a href="#cb13-66" tabindex="-1"></a><span class="co">#&gt;  [66] 1.276434e-05 1.901301e-05 2.814111e-05 4.136751e-05 6.030266e-05</span></span>
<span id="cb13-67"><a href="#cb13-67" tabindex="-1"></a><span class="co">#&gt;  [71] 8.705877e-05 1.244738e-04 1.764664e-04 2.484132e-04 3.473665e-04</span></span>
<span id="cb13-68"><a href="#cb13-68" tabindex="-1"></a><span class="co">#&gt;  [76] 4.820683e-04 6.630032e-04 9.029039e-04 1.217935e-03 1.629158e-03</span></span>
<span id="cb13-69"><a href="#cb13-69" tabindex="-1"></a><span class="co">#&gt;  [81] 2.163312e-03 2.852198e-03 3.731022e-03 4.837220e-03 6.211560e-03</span></span>
<span id="cb13-70"><a href="#cb13-70" tabindex="-1"></a><span class="co">#&gt;  [86] 7.901832e-03 9.967122e-03 1.247901e-02 1.551681e-02 1.915802e-02</span></span>
<span id="cb13-71"><a href="#cb13-71" tabindex="-1"></a><span class="co">#&gt;  [91] 2.346986e-02 2.850915e-02 3.433378e-02 4.101987e-02 4.867163e-02</span></span>
<span id="cb13-72"><a href="#cb13-72" tabindex="-1"></a><span class="co">#&gt;  [96] 5.741249e-02 6.735765e-02 7.858176e-02 9.110192e-02 1.048906e-01</span></span>
<span id="cb13-73"><a href="#cb13-73" tabindex="-1"></a><span class="co">#&gt; [101] 1.199163e-01 1.361908e-01 1.537874e-01 1.728123e-01 1.933402e-01</span></span>
<span id="cb13-74"><a href="#cb13-74" tabindex="-1"></a><span class="co">#&gt; [106] 2.153526e-01 2.387169e-01 2.632211e-01 2.886521e-01 3.148727e-01</span></span>
<span id="cb13-75"><a href="#cb13-75" tabindex="-1"></a><span class="co">#&gt; [111] 3.418513e-01 3.696177e-01 3.981740e-01 4.274164e-01 4.571130e-01</span></span>
<span id="cb13-76"><a href="#cb13-76" tabindex="-1"></a><span class="co">#&gt; [116] 4.869507e-01 5.166245e-01 5.459220e-01 5.747545e-01 6.031173e-01</span></span>
<span id="cb13-77"><a href="#cb13-77" tabindex="-1"></a><span class="co">#&gt; [121] 6.310070e-01 6.583505e-01 6.849849e-01 7.106929e-01 7.352692e-01</span></span>
<span id="cb13-78"><a href="#cb13-78" tabindex="-1"></a><span class="co">#&gt; [126] 7.585821e-01 7.805959e-01 8.013465e-01 8.208882e-01 8.392482e-01</span></span>
<span id="cb13-79"><a href="#cb13-79" tabindex="-1"></a><span class="co">#&gt; [131] 8.564102e-01 8.723307e-01 8.869715e-01 9.003296e-01 9.124478e-01</span></span>
<span id="cb13-80"><a href="#cb13-80" tabindex="-1"></a><span class="co">#&gt; [136] 9.234049e-01 9.332914e-01 9.421891e-01 9.501618e-01 9.572598e-01</span></span>
<span id="cb13-81"><a href="#cb13-81" tabindex="-1"></a><span class="co">#&gt; [141] 9.635304e-01 9.690273e-01 9.738148e-01 9.779642e-01 9.815477e-01</span></span>
<span id="cb13-82"><a href="#cb13-82" tabindex="-1"></a><span class="co">#&gt; [146] 9.846314e-01 9.872731e-01 9.895229e-01 9.914253e-01 9.930221e-01</span></span>
<span id="cb13-83"><a href="#cb13-83" tabindex="-1"></a><span class="co">#&gt; [151] 9.943530e-01 9.954555e-01 9.963639e-01 9.971087e-01 9.977158e-01</span></span>
<span id="cb13-84"><a href="#cb13-84" tabindex="-1"></a><span class="co">#&gt; [156] 9.982077e-01 9.986033e-01 9.989191e-01 9.991694e-01 9.993662e-01</span></span>
<span id="cb13-85"><a href="#cb13-85" tabindex="-1"></a><span class="co">#&gt; [161] 9.995199e-01 9.996392e-01 9.997310e-01 9.998011e-01 9.998542e-01</span></span>
<span id="cb13-86"><a href="#cb13-86" tabindex="-1"></a><span class="co">#&gt; [166] 9.998940e-01 9.999237e-01 9.999455e-01 9.999615e-01 9.999731e-01</span></span>
<span id="cb13-87"><a href="#cb13-87" tabindex="-1"></a><span class="co">#&gt; [171] 9.999814e-01 9.999873e-01 9.999914e-01 9.999943e-01 9.999962e-01</span></span>
<span id="cb13-88"><a href="#cb13-88" tabindex="-1"></a><span class="co">#&gt; [176] 9.999975e-01 9.999984e-01 9.999990e-01 9.999994e-01 9.999996e-01</span></span>
<span id="cb13-89"><a href="#cb13-89" tabindex="-1"></a><span class="co">#&gt; [181] 9.999998e-01 9.999999e-01 9.999999e-01 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-90"><a href="#cb13-90" tabindex="-1"></a><span class="co">#&gt; [186] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-91"><a href="#cb13-91" tabindex="-1"></a><span class="co">#&gt; [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-92"><a href="#cb13-92" tabindex="-1"></a><span class="co">#&gt; [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-93"><a href="#cb13-93" tabindex="-1"></a><span class="co">#&gt; [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-94"><a href="#cb13-94" tabindex="-1"></a><span class="co">#&gt; [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-95"><a href="#cb13-95" tabindex="-1"></a><span class="co">#&gt; [211] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00</span></span>
<span id="cb13-96"><a href="#cb13-96" tabindex="-1"></a><span class="co">#&gt; [216] 1.000000e+00</span></span></code></pre></div>
<p>As can be seen, the G-DFT-CF procedure does not produce probabilities
<span class="math inline">\(\leq 2.2e\text{-}16\)</span>, i.e. smaller
values are rounded off to 0, most likely due to the used FFTW3
library.</p>
</div>
<div id="processing-speed-comparisons-1" class="section level3">
<h3>Processing Speed Comparisons</h3>
<p>To assess the performance of the exact procedures, we use the
<code>microbenchmark</code> package. Each algorithm has to calculate the
PMF repeatedly based on random probability and value vectors. The run
times are then summarized in a table that presents, among other
statistics, their minima, maxima and means. The following results were
recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10
Education (22H2).</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a><span class="fu">library</span>(microbenchmark)</span>
<span id="cb14-2"><a href="#cb14-2" tabindex="-1"></a>n <span class="ot">&lt;-</span> <span class="dv">2500</span></span>
<span id="cb14-3"><a href="#cb14-3" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1</span>)</span>
<span id="cb14-4"><a href="#cb14-4" tabindex="-1"></a>va <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">50</span>, n, <span class="cn">TRUE</span>)</span>
<span id="cb14-5"><a href="#cb14-5" tabindex="-1"></a>vb <span class="ot">&lt;-</span> <span class="fu">sample</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">50</span>, n, <span class="cn">TRUE</span>)</span>
<span id="cb14-6"><a href="#cb14-6" tabindex="-1"></a></span>
<span id="cb14-7"><a href="#cb14-7" tabindex="-1"></a>f1 <span class="ot">&lt;-</span> <span class="cf">function</span>() <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(n), va, vb, <span class="at">method =</span> <span class="st">&quot;DivideFFT&quot;</span>)</span>
<span id="cb14-8"><a href="#cb14-8" tabindex="-1"></a>f2 <span class="ot">&lt;-</span> <span class="cf">function</span>() <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(n), va, vb, <span class="at">method =</span> <span class="st">&quot;Convolve&quot;</span>)</span>
<span id="cb14-9"><a href="#cb14-9" tabindex="-1"></a>f3 <span class="ot">&lt;-</span> <span class="cf">function</span>() <span class="fu">dgpbinom</span>(<span class="cn">NULL</span>, <span class="fu">runif</span>(n), va, vb, <span class="at">method =</span> <span class="st">&quot;Characteristic&quot;</span>)</span>
<span id="cb14-10"><a href="#cb14-10" tabindex="-1"></a></span>
<span id="cb14-11"><a href="#cb14-11" tabindex="-1"></a><span class="fu">microbenchmark</span>(<span class="fu">f1</span>(), <span class="fu">f2</span>(), <span class="fu">f3</span>(), <span class="at">times =</span> <span class="dv">51</span>)</span>
<span id="cb14-12"><a href="#cb14-12" tabindex="-1"></a><span class="co">#&gt; Unit: milliseconds</span></span>
<span id="cb14-13"><a href="#cb14-13" tabindex="-1"></a><span class="co">#&gt;  expr      min        lq      mean   median        uq      max neval</span></span>
<span id="cb14-14"><a href="#cb14-14" tabindex="-1"></a><span class="co">#&gt;  f1()  78.0103  80.94265  85.83106  82.3256  84.77965 222.4554    51</span></span>
<span id="cb14-15"><a href="#cb14-15" tabindex="-1"></a><span class="co">#&gt;  f2() 185.1651 189.36355 192.53650 191.5913 194.92825 216.8803    51</span></span>
<span id="cb14-16"><a href="#cb14-16" tabindex="-1"></a><span class="co">#&gt;  f3() 639.9733 721.50785 739.89051 747.7238 764.83850 801.4566    51</span></span></code></pre></div>
<p>Clearly, the G-DC-FFT procedure is the fastest one. It outperforms
both the G-DC and G-DFT-CF approaches. The latter one needs a lot more
time than the others. Generally, the computational speed advantage of
the G-DC-FFT procedure increases with larger <span class="math inline">\(n\)</span> (and <span class="math inline">\(m\)</span>).</p>
</div>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>