File: use_with_rcpp.html

package info (click to toggle)
r-cran-poissonbinomial 1.2.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 736 kB
  • sloc: cpp: 719; makefile: 3
file content (467 lines) | stat: -rw-r--r-- 12,159 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />



<title>Usage with Rcpp</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>

<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>







<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">Usage with Rcpp</h1>



<p>Each procedure’s probability mass function (PMF) and cumulative
distribution function (CDF) was implemented in <em>C++</em> using the
<code>Rcpp</code> package. By means of <code>Rcpp::interface</code>,
these functions are exported to both the package’s <em>R</em> namespace
and <em>C++</em> headers. That way, the following functions can then be
used by other packages that use <code>Rcpp</code>:</p>
<pre><code>/***   Ordinary Poisson Binomial Distribution   ***/


/***   Exact Procedures   ***/

// Direct Convolution (DC)

// PMF
NumericVector dpb_conv(const IntegerVector obs,
                       const NumericVector probs);
                       
// CDF
NumericVector ppb_conv(const IntegerVector obs,
                       const NumericVector probs,
                       const bool lower_tail);


// Divide &amp; Conquer FFT Tree Convolution (DC-FFT)

// PMF
NumericVector dpb_dc(const IntegerVector obs,
                     const NumericVector probs);
                     
// CDF
NumericVector ppb_dc(const IntegerVector obs,
                     const NumericVector probs,
                     const bool lower_tail);


// Discrete Fourier Transformation of the Characteristic Function (DFT-CF)

// PMF
NumericVector dpb_dftcf(const IntegerVector obs,
                        const NumericVector probs);
                        
// CDF
NumericVector ppb_dftcf(const IntegerVector obs, const NumericVector probs,
                        const bool lower_tail);
                        

// Recursive Formula (RF)

// PMF
NumericVector dpb_rf(const IntegerVector obs,
                     const NumericVector probs);

// CDF
NumericVector ppb_rf(const IntegerVector obs,
                     const NumericVector probs,
                     const bool lower_tail);



/***   Approximations   ***/


// Arithmetic Mean Binomial Approximation (AMBA)

// PMF
NumericVector dpb_mean(const IntegerVector obs,
                       const NumericVector probs);

// CDF
NumericVector ppb_mean(const IntegerVector obs,
                       const NumericVector probs,
                       const bool lower_tail);


// Geometric Mean Binomial Approximations (GMBA)

// PMF
NumericVector dpb_gmba(const IntegerVector obs, 
                       const NumericVector const probs,
                       const bool anti);
                       
// CDF
NumericVector ppb_gmba(const IntegerVector obs,
                       const NumericVector probs,
                       const bool anti,
                       const bool lower_tail);


// Poisson Approximation (PA)

// PMF
NumericVector dpb_pa(const IntegerVector obs,
                     const NumericVector probs);
                     
// CDF
NumericVector ppb_pa(const IntegerVector obs,
                     const NumericVector probs,
                     const bool lower_tail);
                     

// Normal Approximations (NA, RNA)

// PMF
NumericVector dpb_na(const IntegerVector obs,
                     const NumericVector probs,
                     const bool refined);
                     
// CDF
NumericVector ppb_na(const IntegerVector obs,
                     const NumericVector probs,
                     const bool refined,
                     const bool lower_tail);
                     



/***   Generalized Poisson Binomial Distribution   ***/


/***   Exact Procedures   ***/


// Generalized Direct Convolution (G-DC)

// PMF
NumericVector dgpb_conv(const IntegerVector obs,
                        const NumericVector probs,
                        const NumericVector val_p,
                        const NumericVector val_q);
                        
// CDF
NumericVector pgpb_conv(const IntegerVector obs,
                        const NumericVector probs,
                        const NumericVector val_p,
                        const NumericVector val_q,
                        const bool lower_tail);
                        

// Generalized Discrete Fourier Transformation of the Characteristic Function (G-DFT-CF)

// PMF
NumericVector dgpb_dftcf(const IntegerVector obs,
                         const NumericVector probs,
                         const NumericVector val_p,
                         const NumericVector val_q);
                         
// CDF
NumericVector pgpb_dftcf(const IntegerVector obs,
                         const NumericVector probs,
                         const NumericVector val_p,
                         const NumericVector val_q,
                         const bool lower_tail);
                       
                       
                       
/***   Approximations   ***/


// Generalized Normal Approximations (G-NA, G-RNA)

// PMF
NumericVector dgpb_na(const IntegerVector obs,
                      const NumericVector probs,
                      const NumericVector val_p,
                      const NumericVector val_q,
                      const bool refined,
                      const bool lower_tail);
                      
// CDF
NumericVector pgpb_na(const IntegerVector obs,
                      const NumericVector probs,
                      const NumericVector val_p,
                      const NumericVector val_q,
                      const bool refined,
                      const bool lower_tail);</code></pre>
<div id="making-the-functions-usable" class="section level2">
<h2>Making the functions usable</h2>
<p>There are only a few simple steps to follow:</p>
<ol style="list-style-type: decimal">
<li>Add the <code>Rcpp</code> and <code>PoissonBinomial</code> packages
to the <code>Imports</code> and <code>LinkingTo</code> fields of the
<code>DESCRIPTION</code> file.</li>
<li>Add <code>#include &lt;PoissonBinomial.h&gt;</code> to source
(<code>.cpp</code>) and/or header (<code>.h</code>, <code>.hpp</code>)
files in which these functions are to be used.</li>
<li>Optional: Add <code>using namespace PoissonBinomial;</code>. Without
it, the use of functions of this package must be fully qualified with
<code>PoissonBinomial::</code>,
e.g. <code>PoissonBinomial::dpb_dc</code> instead of
<code>dpb_dc</code></li>
</ol>
</div>
<div id="important-remarks" class="section level2">
<h2>Important Remarks</h2>
<p>For better performance, the PMFs and CDFs do not check any of their
parameters for plausibility! This must be done by the user by means of
<em>R</em> or <em>C/C++</em> functions. It must be made sure that</p>
<ul>
<li>the observations in the <code>obs</code> vectors are valid,</li>
<li>the probabilities in the <code>probs</code> vector are in <span class="math inline">\((0, 1)\)</span> and</li>
<li>for <code>dpb_gmba</code>, <code>ppb_gmba</code>,
<code>dpb_na</code>, <code>ppb_na</code>, <code>dgpb_na</code> and
<code>pgpb_na</code>: the probabilities in the <code>probs</code> vector
<strong>must not</strong> contain zeros or ones.</li>
</ul>
<p>Furthermore, the CDFs only compute non-logarithmic probabilities. If
logarithms are needed, they must be computed “manually”.</p>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>