1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
---
title: "Approximate Procedures"
output:
rmarkdown::html_vignette:
toc: yes
vignette: >
%\VignetteIndexEntry{Approximate Procedures}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
```{r setup, echo = FALSE}
library(PoissonBinomial)
```
## Ordinary Poisson Binomial Distribution
### Poisson Approximation
The *Poisson Approximation* (DC) approach is requested with `method = "Poisson"`. It is based on a Poisson distribution, whose parameter is the sum of the probabilities of success.
```{r pa1}
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "Poisson")
ppbinom(NULL, pp, wt, "Poisson")
```
A comparison with exact computation shows that the approximation quality of the PA procedure increases with smaller probabilities of success. The reason is that the Poisson Binomial distribution approaches a Poisson distribution when the probabilities are very small.
```{r pa2}
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "Poisson")
dpbinom(NULL, pp)
summary(dpbinom(NULL, pp, method = "Poisson") - dpbinom(NULL, pp))
# U(0, 0.01) random probabilities of success
pp <- runif(20, 0, 0.01)
dpbinom(NULL, pp, method = "Poisson")
dpbinom(NULL, pp)
summary(dpbinom(NULL, pp, method = "Poisson") - dpbinom(NULL, pp))
```
### Arithmetic Mean Binomial Approximation
The *Arithmetic Mean Binomial Approximation* (AMBA) approach is requested with `method = "Mean"`. It is based on a Binomial distribution, whose parameter is the arithmetic mean of the probabilities of success.
```{r am1}
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
mean(rep(pp, wt))
dpbinom(NULL, pp, wt, "Mean")
ppbinom(NULL, pp, wt, "Mean")
```
A comparison with exact computation shows that the approximation quality of the AMBA procedure increases when the probabilities of success are closer to each other. The reason is that, although the expectation remains unchanged, the distribution's variance becomes smaller the less the probabilities differ. Since this variance is minimized by equal probabilities (but still underestimated), the AMBA method is best suited for situations with very similar probabilities of success.
```{r am2}
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "Mean")
dpbinom(NULL, pp)
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
# U(0.3, 0.5) random probabilities of success
pp <- runif(20, 0.3, 0.5)
dpbinom(NULL, pp, method = "Mean")
dpbinom(NULL, pp)
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
# U(0.39, 0.41) random probabilities of success
pp <- runif(20, 0.39, 0.41)
dpbinom(NULL, pp, method = "Mean")
dpbinom(NULL, pp)
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
```
### Geometric Mean Binomial Approximation - Variant A
The *Geometric Mean Binomial Approximation (Variant A)* (GMBA-A) approach is requested with `method = "GeoMean"`. It is based on a Binomial distribution, whose parameter is the geometric mean of the probabilities of success:
$$\hat{p} = \sqrt[n]{p_1 \cdot ... \cdot p_n}$$
```{r gma1}
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
prod(rep(pp, wt))^(1/sum(wt))
dpbinom(NULL, pp, wt, "GeoMean")
ppbinom(NULL, pp, wt, "GeoMean")
```
It is known that the geometric mean of the probabilities of success is always smaller than their arithmetic mean. Thus, we get a stochastically *smaller* binomial distribution. A comparison with exact computation shows that the approximation quality of the GMBA-A procedure increases when the probabilities of success are closer to each other:
```{r gma2}
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "GeoMean")
dpbinom(NULL, pp)
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
# U(0.4, 0.6) random probabilities of success
pp <- runif(20, 0.4, 0.6)
dpbinom(NULL, pp, method = "GeoMean")
dpbinom(NULL, pp)
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
# U(0.49, 0.51) random probabilities of success
pp <- runif(20, 0.49, 0.51)
dpbinom(NULL, pp, method = "GeoMean")
dpbinom(NULL, pp)
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
```
### Geometric Mean Binomial Approximation - Variant B
The *Geometric Mean Binomial Approximation (Variant B)* (GMBA-B) approach is requested with `method = "GeoMeanCounter"`. It is based on a Binomial distribution, whose parameter is 1 minus the geometric mean of the probabilities of **failure**:
$$\hat{p} = 1 - \sqrt[n]{(1 - p_1) \cdot ... \cdot (1 - p_n)}$$
```{r gmb1}
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
1 - prod(1 - rep(pp, wt))^(1/sum(wt))
dpbinom(NULL, pp, wt, "GeoMeanCounter")
ppbinom(NULL, pp, wt, "GeoMeanCounter")
```
It is known that the geometric mean of the probabilities of **failure** is always smaller than their arithmetic mean. As a result, 1 minus the geometric mean is larger than 1 minus the arithmetic mean. Thus, we get a stochastically *larger* binomial distribution. A comparison with exact computation shows that the approximation quality of the GMBA-B procedure again increases when the probabilities of success are closer to each other:
```{r gmb2}
set.seed(1)
# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "GeoMeanCounter")
dpbinom(NULL, pp)
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
# U(0.4, 0.6) random probabilities of success
pp <- runif(20, 0.4, 0.6)
dpbinom(NULL, pp, method = "GeoMeanCounter")
dpbinom(NULL, pp)
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
# U(0.49, 0.51) random probabilities of success
pp <- runif(20, 0.49, 0.51)
dpbinom(NULL, pp, method = "GeoMeanCounter")
dpbinom(NULL, pp)
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
```
### Normal Approximation
The *Normal Approximation* (NA) approach is requested with `method = "Normal"`. It is based on a Normal distribution, whose parameters are derived from the theoretical mean and variance of the input probabilities of success.
```{r na1-ord}
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "Normal")
ppbinom(NULL, pp, wt, "Normal")
```
A comparison with exact computation shows that the approximation quality of the NA procedure increases with larger numbers of probabilities of success:
```{r na2-ord}
set.seed(1)
# 10 random probabilities of success
pp <- runif(10)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
# 1000 random probabilities of success
pp <- runif(1000)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
# 100000 random probabilities of success
pp <- runif(100000)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
```
### Refined Normal Approximation
The *Refined Normal Approximation* (RNA) approach is requested with `method = "RefinedNormal"`. It is based on a Normal distribution, whose parameters are derived from the theoretical mean, variance and skewness of the input probabilities of success.
```{r rna1-ord}
set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
dpbinom(NULL, pp, wt, "RefinedNormal")
ppbinom(NULL, pp, wt, "RefinedNormal")
```
A comparison with exact computation shows that the approximation quality of the RNA procedure increases with larger numbers of probabilities of success:
```{r rna2-ord}
set.seed(1)
# 10 random probabilities of success
pp <- runif(10)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
# 1000 random probabilities of success
pp <- runif(1000)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
# 100000 random probabilities of success
pp <- runif(100000)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
```
### Processing Speed Comparisons
To assess the performance of the approximation procedures, we use the `microbenchmark` package. Each algorithm has to calculate the PMF repeatedly based on random probability vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).
```{r benchmark-ord}
library(microbenchmark)
set.seed(1)
f1 <- function() dpbinom(NULL, runif(4000), method = "Normal")
f2 <- function() dpbinom(NULL, runif(4000), method = "Poisson")
f3 <- function() dpbinom(NULL, runif(4000), method = "RefinedNormal")
f4 <- function() dpbinom(NULL, runif(4000), method = "Mean")
f5 <- function() dpbinom(NULL, runif(4000), method = "GeoMean")
f6 <- function() dpbinom(NULL, runif(4000), method = "GeoMeanCounter")
f7 <- function() dpbinom(NULL, runif(4000), method = "DivideFFT")
microbenchmark(f1(), f2(), f3(), f4(), f5(), f6(), f7(), times = 51)
```
Clearly, the NA procedure is the fastest, followed by the PA and RNA methods. The next fastest algorithms are AMBA, GMBA-A and GMBA-B. They exhibit almost equal mean execution speed, with the AMBA algorithm being slightly faster. All of the approximation procedures outperform the fastest exact approach, DC-FFT, by far.
## Generalized Poisson Binomial Distribution
### Generalized Normal Approximation
The *Generalized Normal Approximation* (G-NA) approach is requested with `method = "Normal"`. It is based on a Normal distribution, whose parameters are derived from the theoretical mean and variance of the input probabilities of success (see [Introduction](intro.html).
```{r na1-gen}
set.seed(2)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dgpbinom(NULL, pp, va, vb, wt, "Normal")
pgpbinom(NULL, pp, va, vb, wt, "Normal")
```
A comparison with exact computation shows that the approximation quality of the NA procedure increases with larger numbers of probabilities of success:
```{r na2-gen}
set.seed(2)
# 10 random probabilities of success
pp <- runif(10)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
# 100 random probabilities of success
pp <- runif(100)
va <- sample(0:100, 100, TRUE)
vb <- sample(0:100, 100, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
# 1000 random probabilities of success
pp <- runif(1000)
va <- sample(0:1000, 1000, TRUE)
vb <- sample(0:1000, 1000, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
```
### Generalized Refined Normal Approximation
The *Generalized Refined Normal Approximation* (G-RNA) approach is requested with `method = "RefinedNormal"`. It is based on a Normal distribution, whose parameters are derived from the theoretical mean, variance and skewness of the input probabilities of success.
```{r rna1-gen}
set.seed(2)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dgpbinom(NULL, pp, va, vb, wt, "RefinedNormal")
pgpbinom(NULL, pp, va, vb, wt, "RefinedNormal")
```
A comparison with exact computation shows that the approximation quality of the RNA procedure increases with larger numbers of probabilities of success:
```{r rna2-gen}
set.seed(2)
# 10 random probabilities of success
pp <- runif(10)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
# 100 random probabilities of success
pp <- runif(100)
va <- sample(0:100, 100, TRUE)
vb <- sample(0:100, 100, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
# 1000 random probabilities of success
pp <- runif(1000)
va <- sample(0:1000, 1000, TRUE)
vb <- sample(0:1000, 1000, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
```
### Processing Speed Comparisons
To assess the performance of the approximation procedures, we use the `microbenchmark` package. Each algorithm has to calculate the PMF repeatedly based on random probability vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).
```{r benchmark-gen}
library(microbenchmark)
n <- 1500
set.seed(2)
va <- sample(1:50, n, TRUE)
vb <- sample(1:50, n, TRUE)
f1 <- function() dgpbinom(NULL, runif(n), va, vb, method = "Normal")
f2 <- function() dgpbinom(NULL, runif(n), va, vb, method = "RefinedNormal")
f3 <- function() dgpbinom(NULL, runif(n), va, vb, method = "DivideFFT")
microbenchmark(f1(), f2(), f3(), times = 51)
```
Clearly, the G-NA procedure is the fastest, followed by the G-RNA method. Both are hugely faster than G-DC-FFT.
|