File: use_with_rcpp.Rmd

package info (click to toggle)
r-cran-poissonbinomial 1.2.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 736 kB
  • sloc: cpp: 719; makefile: 3
file content (209 lines) | stat: -rw-r--r-- 6,840 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
title: "Usage with Rcpp"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{Usage with Rcpp}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

```{r, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
```

Each procedure's probability mass function (PMF) and cumulative distribution function (CDF) was implemented in *C++* using the `Rcpp` package. By means of `Rcpp::interface`, these functions are exported to both the package's *R* namespace and *C++* headers. That way, the following functions can then be used by other packages that use `Rcpp`:

```
/***   Ordinary Poisson Binomial Distribution   ***/


/***   Exact Procedures   ***/

// Direct Convolution (DC)

// PMF
NumericVector dpb_conv(const IntegerVector obs,
                       const NumericVector probs);
                       
// CDF
NumericVector ppb_conv(const IntegerVector obs,
                       const NumericVector probs,
                       const bool lower_tail);


// Divide & Conquer FFT Tree Convolution (DC-FFT)

// PMF
NumericVector dpb_dc(const IntegerVector obs,
                     const NumericVector probs);
                     
// CDF
NumericVector ppb_dc(const IntegerVector obs,
                     const NumericVector probs,
                     const bool lower_tail);


// Discrete Fourier Transformation of the Characteristic Function (DFT-CF)

// PMF
NumericVector dpb_dftcf(const IntegerVector obs,
                        const NumericVector probs);
                        
// CDF
NumericVector ppb_dftcf(const IntegerVector obs, const NumericVector probs,
                        const bool lower_tail);
                        

// Recursive Formula (RF)

// PMF
NumericVector dpb_rf(const IntegerVector obs,
                     const NumericVector probs);

// CDF
NumericVector ppb_rf(const IntegerVector obs,
                     const NumericVector probs,
                     const bool lower_tail);



/***   Approximations   ***/


// Arithmetic Mean Binomial Approximation (AMBA)

// PMF
NumericVector dpb_mean(const IntegerVector obs,
                       const NumericVector probs);

// CDF
NumericVector ppb_mean(const IntegerVector obs,
                       const NumericVector probs,
                       const bool lower_tail);


// Geometric Mean Binomial Approximations (GMBA)

// PMF
NumericVector dpb_gmba(const IntegerVector obs, 
                       const NumericVector const probs,
                       const bool anti);
                       
// CDF
NumericVector ppb_gmba(const IntegerVector obs,
                       const NumericVector probs,
                       const bool anti,
                       const bool lower_tail);


// Poisson Approximation (PA)

// PMF
NumericVector dpb_pa(const IntegerVector obs,
                     const NumericVector probs);
                     
// CDF
NumericVector ppb_pa(const IntegerVector obs,
                     const NumericVector probs,
                     const bool lower_tail);
                     

// Normal Approximations (NA, RNA)

// PMF
NumericVector dpb_na(const IntegerVector obs,
                     const NumericVector probs,
                     const bool refined);
                     
// CDF
NumericVector ppb_na(const IntegerVector obs,
                     const NumericVector probs,
                     const bool refined,
                     const bool lower_tail);
                     



/***   Generalized Poisson Binomial Distribution   ***/


/***   Exact Procedures   ***/


// Generalized Direct Convolution (G-DC)

// PMF
NumericVector dgpb_conv(const IntegerVector obs,
                        const NumericVector probs,
                        const NumericVector val_p,
                        const NumericVector val_q);
                        
// CDF
NumericVector pgpb_conv(const IntegerVector obs,
                        const NumericVector probs,
                        const NumericVector val_p,
                        const NumericVector val_q,
                        const bool lower_tail);
                        

// Generalized Discrete Fourier Transformation of the Characteristic Function (G-DFT-CF)

// PMF
NumericVector dgpb_dftcf(const IntegerVector obs,
                         const NumericVector probs,
                         const NumericVector val_p,
                         const NumericVector val_q);
                         
// CDF
NumericVector pgpb_dftcf(const IntegerVector obs,
                         const NumericVector probs,
                         const NumericVector val_p,
                         const NumericVector val_q,
                         const bool lower_tail);
                       
                       
                       
/***   Approximations   ***/


// Generalized Normal Approximations (G-NA, G-RNA)

// PMF
NumericVector dgpb_na(const IntegerVector obs,
                      const NumericVector probs,
                      const NumericVector val_p,
                      const NumericVector val_q,
                      const bool refined,
                      const bool lower_tail);
                      
// CDF
NumericVector pgpb_na(const IntegerVector obs,
                      const NumericVector probs,
                      const NumericVector val_p,
                      const NumericVector val_q,
                      const bool refined,
                      const bool lower_tail);
```


## Making the functions usable

There are only a few simple steps to follow:

1. Add the `Rcpp` and `PoissonBinomial` packages to the `Imports` and `LinkingTo` fields of the `DESCRIPTION` file.
2. Add `#include <PoissonBinomial.h>` to source (`.cpp`) and/or header (`.h`, `.hpp`) files in which these functions are to be used.
3. Optional: Add `using namespace PoissonBinomial;`. Without it, the use of functions of this package must be fully qualified with `PoissonBinomial::`, e.g. `PoissonBinomial::dpb_dc` instead of `dpb_dc`


## Important Remarks

For better performance, the PMFs and CDFs do not check any of their parameters for plausibility! This must be done by the user by means of *R* or *C/C++* functions. It must be made sure that

* the observations in the `obs` vectors are valid, 
* the probabilities in the `probs` vector are in $(0, 1)$ and
* for `dpb_gmba`, `ppb_gmba`, `dpb_na`, `ppb_na`, `dgpb_na` and `pgpb_na`: the probabilities in the `probs` vector **must not** contain zeros or ones.

Furthermore, the CDFs only compute non-logarithmic probabilities. If logarithms are needed, they must be computed "manually".