File: hetcor.data.frame.R

package info (click to toggle)
r-cran-polycor 0.8-2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 156 kB
  • sloc: makefile: 2
file content (233 lines) | stat: -rw-r--r-- 9,151 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# last modified 2022-01-10 by J. Fox

# the following function to be imported from admisc and then deleted here:

# `tryCatchWEM` <- function(expr, capture = FALSE) {
#     toreturn <- list()
#     
#     output <- withVisible(withCallingHandlers(
#         tryCatch(expr, error = function(e) {
#             toreturn$error <<- e$message
#             NULL
#         }),
#         warning = function(w) {
#             toreturn$warning <<- c(toreturn$warning, w$message)
#             invokeRestart("muffleWarning")
#         },
#         message = function(m) {
#             toreturn$message <<- paste(toreturn$message, m$message, sep = "")
#             invokeRestart("muffleMessage")
#         }
#     ))
#     
#     if (capture && output$visible && !is.null(output$value)) {
#         toreturn$output <- capture.output(output$value)
#         toreturn$value <- output$value
#     }
#     
#     if (length(toreturn) > 0) {
#         return(toreturn)
#     }
# }


hetcor.data.frame <- function(data, ML=FALSE, std.err=TRUE, use=c("complete.obs", "pairwise.complete.obs"),
                              bins=4, pd=TRUE, parallel=FALSE, ncores=detectCores(logical=FALSE), 
                              thresholds=FALSE, ...){
    
    se.r <- function(r, n){
        rho <- r*(1 + (1 - r^2)/(2*(n - 3))) # approx. unbiased estimator
        v <- (((1 - rho^2)^2)/(n + 6))*(1 + (14 + 11*rho^2)/(2*(n + 6)))
        sqrt(v)
    }
    
    computeCor <- function(pair){
        type <- ""
        se <- NA
        test <- NA
        i <- rows[pair]
        j <- cols[pair]
        x <- data[, i]
        y <- data[, j]
        n <- sum(complete.cases(x, y))
        if (n == 0) {
            test <- r <- se <- NA
            warning("no cases for pair ", j, ", ", i)
        }
        if (inherits(x, c("numeric", "integer")) && inherits(y, c("numeric", "integer"))) {
            r <- cor(x, y, use="complete.obs")
            type <- "Pearson"
            if (std.err) {
                se <- se.r(r, n)
                test <- pchisq(chisq(x, y, r, bins=bins), bins^2 - 2, lower.tail=FALSE)
            }
            Thresholds <- list(NULL)
        }
        else if (inherits(x, c("factor", "logical", "character")) && 
                 inherits(y, c("factor", "logical", "character"))) {
            type <- "Polychoric"
            result <- tryCatchWEM(polychor(x, y, ML=ML, std.err=std.err, thresholds=thresholds),
                                  capture=TRUE)
            error <- !is.null(result$error)
            if (!is.null(result$warning)){
                warning("polychoric correlation between variables ", vnames[j], " and ", vnames[i],
                        if (length(result$warning) == 1) " produced a warning:\n" else " produced warnings:\n",
                        paste(paste("  ", result$warning), collapse="\n"))
            }
            if (error){
                msg <- result$error
                warning("could not compute polychoric correlation between variables ", vnames[j], " and ", vnames[i], "\n",
                        "   Error message: ", msg)
                result <- NA
            }
            if (std.err && !error){
                result <- result$value
                if (!(length(result) == 1 && is.na(result))){
                    r <- result$rho
                    se <- sqrt(result$var[1,1])
                    test <- if (result$df > 0)
                        pchisq(result$chisq, result$df, lower.tail=FALSE)
                    else NA
                }
                else {
                    r <- if (is.list(result)) result$value else result
                    test <- se <- NA
                }
            }
            else {
                r <- if (is.list(result)) result$value else result
                test <- se <- NA
            }
            Thresholds <- if (thresholds) {
                list(row.cuts=as.vector(result$row.cuts), 
                     col.cuts=as.vector(result$col.cuts))
            } else {
                NULL
            }
        }
        else {
            if (inherits(x, c("factor", "logical", "character")) && 
                inherits(y, c("numeric", "integer")))
                result <- tryCatchWEM(polyserial(y, x, ML=ML, std.err=std.err, bins=bins, 
                                                 thresholds=thresholds),
                                      capture=TRUE)
            else if (inherits(x, c("numeric", "integer")) && 
                     inherits(y, c("factor", "logical", "character")))
                result <- tryCatchWEM(polyserial(x, y, ML=ML, std.err=std.err, bins=bins),
                                      capture=TRUE)
            else {
                stop("columns must be numeric, factors, logical, or character.")
            }
            type <- "Polyserial"
            error <- !(is.null(result$error))
            if (!is.null(result$warning)){
                warning("polyserial correlation between variables ", vnames[j], " and ", vnames[i],
                        if (length(result$warning) == 1) " produced a warning:\n" else " produced warnings:\n",
                        paste(paste( "  ", result$warning), collapse="\n"))
            }
            if (error){
                msg <- result$error
                warning("could not compute polyserial correlation between variables ", vnames[j], " and ", vnames[i], "\n",
                        "   Error message: ", msg)
                result <- NA
            }
            if (std.err && !error){
                result <- result$value
                if (!(length(result) == 1 && is.na(result))){
                    r <- result$rho
                    se <- sqrt(result$var[1,1])
                    test <- pchisq(result$chisq, result$df, lower.tail=FALSE)
                }
                else {
                    r <- if (is.list(result)) result$value else result
                    test <- se <- NA
                }
            }
            else {
                r <- if (is.list(result)) result$value else result
                se <- test <- NA
            }
            Thresholds <- if (thresholds) {
                list(cuts=as.vector(result$cuts))
            } else {
                NULL
            }
        }
        list(n=n, r=r, Type=type, SE=se, Test=test, Thresholds=Thresholds)
    }
    
    vnames <- names(data)
    if (any(sapply(data, function(x) inherits(x, "character")))){
        message("data contain one or more character variables",
                "\nthe values of which are ordered alphabetically")
    }
    use <- match.arg(use)
    if (use == "complete.obs") {
        data <- na.omit(data)
        n <- nrow(data)
    }
    p <- length(data)
    if (p < 2) stop("fewer than 2 variables.")
    R <- matrix(1, p, p)
    Type <- matrix("", p, p)
    SE <- matrix(0, p, p)
    N <- matrix(0, p, p)
    Test <- matrix(0, p, p)
    if (thresholds){
        Thresholds <- vector(p^2, mode="list")
        Thresholds <- matrix(Thresholds, p, p)
    }
    diag(N) <- if (use == "complete.obs") nrow(data)
    else sapply(data, function(x) sum(!is.na(x)))
    if (all(diag(N) == 0)) stop("no non-missing cases")
    npairs <- p*(p -1)/2
    rows <- matrix(1:p, p, p)
    cols <- t(rows)
    rows <- rows[lower.tri(rows)]
    cols <- cols[lower.tri(cols)]
    result <- if (parallel && ncores > 1){
        message("Note: using a cluster of ", ncores, " cores")
        cl <- parallel::makeCluster(ncores)
        on.exit(parallel::stopCluster(cl))
        parallel::clusterApply(cl, 1:npairs, computeCor)
    } else {
        lapply(1:npairs, computeCor)
    }
    for (pair in 1:npairs){
        i <- rows[pair]
        j <- cols[pair]
        res <- result[[pair]]
        N[i, j] <- N[j, i] <- res$n
        R[i, j] <- R[j, i] <- res$r
        Type[i, j] <- Type[j, i] <- res$Type
        SE[i, j] <- SE[j, i] <- res$SE
        Test[i, j] <- Test[j, i] <- res$Test
        if (thresholds) {
            Thresholds[[i, j]] <- res$Thresholds
            Thresholds[[j, i]] <- res$Type
        }
    }
    if (pd && !any(is.na(R)) && min(eigen(R, only.values=TRUE)$values) < 0){
        cor <- Matrix::nearPD(R, corr=TRUE)
        if (!cor$converged) warning("attempt to make correlation matrix positive-definite failed")
        else warning("the correlation matrix has been adjusted to make it positive-definite")
        R <- as.matrix(cor$mat)
    }
    rownames(R) <- colnames(R) <- names(data)
    result <- list(correlations=R, type=Type, NA.method=use, ML=ML)
    if (thresholds) result$thresholds <- Thresholds
    if (std.err) {
        rownames(SE) <- colnames(SE) <- names(data)
        rownames(N) <- colnames(N) <- names(N)
        rownames(Test) <- colnames(Test) <- names(data)
        result$std.errors <- SE
        result$n <- if (use == "complete.obs") n else N
        result$tests <- Test
    }
    if (0 < (nNA <- sum(is.na(R[lower.tri(R)])))){
        warning(nNA, if (nNA == 1) " correlation" else " correlations", 
                " couldn't be computed and", if (nNA == 1) " is" else " are", " NA")
    }
    class(result) <- "hetcor"
    result
}