File: polyCub.html

package info (click to toggle)
r-cran-polycub 0.8.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 524 kB
  • sloc: ansic: 250; sh: 13; makefile: 2
file content (532 lines) | stat: -rw-r--r-- 89,766 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />

<meta name="author" content="Sebastian Meyer" />

<meta name="date" content="2021-01-26" />

<title>Getting started with polyCub</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>
<script>// Hide empty <a> tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) -->
// v0.0.1
// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020.

document.addEventListener('DOMContentLoaded', function() {
  const codeList = document.getElementsByClassName("sourceCode");
  for (var i = 0; i < codeList.length; i++) {
    var linkList = codeList[i].getElementsByTagName('a');
    for (var j = 0; j < linkList.length; j++) {
      if (linkList[j].innerHTML === "") {
        linkList[j].setAttribute('aria-hidden', 'true');
      }
    }
  }
});
</script>

<style type="text/css">
  code{white-space: pre-wrap;}
  span.smallcaps{font-variant: small-caps;}
  span.underline{text-decoration: underline;}
  div.column{display: inline-block; vertical-align: top; width: 50%;}
  div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
  ul.task-list{list-style: none;}
    </style>


<style type="text/css">code{white-space: pre;}</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
  { counter-reset: source-line 0; }
pre.numberSource code > span
  { position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
  { content: counter(source-line);
    position: relative; left: -1em; text-align: right; vertical-align: baseline;
    border: none; display: inline-block;
    -webkit-touch-callout: none; -webkit-user-select: none;
    -khtml-user-select: none; -moz-user-select: none;
    -ms-user-select: none; user-select: none;
    padding: 0 4px; width: 4em;
    color: #aaaaaa;
  }
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa;  padding-left: 4px; }
div.sourceCode
  {   }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */

</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    for (var j = 0; j < rules.length; j++) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue;
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') continue;
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">Getting started with polyCub</h1>
<h4 class="author">Sebastian Meyer</h4>
<h4 class="date">2021-01-26</h4>



<p><img src="" align="right" alt width="120" /></p>
<p>The R package <strong>polyCub</strong> implements <em>cubature</em> (numerical integration) over <em>polygonal</em> domains. It solves the problem of integrating a continuously differentiable function f(x,y) over simple closed polygons.</p>
<p>For the special case of a rectangular domain along the axes, the package <a href="https://CRAN.R-project.org/package=cubature"><strong>cubature</strong></a> is more appropriate (cf. <a href="https://CRAN.R-project.org/view=NumericalMathematics"><code>CRAN Task View: Numerical Mathematics</code></a>).</p>
<div id="polygon-representations" class="section level2">
<h2>Polygon representations</h2>
<p>The integration domain is described by a polygonal boundary (or multiple polygons, including holes). Various R packages for spatial data analysis provide classes for polygons. The implementations differ in vertex order (which direction represents a hole) and if the first vertex is repeated.</p>
<p>All of <strong>polyCub</strong>’s cubature methods understand</p>
<ul>
<li><p><code>&quot;owin&quot;</code> from package <a href="https://CRAN.R-project.org/package=spatstat.geom"><strong>spatstat.geom</strong></a>,</p></li>
<li><p><code>&quot;gpc.poly&quot;</code> from <a href="https://CRAN.R-project.org/package=rgeos"><strong>rgeos</strong></a> (or <a href="https://CRAN.R-project.org/package=gpclib"><strong>gpclib</strong></a>),</p></li>
<li><p><code>&quot;SpatialPolygons&quot;</code> from package <a href="https://CRAN.R-project.org/package=sp"><strong>sp</strong></a>, and</p></li>
<li><p><code>&quot;(MULTI)POLYGON&quot;</code> from package <a href="https://CRAN.R-project.org/package=sf"><strong>sf</strong></a>.</p></li>
</ul>
<p>Internally, <strong>polyCub</strong> uses its auxiliary <code>xylist()</code> function to extract a plain list of lists of vertex coordinates from these classes, such that vertices are ordered anticlockwise (for exterior boundaries) and the first vertex is not repeated (i.e., the <code>&quot;owin&quot;</code> convention).</p>
</div>
<div id="cubature-methods" class="section level2">
<h2>Cubature methods</h2>
<p>The following cubature methods are implemented in <strong>polyCub</strong>:</p>
<ol style="list-style-type: decimal">
<li><p><code>polyCub.SV()</code>: Product Gauss cubature</p></li>
<li><p><code>polyCub.midpoint()</code>: Two-dimensional midpoint rule</p></li>
<li><p><code>polyCub.iso()</code>: Adaptive cubature for radially symmetric functions <span class="math inline">\(f(x,y) = f_r(\lVert(x-x_0,y-y_0)\rVert)\)</span></p></li>
<li><p><code>polyCub.exact.Gauss()</code>: Accurate (but slow) integration of the bivariate Gaussian density</p></li>
</ol>
<p>The following section details and illustrates the different cubature methods.</p>
</div>
<div id="illustrations" class="section level2">
<h2>Illustrations</h2>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1"></a><span class="kw">library</span>(<span class="st">&quot;polyCub&quot;</span>)</span></code></pre></div>
<p>We consider the integration of a function f(x,y) which all of the above cubature methods can handle: an isotropic zero-mean Gaussian density. <strong>polyCub</strong> expects the integrand f to take a two-column coordinate matrix as its first argument (as opposed to separate arguments for the x and y coordinates), so:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1"></a>f &lt;-<span class="st"> </span><span class="cf">function</span> (s, <span class="dt">sigma =</span> <span class="dv">5</span>)</span>
<span id="cb2-2"><a href="#cb2-2"></a>{</span>
<span id="cb2-3"><a href="#cb2-3"></a>    <span class="kw">exp</span>(<span class="op">-</span><span class="kw">rowSums</span>(s<span class="op">^</span><span class="dv">2</span>)<span class="op">/</span><span class="dv">2</span><span class="op">/</span>sigma<span class="op">^</span><span class="dv">2</span>) <span class="op">/</span><span class="st"> </span>(<span class="dv">2</span><span class="op">*</span>pi<span class="op">*</span>sigma<span class="op">^</span><span class="dv">2</span>)</span>
<span id="cb2-4"><a href="#cb2-4"></a>}</span></code></pre></div>
<p>We use a simple hexagon as polygonal integration domain, here specified via an <code>&quot;xylist&quot;</code> of vertex coordinates:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1"></a>hexagon &lt;-<span class="st"> </span><span class="kw">list</span>(</span>
<span id="cb3-2"><a href="#cb3-2"></a>    <span class="kw">list</span>(<span class="dt">x =</span> <span class="kw">c</span>(<span class="fl">7.33</span>, <span class="fl">7.33</span>, <span class="dv">3</span>, <span class="fl">-1.33</span>, <span class="fl">-1.33</span>, <span class="dv">3</span>),</span>
<span id="cb3-3"><a href="#cb3-3"></a>         <span class="dt">y =</span> <span class="kw">c</span>(<span class="op">-</span><span class="fl">0.5</span>, <span class="fl">4.5</span>, <span class="dv">7</span>, <span class="fl">4.5</span>, <span class="fl">-0.5</span>, <span class="dv">-3</span>))</span>
<span id="cb3-4"><a href="#cb3-4"></a>)</span></code></pre></div>
<p>An image of the function and the integration domain can be produced using <strong>polyCub</strong>’s rudimentary (but convenient) plotting utility:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1"></a><span class="kw">plotpolyf</span>(hexagon, f, <span class="dt">xlim =</span> <span class="kw">c</span>(<span class="op">-</span><span class="dv">8</span>,<span class="dv">8</span>), <span class="dt">ylim =</span> <span class="kw">c</span>(<span class="op">-</span><span class="dv">8</span>,<span class="dv">8</span>))</span></code></pre></div>
<p><img src="" /><!-- --></p>
<div id="product-gauss-cubature-polycub.sv" class="section level3">
<h3>1. Product Gauss cubature: <code>polyCub.SV()</code></h3>
<p>The <strong>polyCub</strong> package provides an R-interfaced C-translation of “polygauss: Matlab code for Gauss-like cubature over polygons” (Sommariva and Vianello, 2013, <a href="https://www.math.unipd.it/~alvise/software.html" class="uri">https://www.math.unipd.it/~alvise/software.html</a>), an algorithm described in Sommariva and Vianello (2007, <em>BIT Numerical Mathematics</em>, <a href="https://doi.org/10.1007/s10543-007-0131-2" class="uri">https://doi.org/10.1007/s10543-007-0131-2</a>). The cubature rule is based on Green’s integration formula and incorporates appropriately transformed weights and nodes of one-dimensional Gauss-Legendre quadrature in both dimensions, thus the name “product Gauss cubature”. It is exact for all bivariate polynomials if the number of cubature nodes is sufficiently large (depending on the degree of the polynomial).</p>
<p>For the above example, a reasonable approximation is already obtained with degree <code>nGQ = 3</code> of the one-dimensional Gauss-Legendre quadrature:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1"></a><span class="kw">polyCub.SV</span>(hexagon, f, <span class="dt">nGQ =</span> <span class="dv">3</span>, <span class="dt">plot =</span> <span class="ot">TRUE</span>)</span>
<span id="cb5-2"><a href="#cb5-2"></a><span class="co">#&gt; [1] 0.2741456</span></span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>The involved nodes (displayed in the figure above) and weights can be extracted by calling <code>polyCub.SV()</code> with <code>f = NULL</code>, e.g., to determine the number of nodes:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1"></a><span class="kw">nrow</span>(<span class="kw">polyCub.SV</span>(hexagon, <span class="dt">f =</span> <span class="ot">NULL</span>, <span class="dt">nGQ =</span> <span class="dv">3</span>)[[<span class="dv">1</span>]]<span class="op">$</span>nodes)</span>
<span id="cb6-2"><a href="#cb6-2"></a><span class="co">#&gt; [1] 72</span></span></code></pre></div>
<p>For illustration, we create a variant of <code>polyCub.SV()</code>, which returns the number of function evaluations as an attribute:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1"></a>polyCub.SVn &lt;-<span class="st"> </span><span class="cf">function</span> (polyregion, f, ..., <span class="dt">nGQ =</span> <span class="dv">20</span>) {</span>
<span id="cb7-2"><a href="#cb7-2"></a>    nw &lt;-<span class="st"> </span><span class="kw">polyCub.SV</span>(polyregion, <span class="dt">f =</span> <span class="ot">NULL</span>, ..., <span class="dt">nGQ =</span> nGQ)</span>
<span id="cb7-3"><a href="#cb7-3"></a>    <span class="co">## nw is a list with one element per polygon of &#39;polyregion&#39;</span></span>
<span id="cb7-4"><a href="#cb7-4"></a>    res &lt;-<span class="st"> </span><span class="kw">sapply</span>(nw, <span class="cf">function</span> (x)</span>
<span id="cb7-5"><a href="#cb7-5"></a>        <span class="kw">c</span>(<span class="dt">result =</span> <span class="kw">sum</span>(x<span class="op">$</span>weights <span class="op">*</span><span class="st"> </span><span class="kw">f</span>(x<span class="op">$</span>nodes, ...)), <span class="dt">nEval =</span> <span class="kw">nrow</span>(x<span class="op">$</span>nodes)))</span>
<span id="cb7-6"><a href="#cb7-6"></a>    <span class="kw">structure</span>(<span class="kw">sum</span>(res[<span class="st">&quot;result&quot;</span>,]), <span class="dt">nEval =</span> <span class="kw">sum</span>(res[<span class="st">&quot;nEval&quot;</span>,]))</span>
<span id="cb7-7"><a href="#cb7-7"></a>}</span>
<span id="cb7-8"><a href="#cb7-8"></a><span class="kw">polyCub.SVn</span>(hexagon, f, <span class="dt">nGQ =</span> <span class="dv">3</span>)</span>
<span id="cb7-9"><a href="#cb7-9"></a><span class="co">#&gt; [1] 0.2741456</span></span>
<span id="cb7-10"><a href="#cb7-10"></a><span class="co">#&gt; attr(,&quot;nEval&quot;)</span></span>
<span id="cb7-11"><a href="#cb7-11"></a><span class="co">#&gt; [1] 72</span></span></code></pre></div>
<p>We can use this function to investigate how the accuracy of the approximation depends on the degree <code>nGQ</code> and the associated number of cubature nodes:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1"></a><span class="cf">for</span> (nGQ <span class="cf">in</span> <span class="kw">c</span>(<span class="dv">1</span><span class="op">:</span><span class="dv">5</span>, <span class="dv">10</span>, <span class="dv">20</span>)) {</span>
<span id="cb8-2"><a href="#cb8-2"></a>    result &lt;-<span class="st"> </span><span class="kw">polyCub.SVn</span>(hexagon, f, <span class="dt">nGQ =</span> nGQ)</span>
<span id="cb8-3"><a href="#cb8-3"></a>    <span class="kw">cat</span>(<span class="kw">sprintf</span>(<span class="st">&quot;nGQ = %2i: %.12f (n=%i)</span><span class="ch">\n</span><span class="st">&quot;</span>, nGQ, result, <span class="kw">attr</span>(result, <span class="st">&quot;nEval&quot;</span>)))</span>
<span id="cb8-4"><a href="#cb8-4"></a>}</span>
<span id="cb8-5"><a href="#cb8-5"></a><span class="co">#&gt; nGQ =  1: 0.285265369245 (n=12)</span></span>
<span id="cb8-6"><a href="#cb8-6"></a><span class="co">#&gt; nGQ =  2: 0.274027610314 (n=36)</span></span>
<span id="cb8-7"><a href="#cb8-7"></a><span class="co">#&gt; nGQ =  3: 0.274145638288 (n=72)</span></span>
<span id="cb8-8"><a href="#cb8-8"></a><span class="co">#&gt; nGQ =  4: 0.274144768964 (n=120)</span></span>
<span id="cb8-9"><a href="#cb8-9"></a><span class="co">#&gt; nGQ =  5: 0.274144773834 (n=180)</span></span>
<span id="cb8-10"><a href="#cb8-10"></a><span class="co">#&gt; nGQ = 10: 0.274144773813 (n=660)</span></span>
<span id="cb8-11"><a href="#cb8-11"></a><span class="co">#&gt; nGQ = 20: 0.274144773813 (n=2520)</span></span></code></pre></div>
</div>
<div id="two-dimensional-midpoint-rule-polycub.midpoint" class="section level3">
<h3>2. Two-dimensional midpoint rule: <code>polyCub.midpoint()</code></h3>
<p>The two-dimensional midpoint rule in <strong>polyCub</strong> is a simple wrapper around <code>as.im.function()</code> and <code>integral.im()</code> from package <strong>spatstat.geom</strong>. In other words, the polygon is represented by a binary pixel image and the integral is approximated as the sum of (pixel area * f(pixel midpoint)) over all pixels whose midpoint is part of the polygon.</p>
<p>To use <code>polyCub.midpoint()</code>, we need to convert our polygon to <strong>spatstat.geom</strong>’s “owin” class:</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1"></a><span class="kw">library</span>(<span class="st">&quot;spatstat.geom&quot;</span>)</span>
<span id="cb9-2"><a href="#cb9-2"></a>hexagon.owin &lt;-<span class="st"> </span><span class="kw">owin</span>(<span class="dt">poly =</span> hexagon)</span></code></pre></div>
<p>Using a pixel size of <code>eps = 0.5</code> (here yielding 270 pixels), we obtain:</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1"></a><span class="kw">polyCub.midpoint</span>(hexagon.owin, f, <span class="dt">eps =</span> <span class="fl">0.5</span>, <span class="dt">plot =</span> <span class="ot">TRUE</span>)</span>
<span id="cb10-2"><a href="#cb10-2"></a><span class="co">#&gt; [1] 0.2736067</span></span></code></pre></div>
<p><img src="" /><!-- --></p>
</div>
<div id="adaptive-cubature-for-isotropic-functions-polycub.iso" class="section level3">
<h3>3. Adaptive cubature for <em>isotropic</em> functions: <code>polyCub.iso()</code></h3>
<p>A radially symmetric function can be expressed in terms of the distance r from its point of symmetry: f(r). If the antiderivative of r times f(r), called <code>intrfr()</code>, is analytically available, Green’s theorem leads us to a cubature rule which only needs <em>one-dimensional</em> numerical integration. More specifically, <code>intrfr()</code> will be <code>integrate()</code>d along the edges of the polygon. The mathematical details are given in Meyer and Held (2014, <em>The Annals of Applied Statistics</em>, <a href="https://doi.org/10.1214/14-AOAS743" class="uri">https://doi.org/10.1214/14-AOAS743</a>, Supplement B, Section 2.4).</p>
<p>For the bivariate Gaussian density <code>f</code> defined above, the integral from 0 to R of <code>r*f(r)</code> is analytically available as:</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1"></a>intrfr &lt;-<span class="st"> </span><span class="cf">function</span> (R, <span class="dt">sigma =</span> <span class="dv">5</span>)</span>
<span id="cb11-2"><a href="#cb11-2"></a>{</span>
<span id="cb11-3"><a href="#cb11-3"></a>    (<span class="dv">1</span> <span class="op">-</span><span class="st"> </span><span class="kw">exp</span>(<span class="op">-</span>R<span class="op">^</span><span class="dv">2</span><span class="op">/</span><span class="dv">2</span><span class="op">/</span>sigma<span class="op">^</span><span class="dv">2</span>))<span class="op">/</span><span class="dv">2</span><span class="op">/</span>pi</span>
<span id="cb11-4"><a href="#cb11-4"></a>}</span></code></pre></div>
<p>With this information, we can apply the cubature rule as follows:</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1"></a><span class="kw">polyCub.iso</span>(hexagon, <span class="dt">intrfr =</span> intrfr, <span class="dt">center =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>))</span>
<span id="cb12-2"><a href="#cb12-2"></a><span class="co">#&gt; [1] 0.2741448</span></span>
<span id="cb12-3"><a href="#cb12-3"></a><span class="co">#&gt; attr(,&quot;abs.error&quot;)</span></span>
<span id="cb12-4"><a href="#cb12-4"></a><span class="co">#&gt; [1] 3.043618e-15</span></span></code></pre></div>
<p>Note that we do not even need the original function <code>f</code>.</p>
<p>If <code>intrfr()</code> is missing, it can be approximated numerically using <code>integrate()</code> for <code>r*f(r)</code> as well, but the overall integration will then be much less efficient than product Gauss cubature.</p>
<p>Package <strong>polyCub</strong> exposes a C-version of <code>polyCub.iso()</code> for use by other R packages (notably <a href="https://CRAN.R-project.org/package=surveillance"><strong>surveillance</strong></a>) via <code>LinkingTo: polyCub</code> and <code>#include &lt;polyCubAPI.h&gt;</code>. This requires the <code>intrfr()</code> function to be implemented in C as well. See <a href="https://github.com/bastistician/polyCub/blob/master/tests/polyiso_powerlaw.c" class="uri">https://github.com/bastistician/polyCub/blob/master/tests/polyiso_powerlaw.c</a> for an example.</p>
</div>
<div id="integration-of-the-bivariate-gaussian-density-polycub.exact.gauss" class="section level3">
<h3>4. Integration of the <em>bivariate Gaussian density</em>: <code>polyCub.exact.Gauss()</code></h3>
<p>Abramowitz and Stegun (1972, Section 26.9, Example 9) offer a formula for the integral of the bivariate Gaussian density over a triangle with one vertex at the origin. This formula can be used after triangulation of the polygonal domain (<strong>polyCub</strong> currently uses <code>tristrip()</code> from the <a href="https://CRAN.R-project.org/package=gpclib"><strong>gpclib</strong></a> package). The core of the formula is an integral of the bivariate Gaussian density with zero mean, unit variance and some correlation over an infinite rectangle [h, Inf] x [0, Inf], which can be computed accurately using <code>pmvnorm()</code> from the <a href="https://CRAN.R-project.org/package=mvtnorm"><strong>mvtnorm</strong></a> package.</p>
<p>For the above example, we obtain:</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1"></a><span class="kw">gpclibPermit</span>()  <span class="co"># accept gpclib license (prohibits commercial use)</span></span>
<span id="cb13-2"><a href="#cb13-2"></a><span class="co">#&gt; Loading required namespace: gpclib</span></span>
<span id="cb13-3"><a href="#cb13-3"></a><span class="co">#&gt; [1] TRUE</span></span>
<span id="cb13-4"><a href="#cb13-4"></a><span class="kw">polyCub.exact.Gauss</span>(hexagon.owin, <span class="dt">mean =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>), <span class="dt">Sigma =</span> <span class="dv">5</span><span class="op">^</span><span class="dv">2</span><span class="op">*</span><span class="kw">diag</span>(<span class="dv">2</span>))</span>
<span id="cb13-5"><a href="#cb13-5"></a><span class="co">#&gt; [1] 0.2741448</span></span>
<span id="cb13-6"><a href="#cb13-6"></a><span class="co">#&gt; attr(,&quot;nEval&quot;)</span></span>
<span id="cb13-7"><a href="#cb13-7"></a><span class="co">#&gt; [1] 48</span></span>
<span id="cb13-8"><a href="#cb13-8"></a><span class="co">#&gt; attr(,&quot;error&quot;)</span></span>
<span id="cb13-9"><a href="#cb13-9"></a><span class="co">#&gt; [1] 4.6e-14</span></span></code></pre></div>
<p>The required triangulation as well as the numerous calls of <code>pmvnorm()</code> make this integration algorithm quiet cumbersome. For large-scale integration tasks, it is thus advisable to resort to the general-purpose product Gauss cubature rule <code>polyCub.SV()</code>.</p>
<p>Note: <strong>polyCub</strong> provides an auxiliary function <code>circleCub.Gauss()</code> to calculate the integral of an <em>isotropic</em> Gaussian density over a <em>circular</em> domain (which requires nothing more than a single call of <code>pchisq()</code>).</p>
</div>
</div>
<div id="benchmark" class="section level2">
<h2>Benchmark</h2>
<p>We use the last result from <code>polyCub.exact.Gauss()</code> as a reference value and tune the number of cubature nodes in <code>polyCub.SV()</code> and <code>polyCub.midpoint()</code> until the absolute error is below 10^-8. This leads to <code>nGQ = 4</code> for product Gauss cubature and a 1200 x 1200 pixel image for the midpoint rule. For <code>polyCub.iso()</code>, we keep the default tolerance levels of <code>integrate()</code>. For comparison, we also run <code>polyCub.iso()</code> without the analytically derived <code>intrfr</code> function, which leads to a double-<code>integrate</code> approximation.</p>
<p>The median runtimes [ms] of the different cubature methods are given below.</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1"></a>benchmark &lt;-<span class="st"> </span>microbenchmark<span class="op">::</span><span class="kw">microbenchmark</span>(</span>
<span id="cb14-2"><a href="#cb14-2"></a>  <span class="dt">SV =</span> <span class="kw">polyCub.SV</span>(hexagon.owin, f, <span class="dt">nGQ =</span> <span class="dv">4</span>),</span>
<span id="cb14-3"><a href="#cb14-3"></a>  <span class="dt">midpoint =</span> <span class="kw">polyCub.midpoint</span>(hexagon.owin, f, <span class="dt">dimyx =</span> <span class="dv">1200</span>),</span>
<span id="cb14-4"><a href="#cb14-4"></a>  <span class="dt">iso =</span> <span class="kw">polyCub.iso</span>(hexagon.owin, <span class="dt">intrfr =</span> intrfr, <span class="dt">center =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>)),</span>
<span id="cb14-5"><a href="#cb14-5"></a>  <span class="dt">iso_double_approx =</span> <span class="kw">polyCub.iso</span>(hexagon.owin, f, <span class="dt">center =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>)),</span>
<span id="cb14-6"><a href="#cb14-6"></a>  <span class="dt">exact =</span> <span class="kw">polyCub.exact.Gauss</span>(hexagon.owin, <span class="dt">mean =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>), <span class="dt">Sigma =</span> <span class="dv">5</span><span class="op">^</span><span class="dv">2</span><span class="op">*</span><span class="kw">diag</span>(<span class="dv">2</span>)),</span>
<span id="cb14-7"><a href="#cb14-7"></a>  <span class="dt">times =</span> <span class="dv">6</span>,</span>
<span id="cb14-8"><a href="#cb14-8"></a>  <span class="dt">check =</span> <span class="cf">function</span> (values) <span class="kw">all</span>(<span class="kw">abs</span>(<span class="kw">unlist</span>(values) <span class="op">-</span><span class="st"> </span><span class="fl">0.274144773813434</span>) <span class="op">&lt;</span><span class="st"> </span><span class="fl">1e-8</span>))</span></code></pre></div>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1"></a><span class="kw">summary</span>(benchmark, <span class="dt">unit =</span> <span class="st">&quot;ms&quot;</span>)[<span class="kw">c</span>(<span class="st">&quot;expr&quot;</span>, <span class="st">&quot;median&quot;</span>)]</span></code></pre></div>
<table>
<thead>
<tr class="header">
<th align="left">expr</th>
<th align="right">median</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">SV</td>
<td align="right">0.10</td>
</tr>
<tr class="even">
<td align="left">midpoint</td>
<td align="right">243.81</td>
</tr>
<tr class="odd">
<td align="left">iso</td>
<td align="right">0.42</td>
</tr>
<tr class="even">
<td align="left">iso_double_approx</td>
<td align="right">5.96</td>
</tr>
<tr class="odd">
<td align="left">exact</td>
<td align="right">8.93</td>
</tr>
</tbody>
</table>
<p>The general-purpose SV-method is the clear winner of this small competition. A disadvantage of that method is that the number of cubature nodes needs to be tuned manually. This also holds for the midpoint rule, which is by far the slowest option. In contrast, the “iso”-method for radially symmetric functions is based on R’s <code>integrate()</code> function, which implements automatic tolerance levels. Furthermore, the “iso”-method can also be used with “spiky” integrands, such as a heavy-tailed power-law kernel <span class="math inline">\(f(r) = (r+1)^{-2}\)</span>.</p>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>