1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
|
#' @title Set `aggre` attributes to an object by modifying in place
#' @author Joonas Miettinen
#' @description Coerces an R object to an `aggre` object, identifying
#' the object as one containing aggregated counts, person-years and other
#' information. `setaggre` modifies in place without taking any copies.
#' Retains all other attributes.
#' @param x a `data.frame` or `data.table`
#' @param values a character string vector; the names of value variables
#' @param by a character string vector; the names of variables by which
#' `values` have been tabulated
#' @param breaks a list of breaks, where each element is a breaks vector
#' as usually passed to e.g. `[splitLexisDT]`. The list must be
#' fully named, with the names corresponding to time scales at the aggregate
#' level in your data. Every unique value in a time scale variable in data must
#' also exist in the corresponding vector in the breaks list.
#' @details
#'
#' `setaggre` sets `x` to the `aggre` class in place
#' without taking a copy as e.g. `as.data.frame.XXX` functions do; see e.g.
#' `[data.table::setDT]`.
#'
#' @family aggregation functions
#' @return
#' Returns `x` invisibly after setting attributes to it without taking a copy.
#' This function is called for its side effects.
#' @export setaggre
#' @examples
#' df <- data.frame(sex = rep(c("male", "female"), each = 5),
#' obs = rpois(10, rep(7,5, each=5)),
#' pyrs = rpois(10, lambda = 10000))
#' ## without any breaks
#' setaggre(df, values = c("obs", "pyrs"), by = "sex")
#' df <- data.frame(df)
#' df$FUT <- 0:4
#' ## with breaks list
#' setaggre(df, values = c("obs", "pyrs"), by = "sex", breaks = list(FUT = 0:5))
setaggre <- function(x, values = NULL, by = NULL, breaks = NULL) {
## input: aggregated data in data.frame or data.table format
## intention: any user can define their data as an aggregated data set
## which will be usable by survtab / sir / other
## output: no need to do x <- setaggre(x); instead modifies attributes in place;
## sets "aggre.meta" attribute, a list of names of various variables.
## survtab for aggregated data will need this attribute to work.
all_names_present(x, c(values, by))
if (!length(by) && length(values)) by <- setdiff(names(x), values)
if (length(by) && !length(values)) values <- setdiff(names(x), by)
if (!inherits(x, "aggre")) {
cl <- class(x)
wh <- which(cl %in% c("data.table", "data.frame"))
wh <- min(wh)
## yes, from zero: in case only one class
cl <- c(cl[0:(wh-1)], "aggre", cl[wh:length(cl)])
setattr(x, "class", cl)
}
setattr(x, "aggre.meta", list(values = values, by = by, breaks = breaks))
setattr(x, "breaks", breaks)
invisible(x)
}
#' @title Coercion to Class `aggre`
#' @author Joonas Miettinen
#' @description Coerces an R object to an `aggre` object, identifying
#' the object as one containing aggregated counts, person-years and other
#' information.
#' @inheritParams setaggre
#' @param ... arguments passed to or from methods
#' @family aggregation functions
#'
#'
#' @examples
#' library("data.table")
#' df <- data.frame(sex = rep(c("male", "female"), each = 5),
#' obs = rpois(10, rep(7,5, each=5)),
#' pyrs = rpois(10, lambda = 10000))
#' dt <- as.data.table(df)
#'
#' df <- as.aggre(df, values = c("pyrs", "obs"), by = "sex")
#' dt <- as.aggre(dt, values = c("pyrs", "obs"), by = "sex")
#'
#' class(df)
#' class(dt)
#'
#' BL <- list(fot = 0:5)
#' df <- data.frame(df)
#' df <- as.aggre(df, values = c("pyrs", "obs"), by = "sex", breaks = BL)
#'
#' @return
#' Returns a copy of `x` with attributes set to those of an object of class
#' `"aggre"`.
#' @export
as.aggre <- function(x, values = NULL, by = NULL, breaks = NULL, ...) {
UseMethod("as.aggre", x)
}
#' @describeIn as.aggre Coerces a `data.frame` to an `aggre` object
#' @export
as.aggre.data.frame <- function(x, values = NULL, by = NULL, breaks = NULL, ...) {
x <- copy(x)
setaggre(x, values = values, by = by, breaks = breaks, ...)
setattr(x, "class", c("aggre", "data.frame"))
x[]
}
#' @describeIn as.aggre Coerces a `data.table` to an `aggre` object
#' @export
as.aggre.data.table <- function(x, values = NULL, by = NULL, breaks = NULL, ...) {
x <- copy(x)
setaggre(x, values = values, by = by, breaks = breaks, ...)
setattr(x, "class", c("aggre", "data.table", "data.frame"))
x[]
}
#' @describeIn as.aggre Default method for `as.aggre` (stops computations
#' if no class-specific method found)
#' @export
as.aggre.default <- function(x, ...) {
stop(gettextf("cannot coerce class \"%s\" to 'aggre'", deparse(class(x))),
domain = NA)
}
#' @title Aggregation of split `Lexis` data
#' @author Joonas Miettinen
#' @description Aggregates a split `Lexis` object by given variables
#' and / or expressions into a long-format table of person-years and
#' transitions / end-points. Automatic aggregation over time scales
#' by which data has been split if the respective time scales are mentioned
#' in the aggregation argument to e.g. intervals of calendar time, follow-up time
#' and/or age.
#' @param lex a `Lexis` object split with e.g.
#' `[Epi::splitLexis]` or `[splitMulti]`
#' @param by variables to tabulate (aggregate) by.
#' [Flexible input][flexible_argument], typically e.g.
#' `by = c("V1", "V2")`. See Details and Examples.
#' @param type determines output levels to which data is aggregated varying
#' from returning only rows with `pyrs > 0` (`"unique"`) to
#' returning all possible combinations of variables given in `aggre` even
#' if those combinations are not represented in data (`"full"`);
#' see Details
#' @param sum.values optional: additional variables to sum by argument
#' `by`. [Flexible input][flexible_argument], typically e.g.
#' `sum.values = c("V1", "V2")`
#' @param subset a logical condition to subset by before computations;
#' e.g. `subset = area %in% c("A", "B")`
#' @param verbose `logical`; if `TRUE`, the function returns timings
#' and some information useful for debugging along the aggregation process
#' @details
#'
#' **Basics**
#'
#' `aggre` is intended for aggregation of split `Lexis` data only.
#' See `[Epi::Lexis]` for forming `Lexis` objects by hand
#' and e.g. `[Epi::splitLexis]`, `[splitLexisDT]`, and
#' `[splitMulti]` for splitting the data. `[lexpand]`
#' may be used for simple data sets to do both steps as well as aggregation
#' in the same function call.
#'
#' Here aggregation refers to computing person-years and the appropriate events
#' (state transitions and end points in status) for the subjects in the data.
#' Hence, it computes e.g. deaths (end-point and state transition) and
#' censorings (end-point) as well as events in a multi-state setting
#' (state transitions).
#'
#' The result is a long-format `data.frame` or `data.table`
#' (depending on `options("popEpi.datatable")`; see `?popEpi`)
#' with the columns `pyrs` and the appropriate transitions named as
#' `fromXtoY`, e.g. `from0to0` and `from0to1` depending
#' on the values of `lex.Cst` and `lex.Xst`.
#'
#'
#' **The by argument**
#'
#' The `by` argument determines the length of the table, i.e.
#' the combinations of variables to which data is aggregated.
#' `by` is relatively flexible, as it can be supplied as
#'
#' \itemize{
#' \item{a character string vector, e.g. `c("sex", "area")`,
#' naming variables existing in `lex`}
#' \item{an expression, e.g. `factor(sex, 0:1, c("m", "f"))`
#' using any variable found in `lex`}
#' \item{a list (fully or partially named) of expressions, e.g.
#' `list(gender = factor(sex, 0:1, c("m", "f"), area)`}
#' }
#'
#' Note that expressions effectively allow a variable to be supplied simply as
#' e.g. `by = sex` (as a symbol/name in R lingo).
#'
#' The data is then aggregated to the levels of the given variables
#' or expression(s). Variables defined to be time scales in the supplied
#' `Lexis` are processed in a special way: If any are mentioned in the
#' `by` argument, intervals of them are formed based on the breaks
#' used to split the data: e.g. if `age` was split using the breaks
#' `c(0, 50, Inf)`, mentioning `age` in `by` leads to
#' creating the `age` intervals `[0, 50)` and `[50, Inf)`
#' and aggregating to them. The intervals are identified in the output
#' as the lower bounds of the appropriate intervals.
#'
#' The order of multiple time scales mentioned in `by` matters,
#' as the last mentioned time scale is assumed to be a survival time scale
#' for when computing event counts. E.g. when the data is split by the breaks
#' `list(FUT = 0:5, CAL = c(2008,2010))`, time lines cut short at
#' `CAL = 2010` are considered to be censored, but time lines cut short at
#' `FUT = 5` are not. See Return.
#'
#' **Aggregation types (styles)**
#'
#' It is almost always enough to aggregate the data to variable levels
#' that are actually represented in the data
#' (default `aggre = "unique"`; alias `"non-empty"`).
#' For certain uses it may be useful
#' to have also "empty" levels represented (resulting in some rows in output
#' with zero person-years and events); in these cases supplying
#' `aggre = "full"` (alias `"cartesian"`) causes `aggre`
#' to determine the Cartesian product of all the levels of the supplied
#' `by` variables or expressions and aggregate to them. As an example
#' of a Cartesian product, try
#'
#' `merge(1:2, 1:5)`.
#'
#' @return
#' A long `data.frame` or `data.table` of aggregated person-years
#' (`pyrs`), numbers of subjects at risk (`at.risk`), and events
#' formatted `fromXtoY`, where `X` and `X` are states
#' transitioning from and to or states at the end of each `lex.id`'s
#' follow-up (implying `X` = `Y`). Subjects at risk are computed
#' in the beginning of an interval defined by any Lexis time scales and
#' mentioned in `by`, but events occur at any point within an interval.
#'
#' When the data has been split along multiple time scales, the last
#' time scale mentioned in `by` is considered to be the survival time
#' scale with regard to computing events. Time lines cut short by the
#' extrema of non-survival-time-scales are considered to be censored
#' ("transitions" from the current state to the current state).
#'
#' @seealso `[aggregate]` for a similar base R solution,
#' and `[ltable]` for a `data.table` based aggregator. Neither
#' are directly applicable to split `Lexis` data.
#'
#' @family aggregation functions
#'
#'
#'
#' @examples
#'
#' ## form a Lexis object
#' library(Epi)
#' data(sibr)
#' x <- sibr[1:10,]
#' x[1:5,]$sex <- 0 ## pretend some are male
#' x <- Lexis(data = x,
#' entry = list(AGE = dg_age, CAL = get.yrs(dg_date)),
#' exit = list(CAL = get.yrs(ex_date)),
#' entry.status=0, exit.status = status)
#' x <- splitMulti(x, breaks = list(CAL = seq(1993, 2013, 5),
#' AGE = seq(0, 100, 50)))
#'
#' ## these produce the same results (with differing ways of determining aggre)
#' a1 <- aggre(x, by = list(gender = factor(sex, 0:1, c("m", "f")),
#' agegroup = AGE, period = CAL))
#'
#' a2 <- aggre(x, by = c("sex", "AGE", "CAL"))
#'
#' a3 <- aggre(x, by = list(sex, agegroup = AGE, CAL))
#'
#' ## returning also empty levels
#' a4 <- aggre(x, by = c("sex", "AGE", "CAL"), type = "full")
#'
#' ## computing also expected numbers of cases
#' x <- lexpand(sibr[1:10,], birth = bi_date, entry = dg_date,
#' exit = ex_date, status = status %in% 1:2,
#' pophaz = popmort, fot = 0:5, age = c(0, 50, 100))
#' x$d.exp <- with(x, lex.dur*pop.haz)
#' ## these produce the same result
#' a5 <- aggre(x, by = c("sex", "age", "fot"), sum.values = list(d.exp))
#' a5 <- aggre(x, by = c("sex", "age", "fot"), sum.values = "d.exp")
#' a5 <- aggre(x, by = c("sex", "age", "fot"), sum.values = d.exp)
#' ## same result here with custom name
#' a5 <- aggre(x, by = c("sex", "age", "fot"),
#' sum.values = list(expCases = d.exp))
#'
#' ## computing pohar-perme weighted figures
#' x$d.exp.pp <- with(x, lex.dur*pop.haz*pp)
#' a6 <- aggre(x, by = c("sex", "age", "fot"),
#' sum.values = c("d.exp", "d.exp.pp"))
#' ## or equivalently e.g. sum.values = list(expCases = d.exp, expCases.p = d.exp.pp).
#' @export
aggre <- function(lex, by = NULL, type = c("unique", "full"), sum.values = NULL, subset = NULL, verbose = FALSE) {
allTime <- proc.time()
lex.Cst <- lex.Xst <- lex.id <- at.risk <- NULL ## APPEASE R CMD CHECK
PF <- parent.frame(1L)
TF <- environment()
type <- match.arg(type[1], c("non-empty", "unique", "full", "cartesian"))
if (type == "cartesian") type <- "full"
if (type == "non-empty") type <- "unique"
if (verbose) cat("Aggregation type: '", type, "' \n", sep = "")
checkLexisData(lex)
breaks <- copy(attr(lex, "breaks"))
checkBreaksList(lex, breaks)
allScales <- copy(attr(lex, "time.scales"))
if (length(allScales) == 0 ) {
stop("could not determine names of time scales; ",
"is the data a Lexis object?")
}
## subset --------------------------------------------------------------------
subset <- substitute(subset)
subset <- evalLogicalSubset(lex, subset)
## check sum.values ----------------------------------------------------------
sumSub <- substitute(sum.values)
sum.values <- evalPopArg(lex[1:min(nrow(lex), 20L), ], arg = sumSub,
enclos = PF, recursive = TRUE, DT = TRUE)
sumType <- attr(sum.values, "arg.type")
sumVars <- attr(sum.values, "all.vars")
sumSub <- attr(sum.values, "quoted.arg")
if (is.null(sum.values)) {
sumType <- "NULL"
sumVars <- NULL
sumSub <- quote(list())
}
badSum <- names(sum.values)[!sapply(sum.values, is.numeric)]
if (length(badSum) > 0L) {
badSum <- paste0("'", badSum, "'", collapse = ", ")
stop("Following variables resulting from evaluating supplied sum.values ",
"argument are not numeric and cannot be summed: ", badSum,
". Evaluated sum.values: ", deparse(sumSub))
}
## by argument type -------------------------------------------------------
## NOTE: need to eval by AFTER cutting time scales!
ags <- substitute(by)
if (verbose) cat("Used by argument:", paste0(deparse(ags)),"\n")
## NOTE: with recursive = TRUE, evalPopArg digs deep enough to find
## the actual expression (substituted only once) and returns that and other
## things in attributes. Useful if arg substituted multiple times.
by <- evalPopArg(data = lex[1:min(nrow(lex), 20),],
arg = ags, DT = TRUE, enclos = PF, recursive = TRUE)
ags <- attr(by, "quoted.arg")
av <- attr(by, "all.vars")
argType <- attr(by, "arg.type")
if (is.null(by)) {
ags <- substitute(list())
av <- NULL
argType <- "NULL"
type <- "unique"
}
if (verbose) cat("Type of by argument:", argType, "\n")
## take copy of lex ----------------------------------------------------------
## if lex is a data.table, this function gets really complicated.
## if copy is taken only of necessary vars, it should be fine.
keepVars <- unique(c("lex.id", allScales, "lex.dur",
"lex.Cst", "lex.Xst", av, sumVars))
lex.orig <- lex
lex <- subsetDTorDF(lex, subset = subset, select = keepVars)
lex <- data.table(lex)
forceLexisDT(lex, breaks = breaks, allScales = allScales, key = FALSE)
## ensure no observations outside breaks limits are left in
lex <- intelliDrop(lex, breaks = breaks)
setkeyv(lex, c("lex.id", allScales[1]))
setcolsnull(lex, delete = setdiff(allScales, names(breaks)))
## cut time scales for aggregating if needed ---------------------------------
aggScales <- intersect(av, allScales)
if (any(!aggScales %in% names(breaks))) {
aggScales <- paste0("'", setdiff(aggScales, names(breaks)), "'", collapse = ", ")
stop("Requested aggregating by time scale(s) by which data ",
"has not been split: ", aggScales)
}
## before cutting, find out which rows count towards "at.risk" figure:
## of all scales in aggScales, the last one (or the only one) is assumed
## to be the survival time scale.
tmpAtRisk <- makeTempVarName(lex, pre = "at.risk_")
set(lex, j = tmpAtRisk, value = TRUE)
survScale <- NULL
if (length(aggScales) > 0) {
cutTime <- proc.time()
## "at.risk" counts subjects at risk in the beginning of the survival
## time scale interval.
survScale <- aggScales[length(aggScales)]
lex[, c(tmpAtRisk) := lex[[survScale]] %in% breaks[[survScale]] ]
catAggScales <- paste0("'", aggScales, "'", collapse = ", ")
if (verbose) {
cat("Following time scales mentioned in by argument and will be",
"categorized into intervals (defined by breaks in object",
"attributes) for aggregation:", catAggScales, "\n")
}
## NEW METHOD: use a copy of lex and just modify in place.
for (sc in aggScales) {
set(lex, j = sc, value = cutLow(lex[[sc]], breaks = breaks[[sc]]))
}
if (verbose) cat("Time taken by cut()'ting time scales: ", timetaken(cutTime), "\n")
}
othVars <- setdiff(av, aggScales)
if (verbose && length(othVars) > 0) {
catOthVars <- paste0("'", othVars, "'", collapse = ", ")
cat("Detected the following non-time-scale variables to be utilized in aggregating:", catOthVars, "\n")
}
## eval by -------------------------------------------------------------------
## NOTE: needed to eval by AFTER cutting time scales!
by <- evalPopArg(data = lex, arg = ags, DT = TRUE, enclos = PF, recursive = TRUE)
byNames <- names(by)
## computing pyrs ------------------------------------------------------------
## final step in determining at.risk:
## a lex.id is at.risk only once per by-level
pyrsTime <- proc.time()
vdt <- data.table(pyrs = lex$lex.dur, at.risk = lex[[tmpAtRisk]],
lex.id = lex$lex.id)
pyrs <- vdt[, .(pyrs = sum(pyrs),
at.risk = sum(!duplicated(lex.id) & at.risk)),
keyby = by]
setDT(pyrs)
rm(vdt)
sumNames <- NULL
if (sumType != "NULL") {
if (sumType == "character") {
sumNames <- evalPopArg(lex, sumSub, n = 1L, DT = FALSE, recursive = TRUE, enclos = PF)
sum.values <- lex[, lapply(.SD, sum), keyby = by, .SDcols = c(sumNames)]
} else {
sum.values <- evalPopArg(lex, sumSub, n = 1L, enclos = PF)
sumNames <- names(sum.values)
sumTmpNames <- makeTempVarName(lex, pre = sumNames)
set(lex, j = sumTmpNames, value = sum.values)
sum.values <- lex[, lapply(.SD, sum), keyby = by, .SDcols = sumTmpNames]
setnames(sum.values, sumTmpNames, sumNames)
setcolsnull(lex, sumTmpNames)
}
setDT(sum.values)
pyrs <- merge(pyrs, sum.values, all = TRUE)
rm(sum.values)
}
if (verbose) cat("Time taken by aggregating pyrs: ", timetaken(pyrsTime), "\n")
valVars <- setdiff(names(pyrs), byNames) ## includes pyrs and anything created by sum
pyrs[is.na(pyrs), pyrs := 0]
pyrs <- pyrs[pyrs > 0]
aggPyrs <- pyrs[, sum(pyrs)]
lexPyrs <- sum(lex.orig$lex.dur[subset])
pyrsDiff <- aggPyrs - lexPyrs
if (!isTRUE(all.equal(aggPyrs, lexPyrs, scale = NULL))) {
warning("Found discrepancy of ", abs(round(pyrsDiff, 4)), " ",
"in total aggregated pyrs compared to ",
"sum(lex$lex.dur); compare results by hand and make sure ",
"settings are right \n")
}
rm(subset, aggPyrs, lexPyrs)
## cartesian output ----------------------------------------------------------
if (type == "full") {
carTime <- proc.time()
varsUsingScales <- NULL
## which variables used one time scale? and which one?
## will only be used in cartesian stuff.
if (argType == "character") {
varsUsingScales <- intersect(names(by), aggScales)
whScaleUsed <- varsUsingScales
} else if (argType != "NULL") {
## note: ags a substitute()'d list at this point always if not char
whScaleUsed <- lapply(ags[-1], function(x) intersect(all.vars(x), aggScales))
## only one time scale should be used in a variable!
oneScaleTest <- any(sapply(whScaleUsed, function(x) length(x) > 1L))
if (oneScaleTest) stop("Only one Lexis time scale can be used in any one variable in by argument!")
varsUsingScales <- byNames[sapply(whScaleUsed, function (x) length(x) == 1L)]
whScaleUsed <- unlist(whScaleUsed)
}
ceejay <- lapply(by, function(x) if (is.factor(x)) levels(x) else sort(unique(x)))
if (length(aggScales) > 0) {
## which variables in ceejay used the Lexis time scales from lex?
ceejay[varsUsingScales] <- lapply(breaks[whScaleUsed], function(x) x[-length(x)])
}
ceejay <- do.call(CJ, ceejay)
setkeyv(ceejay, byNames)
setkeyv(pyrs, byNames)
pyrs <- pyrs[ceejay]
rm(ceejay)
if (verbose) cat("Time taken by making aggregated data large in the cartesian product sense: ", timetaken(carTime), "\n")
}
## computing events ----------------------------------------------------------
transTime <- proc.time()
if (is.null(by) || (is.data.table(by) && nrow(by) == 0L)) {
by <- quote(list(lex.Cst, lex.Xst))
} else {
for (var in c("lex.Cst", "lex.Xst")) {
set(by, j = var, value = lex[[var]])
}
}
## NOTE: this will ensure correct detection of censorings:
## observations cut short by e.g. period window's edge
## will be considered a censoring if the breaks along that time scale
## are not passed to detectEvents (assuming the survival time scale is
## used in by). If no time scale mentioned in by, then all endings
## of observations are either censorings or events.
detBr <- breaks[survScale]
if (!length(survScale)) detBr <- NULL
hasEvent <- detectEvents(lex, breaks = detBr, by = "lex.id") %in% 1:2
## is language if user supplied by = NULL
if (!is.language(by)) by <- by[hasEvent]
trans <- lex[hasEvent, list(obs = .N), keyby = by]
rm(by, lex)
if (verbose) cat("Time taken by aggregating events: ", timetaken(transTime), "\n")
## casting & merging ---------------------------------------------------------
mergeTime <- proc.time()
setDT(trans)
setDT(pyrs)
## tmpTr to be used in casting
tmpTr <- makeTempVarName(trans, pre = "trans_")
trans[, c(tmpTr) := paste0("from", lex.Cst, "to", lex.Xst)]
transitions <- sort(unique(trans[[tmpTr]]))
trans[, c("lex.Cst", "lex.Xst") := NULL]
## note: need tmpDum if by = NULL for correct casting & merging
tmpDum <- makeTempVarName(trans)
byNames <- c(byNames, tmpDum)
byNames <- setdiff(byNames, c("lex.Cst", "lex.Xst"))
trans[, c(tmpDum) := 1L]
pyrs[, c(tmpDum) := 1L]
valVars <- unique(c(valVars, transitions))
trans <- cast_simple(trans, rows = byNames, columns = tmpTr, values = "obs")
setkeyv(trans, NULL); setkeyv(pyrs, NULL) ## dcast.data.table seems to keep key but row order may be funky; this avoids a warning
setkeyv(trans, byNames); setkeyv(pyrs, byNames)
trans <- trans[pyrs]; rm(pyrs)
trans[, c(tmpDum) := NULL]
byNames <- setdiff(byNames, tmpDum)
setcolorder(trans, c(byNames, valVars))
if (verbose) cat("Time taken by merging pyrs & transitions: ", timetaken(mergeTime), "\n")
if (length(valVars) > 0L) {
trans[, c(valVars) := lapply(.SD, function(x) {
x[is.na(x)] <- 0
x
}), .SDcols = c(valVars)]
}
## final touch ---------------------------------------------------------------
trans <- data.table(trans)
setaggre(trans, values = c("pyrs", "at.risk", transitions, sumNames),
by = byNames, breaks = breaks)
if (!return_DT()) setDFpe(trans)
if (verbose) cat("Time taken by aggre(): ", timetaken(allTime), "\n")
trans[]
}
|