File: aggregating.R

package info (click to toggle)
r-cran-popepi 0.4.13%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,656 kB
  • sloc: sh: 13; makefile: 2
file content (622 lines) | stat: -rw-r--r-- 24,309 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

#' @title Set `aggre` attributes to an object by modifying in place
#' @author Joonas Miettinen
#' @description Coerces an R object to an `aggre` object, identifying
#' the object as one containing aggregated counts, person-years and other
#' information. `setaggre` modifies in place without taking any copies.
#' Retains all other attributes.
#' @param x a `data.frame` or `data.table`
#' @param values a character string vector; the names of value variables
#' @param by a character string vector; the names of variables by which
#' `values` have been tabulated
#' @param breaks a list of breaks, where each element is a breaks vector
#' as usually passed to e.g. `[splitLexisDT]`. The list must be
#' fully named, with the names corresponding to time scales at the aggregate
#' level in your data. Every unique value in a time scale variable in data must
#' also exist in the corresponding vector in the breaks list.
#' @details
#'
#' `setaggre` sets `x` to the `aggre` class in place
#' without taking a copy as e.g. `as.data.frame.XXX` functions do; see e.g.
#' `[data.table::setDT]`.
#'
#' @family aggregation functions
#' @return
#' Returns `x` invisibly after setting attributes to it without taking a copy.
#' This function is called for its side effects.
#' @export setaggre
#' @examples
#' df <- data.frame(sex = rep(c("male", "female"), each = 5),
#'                  obs = rpois(10, rep(7,5, each=5)),
#'                  pyrs = rpois(10, lambda = 10000))
#' ## without any breaks
#' setaggre(df, values = c("obs", "pyrs"), by = "sex")
#' df <- data.frame(df)
#' df$FUT <- 0:4
#' ## with breaks list
#' setaggre(df, values = c("obs", "pyrs"), by = "sex", breaks = list(FUT = 0:5))
setaggre <- function(x, values = NULL, by = NULL, breaks = NULL) {
  ## input: aggregated data in data.frame or data.table format
  ## intention: any user can define their data as an aggregated data set
  ## which will be usable by survtab / sir / other
  ## output: no need to do x <- setaggre(x); instead modifies attributes in place;
  ## sets "aggre.meta" attribute, a list of names of various variables.
  ## survtab for aggregated data will need this attribute to work.
  all_names_present(x, c(values, by))

  if (!length(by) && length(values)) by <- setdiff(names(x), values)
  if (length(by) && !length(values)) values <- setdiff(names(x), by)

  if (!inherits(x, "aggre")) {
    cl <- class(x)
    wh <- which(cl %in% c("data.table", "data.frame"))
    wh <- min(wh)

    ## yes, from zero: in case only one class
    cl <- c(cl[0:(wh-1)], "aggre", cl[wh:length(cl)])
    setattr(x, "class", cl)
  }


  setattr(x, "aggre.meta", list(values = values, by = by, breaks = breaks))
  setattr(x, "breaks", breaks)
  invisible(x)
}

#' @title Coercion to Class `aggre`
#' @author Joonas Miettinen
#' @description Coerces an R object to an `aggre` object, identifying
#' the object as one containing aggregated counts, person-years and other
#' information.
#' @inheritParams setaggre
#' @param ... arguments passed to or from methods
#' @family aggregation functions
#'
#'
#' @examples
#' library("data.table")
#' df <- data.frame(sex = rep(c("male", "female"), each = 5),
#'                  obs = rpois(10, rep(7,5, each=5)),
#'                  pyrs = rpois(10, lambda = 10000))
#' dt <- as.data.table(df)
#'
#' df <- as.aggre(df, values = c("pyrs", "obs"), by = "sex")
#' dt <- as.aggre(dt, values = c("pyrs", "obs"), by = "sex")
#'
#' class(df)
#' class(dt)
#'
#' BL <- list(fot = 0:5)
#' df <- data.frame(df)
#' df <- as.aggre(df, values = c("pyrs", "obs"), by = "sex", breaks = BL)
#'
#' @return
#' Returns a copy of `x` with attributes set to those of an object of class
#' `"aggre"`.
#' @export
as.aggre <- function(x, values = NULL, by = NULL, breaks = NULL, ...) {
  UseMethod("as.aggre", x)
}

#' @describeIn as.aggre Coerces a `data.frame` to an `aggre` object
#' @export
as.aggre.data.frame <- function(x, values = NULL, by = NULL, breaks = NULL, ...) {
  x <- copy(x)
  setaggre(x, values = values, by = by, breaks = breaks, ...)
  setattr(x, "class", c("aggre", "data.frame"))
  x[]
}

#' @describeIn as.aggre Coerces a `data.table` to an `aggre` object
#' @export
as.aggre.data.table <- function(x, values = NULL, by = NULL, breaks = NULL, ...) {
  x <- copy(x)
  setaggre(x, values = values, by = by, breaks = breaks, ...)
  setattr(x, "class", c("aggre", "data.table", "data.frame"))
  x[]
}

#' @describeIn as.aggre Default method for `as.aggre` (stops computations
#' if no class-specific method found)
#' @export
as.aggre.default <- function(x, ...) {
  stop(gettextf("cannot coerce class \"%s\" to 'aggre'", deparse(class(x))),
       domain = NA)
}



#' @title Aggregation of split `Lexis` data
#' @author Joonas Miettinen
#' @description Aggregates a split `Lexis` object by given variables
#' and / or expressions into a long-format table of person-years and
#' transitions / end-points. Automatic aggregation over time scales
#' by which data has been split if the respective time scales are mentioned
#' in the aggregation argument to e.g. intervals of calendar time, follow-up time
#' and/or age.
#' @param lex a `Lexis` object split with e.g.
#' `[Epi::splitLexis]` or `[splitMulti]`
#' @param by variables to tabulate (aggregate) by.
#' [Flexible input][flexible_argument], typically e.g.
#' `by = c("V1", "V2")`. See Details and Examples.
#' @param type determines output levels to which data is aggregated varying
#' from returning only rows with `pyrs > 0` (`"unique"`) to
#' returning all possible combinations of variables given in `aggre` even
#' if those combinations are not represented in data (`"full"`);
#' see Details
#' @param sum.values optional: additional variables to sum by argument
#'  `by`. [Flexible input][flexible_argument], typically e.g.
#' `sum.values = c("V1", "V2")`
#' @param subset a logical condition to subset by before computations;
#' e.g. `subset = area %in% c("A", "B")`
#' @param verbose `logical`; if `TRUE`, the function returns timings
#' and some information useful for debugging along the aggregation process
#' @details
#'
#' **Basics**
#'
#' `aggre` is intended for aggregation of split `Lexis` data only.
#' See `[Epi::Lexis]` for forming `Lexis` objects by hand
#' and e.g. `[Epi::splitLexis]`, `[splitLexisDT]`, and
#' `[splitMulti]` for splitting the data. `[lexpand]`
#' may be used for simple data sets to do both steps as well as aggregation
#' in the same function call.
#'
#' Here aggregation refers to computing person-years and the appropriate events
#' (state transitions and end points in status) for the subjects in the data.
#' Hence, it computes e.g. deaths (end-point and state transition) and
#' censorings (end-point) as well as events in a multi-state setting
#' (state transitions).
#'
#' The result is a long-format `data.frame` or `data.table`
#' (depending on `options("popEpi.datatable")`; see `?popEpi`)
#' with the columns `pyrs` and the appropriate transitions named as
#' `fromXtoY`, e.g. `from0to0` and `from0to1` depending
#' on the values of `lex.Cst` and `lex.Xst`.
#'
#'
#' **The by argument**
#'
#' The `by` argument determines the length of the table, i.e.
#' the combinations of variables to which data is aggregated.
#' `by` is relatively flexible, as it can be supplied as
#'
#' \itemize{
#'  \item{a character string vector, e.g. `c("sex", "area")`,
#'  naming variables existing in `lex`}
#'  \item{an expression, e.g. `factor(sex, 0:1, c("m", "f"))`
#'  using any variable found in `lex`}
#'  \item{a list (fully or partially named) of expressions, e.g.
#'  `list(gender = factor(sex, 0:1, c("m", "f"), area)`}
#' }
#'
#' Note that expressions effectively allow a variable to be supplied simply as
#' e.g. `by = sex` (as a symbol/name in R lingo).
#'
#' The data is then aggregated to the levels of the given variables
#' or expression(s). Variables defined to be time scales in the supplied
#' `Lexis` are processed in a special way: If any are mentioned in the
#' `by` argument, intervals of them are formed based on the breaks
#' used to split the data: e.g. if `age` was split using the breaks
#' `c(0, 50, Inf)`, mentioning `age` in `by` leads to
#' creating the `age` intervals `[0, 50)` and `[50, Inf)`
#' and aggregating to them. The intervals are identified in the output
#' as the lower bounds of the appropriate intervals.
#'
#' The order of multiple time scales mentioned in `by` matters,
#' as the last mentioned time scale is assumed to be a survival time scale
#' for when computing event counts. E.g. when the data is split by the breaks
#' `list(FUT = 0:5, CAL = c(2008,2010))`, time lines cut short at
#' `CAL = 2010` are considered to be censored, but time lines cut short at
#' `FUT = 5` are not. See Return.
#'
#' **Aggregation types (styles)**
#'
#' It is almost always enough to aggregate the data to variable levels
#' that are actually represented in the data
#' (default `aggre = "unique"`; alias `"non-empty"`).
#' For certain uses it may be useful
#' to have also "empty" levels represented (resulting in some rows in output
#' with zero person-years and events); in these cases supplying
#' `aggre = "full"` (alias `"cartesian"`) causes `aggre`
#' to determine the Cartesian product of all the levels of the supplied
#' `by` variables or expressions and aggregate to them. As an example
#' of a Cartesian product, try
#'
#' `merge(1:2, 1:5)`.
#'
#' @return
#' A long `data.frame` or `data.table` of aggregated person-years
#' (`pyrs`), numbers of subjects at risk (`at.risk`), and events
#' formatted `fromXtoY`, where `X` and `X` are states
#' transitioning from and to or states at the end of each `lex.id`'s
#' follow-up (implying `X` = `Y`). Subjects at risk are computed
#' in the beginning of an interval defined by any Lexis time scales and
#' mentioned in `by`, but events occur at any point within an interval.
#'
#' When the data has been split along multiple time scales, the last
#' time scale mentioned in `by` is considered to be the survival time
#' scale with regard to computing events. Time lines cut short by the
#' extrema of non-survival-time-scales are considered to be censored
#' ("transitions" from the current state to the current state).
#'
#' @seealso `[aggregate]` for a similar base R solution,
#' and `[ltable]` for a `data.table` based aggregator. Neither
#' are directly applicable to split `Lexis` data.
#'
#' @family aggregation functions
#'
#'
#'
#' @examples
#'
#' ## form a Lexis object
#' library(Epi)
#' data(sibr)
#' x <- sibr[1:10,]
#' x[1:5,]$sex <- 0 ## pretend some are male
#' x <- Lexis(data = x,
#'            entry = list(AGE = dg_age, CAL = get.yrs(dg_date)),
#'            exit = list(CAL = get.yrs(ex_date)),
#'            entry.status=0, exit.status = status)
#' x <- splitMulti(x, breaks = list(CAL = seq(1993, 2013, 5),
#'                                  AGE = seq(0, 100, 50)))
#'
#' ## these produce the same results (with differing ways of determining aggre)
#' a1 <- aggre(x, by = list(gender = factor(sex, 0:1, c("m", "f")),
#'              agegroup = AGE, period = CAL))
#'
#' a2 <- aggre(x, by = c("sex", "AGE", "CAL"))
#'
#' a3 <- aggre(x, by = list(sex, agegroup = AGE, CAL))
#'
#' ## returning also empty levels
#' a4 <- aggre(x, by = c("sex", "AGE", "CAL"), type = "full")
#'
#' ## computing also expected numbers of cases
#' x <- lexpand(sibr[1:10,], birth = bi_date, entry = dg_date,
#'              exit = ex_date, status = status %in% 1:2,
#'              pophaz = popmort, fot = 0:5, age = c(0, 50, 100))
#' x$d.exp <- with(x, lex.dur*pop.haz)
#' ## these produce the same result
#' a5 <- aggre(x, by = c("sex", "age", "fot"), sum.values = list(d.exp))
#' a5 <- aggre(x, by = c("sex", "age", "fot"), sum.values = "d.exp")
#' a5 <- aggre(x, by = c("sex", "age", "fot"), sum.values = d.exp)
#' ## same result here with custom name
#' a5 <- aggre(x, by = c("sex", "age", "fot"),
#'              sum.values = list(expCases = d.exp))
#'
#' ## computing pohar-perme weighted figures
#' x$d.exp.pp <- with(x, lex.dur*pop.haz*pp)
#' a6 <- aggre(x, by = c("sex", "age", "fot"),
#'              sum.values = c("d.exp", "d.exp.pp"))
#' ## or equivalently e.g. sum.values = list(expCases = d.exp, expCases.p = d.exp.pp).
#' @export
aggre <- function(lex, by = NULL, type = c("unique", "full"), sum.values = NULL, subset = NULL, verbose = FALSE) {

  allTime <- proc.time()

  lex.Cst <- lex.Xst <- lex.id <- at.risk <- NULL ## APPEASE R CMD CHECK

  PF <- parent.frame(1L)
  TF <- environment()

  type <- match.arg(type[1], c("non-empty", "unique", "full", "cartesian"))
  if (type == "cartesian") type <- "full"
  if (type == "non-empty") type <- "unique"

  if (verbose) cat("Aggregation type: '", type, "' \n", sep = "")

  checkLexisData(lex)

  breaks <- copy(attr(lex, "breaks"))
  checkBreaksList(lex, breaks)

  allScales <- copy(attr(lex, "time.scales"))
  if (length(allScales) == 0 ) {
    stop("could not determine names of time scales; ",
         "is the data a Lexis object?")
  }

  ## subset --------------------------------------------------------------------
  subset <- substitute(subset)
  subset <- evalLogicalSubset(lex, subset)

  ## check sum.values ----------------------------------------------------------
  sumSub <- substitute(sum.values)
  sum.values <- evalPopArg(lex[1:min(nrow(lex), 20L), ], arg = sumSub,
                     enclos = PF, recursive = TRUE, DT = TRUE)
  sumType <- attr(sum.values, "arg.type")
  sumVars <- attr(sum.values, "all.vars")
  sumSub <- attr(sum.values, "quoted.arg")
  if (is.null(sum.values)) {
    sumType <- "NULL"
    sumVars <- NULL
    sumSub <- quote(list())
  }
  badSum <- names(sum.values)[!sapply(sum.values, is.numeric)]
  if (length(badSum) > 0L) {
    badSum <- paste0("'", badSum, "'", collapse = ", ")
    stop("Following variables resulting from evaluating supplied sum.values ",
         "argument are not numeric and cannot be summed: ", badSum,
         ". Evaluated sum.values: ", deparse(sumSub))
  }


  ## by argument type -------------------------------------------------------
  ## NOTE: need to eval by AFTER cutting time scales!

  ags <- substitute(by)
  if (verbose) cat("Used by argument:", paste0(deparse(ags)),"\n")

  ## NOTE: with recursive = TRUE, evalPopArg digs deep enough to find
  ## the actual expression (substituted only once) and returns that and other
  ## things in attributes. Useful if arg substituted multiple times.
  by <- evalPopArg(data = lex[1:min(nrow(lex), 20),],
                      arg = ags, DT = TRUE, enclos = PF, recursive = TRUE)
  ags <- attr(by, "quoted.arg")
  av <- attr(by, "all.vars")
  argType <- attr(by, "arg.type")

  if (is.null(by)) {
    ags <- substitute(list())
    av <- NULL
    argType <- "NULL"
    type <- "unique"
  }
  if (verbose) cat("Type of by argument:", argType, "\n")

  ## take copy of lex ----------------------------------------------------------
  ## if lex is a data.table, this function gets really complicated.
  ## if copy is taken only of necessary vars, it should be fine.
  keepVars <- unique(c("lex.id", allScales, "lex.dur",
                       "lex.Cst", "lex.Xst", av, sumVars))
  lex.orig <- lex
  lex <- subsetDTorDF(lex, subset = subset, select = keepVars)
  lex <- data.table(lex)
  forceLexisDT(lex, breaks = breaks, allScales = allScales, key = FALSE)


  ## ensure no observations outside breaks limits are left in
  lex <- intelliDrop(lex, breaks = breaks)

  setkeyv(lex, c("lex.id", allScales[1]))
  setcolsnull(lex, delete = setdiff(allScales, names(breaks)))


  ## cut time scales for aggregating if needed ---------------------------------
  aggScales <- intersect(av, allScales)
  if (any(!aggScales %in% names(breaks))) {
    aggScales <- paste0("'", setdiff(aggScales, names(breaks)), "'", collapse = ", ")
    stop("Requested aggregating by time scale(s) by which data ",
         "has not been split: ", aggScales)
  }

  ## before cutting, find out which rows count towards "at.risk" figure:
  ## of all scales in aggScales, the last one (or the only one) is assumed
  ## to be the survival time scale.
  tmpAtRisk <- makeTempVarName(lex, pre = "at.risk_")
  set(lex, j = tmpAtRisk, value = TRUE)
  survScale <- NULL


  if (length(aggScales) > 0) {
    cutTime <- proc.time()
    ## "at.risk" counts subjects at risk in the beginning of the survival
    ## time scale interval.
    survScale <- aggScales[length(aggScales)]
    lex[, c(tmpAtRisk) := lex[[survScale]] %in% breaks[[survScale]] ]
    catAggScales <- paste0("'", aggScales, "'", collapse = ", ")
    if (verbose) {
      cat("Following time scales mentioned in by argument and will be",
          "categorized into intervals (defined by breaks in object",
          "attributes) for aggregation:", catAggScales, "\n")
    }

    ## NEW METHOD: use a copy of lex and just modify in place.

    for (sc in aggScales) {
      set(lex, j = sc, value = cutLow(lex[[sc]], breaks = breaks[[sc]]))
    }

    if (verbose) cat("Time taken by cut()'ting time scales: ", timetaken(cutTime), "\n")
  }

  othVars <- setdiff(av, aggScales)
  if (verbose && length(othVars) > 0) {
    catOthVars <- paste0("'", othVars, "'", collapse = ", ")
    cat("Detected the following non-time-scale variables to be utilized in aggregating:", catOthVars, "\n")
  }

  ## eval by -------------------------------------------------------------------
  ## NOTE: needed to eval by AFTER cutting time scales!
  by <- evalPopArg(data = lex, arg = ags, DT = TRUE, enclos = PF, recursive = TRUE)
  byNames <- names(by)

  ## computing pyrs ------------------------------------------------------------
  ## final step in determining at.risk:
  ## a lex.id is at.risk only once per by-level
  pyrsTime <- proc.time()
  vdt <- data.table(pyrs = lex$lex.dur, at.risk = lex[[tmpAtRisk]],
                    lex.id = lex$lex.id)
  pyrs <- vdt[, .(pyrs = sum(pyrs),
                  at.risk = sum(!duplicated(lex.id) & at.risk)),
              keyby = by]
  setDT(pyrs)

  rm(vdt)
  sumNames <- NULL
  if (sumType != "NULL") {
    if (sumType == "character") {
      sumNames <- evalPopArg(lex, sumSub, n = 1L, DT = FALSE, recursive = TRUE, enclos = PF)
      sum.values <- lex[, lapply(.SD, sum), keyby = by, .SDcols = c(sumNames)]
    } else {
      sum.values <- evalPopArg(lex, sumSub, n = 1L, enclos = PF)
      sumNames <- names(sum.values)
      sumTmpNames <- makeTempVarName(lex, pre = sumNames)
      set(lex, j = sumTmpNames, value = sum.values)
      sum.values <- lex[, lapply(.SD, sum), keyby = by, .SDcols = sumTmpNames]
      setnames(sum.values, sumTmpNames, sumNames)
      setcolsnull(lex, sumTmpNames)
    }

    setDT(sum.values)
    pyrs <- merge(pyrs, sum.values, all = TRUE)
    rm(sum.values)
  }


  if (verbose) cat("Time taken by aggregating pyrs: ", timetaken(pyrsTime), "\n")

  valVars <- setdiff(names(pyrs), byNames) ## includes pyrs and anything created by sum

  pyrs[is.na(pyrs), pyrs := 0]
  pyrs <- pyrs[pyrs > 0]

  aggPyrs <- pyrs[, sum(pyrs)]
  lexPyrs <- sum(lex.orig$lex.dur[subset])
  pyrsDiff <- aggPyrs - lexPyrs
  if (!isTRUE(all.equal(aggPyrs, lexPyrs, scale = NULL))) {
    warning("Found discrepancy of ", abs(round(pyrsDiff, 4)), " ",
            "in total aggregated pyrs compared to ",
            "sum(lex$lex.dur); compare results by hand and make sure ",
            "settings are right \n")
  }
  rm(subset, aggPyrs, lexPyrs)

  ## cartesian output ----------------------------------------------------------
  if (type == "full") {
    carTime <- proc.time()

    varsUsingScales <- NULL

    ## which variables used one time scale? and which one?
    ## will only be used in cartesian stuff.
    if (argType == "character") {
      varsUsingScales <- intersect(names(by), aggScales)
      whScaleUsed <- varsUsingScales
    } else if (argType != "NULL") {
      ## note: ags a substitute()'d list at this point always if not char
      whScaleUsed <- lapply(ags[-1], function(x) intersect(all.vars(x), aggScales))
      ## only one time scale should be used in a variable!
      oneScaleTest <- any(sapply(whScaleUsed, function(x) length(x) > 1L))
      if (oneScaleTest) stop("Only one Lexis time scale can be used in any one variable in by argument!")
      varsUsingScales <- byNames[sapply(whScaleUsed, function (x) length(x) == 1L)]
      whScaleUsed <- unlist(whScaleUsed)
    }

    ceejay <- lapply(by, function(x) if (is.factor(x)) levels(x) else sort(unique(x)))
    if (length(aggScales) > 0) {
      ## which variables in ceejay used the Lexis time scales from lex?
      ceejay[varsUsingScales] <- lapply(breaks[whScaleUsed], function(x) x[-length(x)])
    }

    ceejay <- do.call(CJ, ceejay)
    setkeyv(ceejay, byNames)
    setkeyv(pyrs, byNames)

    pyrs <- pyrs[ceejay]
    rm(ceejay)

    if (verbose) cat("Time taken by making aggregated data large in the cartesian product sense: ", timetaken(carTime), "\n")
  }


  ## computing events ----------------------------------------------------------

  transTime <- proc.time()

  if (is.null(by) || (is.data.table(by) && nrow(by) == 0L)) {

    by <- quote(list(lex.Cst, lex.Xst))

  } else {
    for (var in c("lex.Cst", "lex.Xst")) {
      set(by, j = var, value = lex[[var]])
    }
  }


  ## NOTE: this will ensure correct detection of censorings:
  ## observations cut short by e.g. period window's edge
  ## will be considered a censoring if the breaks along that time scale
  ## are not passed to detectEvents (assuming the survival time scale is
  ## used in by). If no time scale mentioned in by, then all endings
  ## of observations are either censorings or events.
  detBr <- breaks[survScale]
  if (!length(survScale)) detBr <- NULL
  hasEvent <- detectEvents(lex, breaks = detBr, by = "lex.id") %in% 1:2
  ## is language if user supplied by = NULL
  if (!is.language(by)) by <- by[hasEvent]

  trans <- lex[hasEvent, list(obs = .N), keyby = by]

  rm(by, lex)


  if (verbose) cat("Time taken by aggregating events: ", timetaken(transTime), "\n")

  ## casting & merging ---------------------------------------------------------

  mergeTime <- proc.time()
  setDT(trans)
  setDT(pyrs)

  ## tmpTr to be used in casting
  tmpTr <- makeTempVarName(trans, pre = "trans_")
  trans[, c(tmpTr) := paste0("from", lex.Cst, "to", lex.Xst)]
  transitions <- sort(unique(trans[[tmpTr]]))
  trans[, c("lex.Cst", "lex.Xst") := NULL]

  ## note: need tmpDum if by = NULL for correct casting & merging
  tmpDum <- makeTempVarName(trans)
  byNames <- c(byNames, tmpDum)
  byNames <- setdiff(byNames, c("lex.Cst", "lex.Xst"))
  trans[, c(tmpDum) := 1L]
  pyrs[, c(tmpDum) := 1L]

  valVars <- unique(c(valVars, transitions))

  trans <- cast_simple(trans, rows = byNames, columns = tmpTr, values = "obs")

  setkeyv(trans, NULL); setkeyv(pyrs, NULL) ## dcast.data.table seems to keep key but row order may be funky; this avoids a warning
  setkeyv(trans, byNames); setkeyv(pyrs, byNames)
  trans <- trans[pyrs]; rm(pyrs)

  trans[, c(tmpDum) := NULL]
  byNames <- setdiff(byNames, tmpDum)
  setcolorder(trans, c(byNames, valVars))

  if (verbose) cat("Time taken by merging pyrs & transitions: ", timetaken(mergeTime), "\n")

  if (length(valVars) > 0L) {
    trans[, c(valVars) := lapply(.SD, function(x) {
      x[is.na(x)] <- 0
      x
    }), .SDcols = c(valVars)]
  }


  ## final touch ---------------------------------------------------------------
  trans <- data.table(trans)
  setaggre(trans, values = c("pyrs", "at.risk", transitions, sumNames),
           by = byNames, breaks = breaks)
  if (!return_DT()) setDFpe(trans)
  if (verbose) cat("Time taken by aggre(): ", timetaken(allTime), "\n")



  trans[]
}