1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
#' @title Direct-Standardised Incidence/Mortality Rates
#' @author Matti Rantanen, Joonas Miettinen
#'
#' @description `rate` calculates adjusted rates using
#' preloaded weights data or user specified weights.
#'
#' @param data aggregated data (see e.g. `[lexpand]`,
#' `[aggre]` if you have subject-level data)
#' @param pyrs person-years variable name in data.
#' [Flexible input][flexible_argument], typically e.g.
#' `pyrs = pyrs`.
#' @param obs observations variable name in data.
#' [Flexible input][flexible_argument], typically e.g.
#' `obs = obs`.
#' @param adjust variable for adjusting the rates.
#' [Flexible input][flexible_argument], typically e.g.
#' `adjust = agegroup`.
#' @param print variable name to stratify the rates.
#' [Flexible input][flexible_argument], typically e.g.
#' `print = sex` or `print = list(sex, area)`.
#' @param weights typically a list of weights or a `character` string
#' specifying an age group standardization scheme; see
#' the [dedicated help page][direct_standardization]
#' and examples.
#'
#' @param subset a logical expression to subset data.
#'
#' @details Input data needs to be in aggregated format with observations
#' and person-years. For individual data use `[lexpand]`, or
#' `[ltable]` and merge person-years manually.
#'
#' The confidence intervals are based on the normal approximation of the logarithm of the rate.
#' The variance of the log rate that is used to derive the confidence intervals
#' is derived using the delta method.
#'
#' @return Returns a `data.table` with observations, person-years, rates and
#' adjusted rates, if available. Results are stratified by `print`.
#' Adjusted rates are identified with suffix `.adj` and
#' `.lo` and `.hi` are for confidence intervals lower and upper
#' 95% bounds, respectively.
#' The prefix `SE.` stands for standard error.
#'
#' @seealso `[lexpand]`, `[ltable]`
#'
#' @examples
#' ## Prepare data with lexpand and then reformat agegroup.
#' data(sibr)
#' x <- lexpand(sibr, birth = bi_date, entry = dg_date, exit = ex_date,
#' breaks = list(per = c(1990,2000,2010,2020), age = c(0:17*5,Inf)),
#' aggre = list(agegroup = age, year.cat = per),
#' status = status != 0)
#'
#' x$agegroup <- cut(x$agegroup, c(0:17*5,Inf), right = FALSE)
#'
#' ## calculate rates for selected periods with Nordic 2000 weights:
#' r1 <- rate( data = x, obs = from0to1, pyrs = pyrs, print = year.cat,
#' adjust = agegroup, weights = 'nordic')
#' r1
#'
#' ## use total person-years by stratum as weights (some have zero)
#' w <- ltable(x, by.vars = "agegroup", expr = sum(pyrs))
#' w[is.na(w$V1),]$V1 <- 0
#'
#' r2 <- rate( data = x, obs = from0to1, pyrs = pyrs, print = year.cat,
#' adjust = agegroup,
#' weights = w$V1)
#' r2
#'
#' ## use data.frame of weights:
#' names(w) <- c("agegroup", "weights")
#' r2 <- rate( data = x, obs = from0to1, pyrs = pyrs, print = year.cat,
#' adjust = agegroup,
#' weights = w)
#' r2
#'
#' ## internal weights (same result as above)
#' r3 <- rate( data = x, obs = from0to1, pyrs = pyrs, print = year.cat,
#' adjust = agegroup,
#' weights = "internal")
#' r3
#'
#' @import data.table
#' @export
#' @family main functions
#' @family rate functions
rate <- function( data,
obs = NULL,
pyrs = NULL,
print = NULL,
adjust = NULL,
weights = NULL,
subset = NULL
) {
PF <- parent.frame(1L)
TF <- environment()
## subsetting -----------------------------------------------------------
subset <- substitute(subset)
subset <- evalLogicalSubset(data = data, substiset = subset, enclos = PF)
data <- data[subset,]
setDT(data)
# evalPopArg
obs <- substitute(obs)
inc.obs <- evalPopArg(data = data, arg = obs, enclos = PF)
if (!length(inc.obs)) {
stop("No observations given.")
}
obsNames <- copy(names(inc.obs))
tmpObsNames <- makeTempVarName(data = data, pre = "obs")
setnames(inc.obs, obsNames, tmpObsNames)
pyrs <- substitute(pyrs)
inc.pyr <- evalPopArg(data = data, arg = pyrs, enclos = PF)
if (!length(inc.pyr)) {
stop("No pyrs given.")
}
pyrNames <- copy(names(inc.pyr))
tmpPyrNames <- makeTempVarName(data = data, pre = "pyr")
setnames(inc.pyr, pyrNames, tmpPyrNames)
print <- substitute(print)
inc.pri <- evalPopArg(data = data, arg = print, enclos = PF)
prNames <- tmpPrNames <- NULL
if (length(inc.pri)) {
prNames <- copy(names(inc.pri))
tmpPrNames <- makeTempVarName(data = data,
pre = paste0("print", seq_along(prNames)))
setnames(inc.pri, prNames, tmpPrNames)
}
adjust <- substitute(adjust)
inc.adj <- evalPopArg(data = data, arg = adjust, enclos = PF)
adNames <- tmpAdNames <- NULL
if (length(inc.adj)) {
adNames <- copy(names(inc.adj))
tmpAdNames <- makeTempVarName(data = data,
pre = paste0("adjust", seq_along(adNames)))
setnames(inc.adj, adNames, tmpAdNames)
}
## collect data --------------------------------------------------------------
data <- cbind(inc.obs, inc.pyr)
if (!is.null(prNames)) data <- cbind(data, inc.pri)
if (!is.null(adNames)) data <- cbind(data, inc.adj)
## handle weights ------------------------------------------------------------
weights <- substitute(weights)
weights <- eval(weights, envir = PF)
weights <- copy(weights)
if (length(inc.adj)) {
## rename adjust variables in inc.adj back to original names
## for more human-readable errors in checkWeights if any occur
setnames(inc.adj, tmpAdNames, adNames)
}
checkWeights(weights, inc.adj)
if (is.list(weights) && !is.data.frame(weights)) {
## ensure weights list / DF names match to temp adjust var names
weights <- weights[adNames]
names(weights) <- tmpAdNames
} else if (is.data.frame(weights)) {
setnames(weights, adNames, tmpAdNames)
}
## form table with weights ---------------------------------------------------
NA.msg <- "Data contains %%NA_COUNT%% NA values."
data <- makeWeightsDT(data,
values = list(tmpObsNames, tmpPyrNames),
print = tmpPrNames,
adjust = tmpAdNames,
weights = weights,
internal.weights.values = tmpPyrNames,
NA.text = NA.msg)
## estimate standardized rates -----------------------------------------------
data <- rate_est(data = data,
obs = tmpObsNames,
pyrs = tmpPyrNames,
print = tmpPrNames,
weights = "weights")
## final touch ---------------------------------------------------------------
setDT(data)
setattr(data, "class", c("rate", "data.table", "data.frame"))
setattr(data, name = 'rate.meta', value = list(obs = obsNames,
pyrs = pyrNames,
weights = weights,
adjust = adNames,
print = prNames,
call = match.call(),
NAs = NA))
setnames(data, c(tmpObsNames, tmpPyrNames, tmpPrNames),
c(obsNames, pyrNames, prNames))
# data.frame output option
if (!return_DT()) {
setDFpe(data)
}
return(data[])
}
#' @export
getCall.rate <- function (x, ...) {
attributes(x)$rate.meta$call
}
stdr.weights <- function(wp = 'world00_1') {
## This one returns the standard population
## output: data.table with colnames: agegroup, reference
## standard populations are from datasets: stdpop18 and stdpop101
allow.pop <- c("world_1966_18of5",
"europe_1976_18of5",
"nordic_2000_18of5",
"world_2000_18of5",
"world_2000_20of5",
"world_2000_101of1")
wp <- match.arg(wp, allow.pop)
if (length(wp) > 1) {
stop('Standard population name is not a scalar (length != 1).')
} else if (wp %in% allow.pop[1:3]) {
# get standard pop
sr <- data.table(popEpi::stdpop18)
setnames(sr, 1:4, c("agegroup",allow.pop[1:3]))
sr[, agegroup := 1:18]
sr[, setdiff(allow.pop[1:3], wp) := NULL]
setnames(sr, wp, 'reference')
} else if (wp %in% allow.pop[4:6]) {
sr <- data.table(popEpi::stdpop101)
if (wp == "world_2000_18of5") {
sr[,agegroup := cut(agegroup, breaks=c(0:17*5,Inf), right=FALSE, labels=FALSE)]
sr <- sr[,list(world_std = sum(world_std)), by="agegroup"]
}
if (wp == 'world_2000_20of5') {
sr[,agegroup := cut(agegroup, breaks=c(0:19*5,Inf), right=FALSE, labels=FALSE)]
sr <- sr[,list(world_std = sum(world_std)), by="agegroup"]
}
else {
sr <- sr[,list(world_std = sum(world_std)), by="agegroup"]
}
setnames(sr, "world_std", "reference")
}
else {
stop("Invalid standard population name.")
}
sr[]
}
globalVariables(c('stdpop18','stdpop101','agegroup','world_std'))
rate_est <- function(data = data,
obs = 'obs',
pyrs = 'pyrs',
print = NULL,
weights = NULL
) {
## This one estimates the rates and calculates CI's and SE's.
badVars <- paste0("Internal error: missing following variable names in ",
"working data: %%VARS%%. Complain to the pkg maintainer ",
"if you see this.")
all_names_present(data, c(obs, pyrs, print), msg = badVars)
data <- data.table(data)
if ( is.null(weights) | !weights %in% colnames(data)) {
weights <- NULL
}
if (all(!is.null(weights), !is.null(obs), !is.null(pyrs))) {
# rate.adj
f2 <- function(list) list[[1]]/list[[2]]*list[[3]]
funx <- function(n,d,w,fun) eval(parse(text=fun))
# variance rate.adj for each strata A
fun1 <- '(._d_/._n_^2) * ._w_^2'
fun2 <- '._d_ / ._n_ * ._w_'
make_fun <- function(n = NA, d = NA, w = NA, fun) {
fun <- gsub(pattern = "._n_", replacement = n, x = fun)
fun <- gsub(pattern = "._d_", replacement = d, x = fun)
fun <- gsub(pattern = "._w_", replacement = w, x = fun)
parse(text = fun)
}
eval.me1 <- make_fun(d = obs, n = pyrs, w=weights, fun = fun1)
eval.me2 <- make_fun(d = obs, n = pyrs, w=weights, fun = fun2)
data[, var.temp := eval(eval.me1)]
data[, lam.temp := eval(eval.me2)]
# add std weighted rates and variances
#data[, ':='(var.temp = funx(d=get(obs), n=get(pyrs), w=get(weights), fun = fun1),
# lam.temp = funx(d=get(obs), n=get(pyrs), w=get(weights), fun = fun2)) ]
data[, rate.adj := f2(.SD), .SDcols= c(obs, pyrs, weights)]
# aggregate data
ie <- paste0('list(', obs, '=sum(',obs,',na.rm=TRUE), ', pyrs, '=sum(',pyrs,',na.rm=TRUE),',
'rate.adj=sum(rate.adj,na.rm=TRUE),' ,'lam.temp=sum(lam.temp,na.rm=TRUE), var.temp=sum(var.temp,na.rm=TRUE))')
l <- parse(text = ie)
data <- data[, eval(l), by=print]
# rate.adj: S.E.
data[, SE.log.rate.adj := sqrt((1/lam.temp)^2 * var.temp) ] # tämä on log-rate
data[, SE.rate.adj := sqrt(var.temp)]
# rate.adj: CI
data[, ':='(rate.adj.lo = exp( log(rate.adj) - SE.log.rate.adj*1.96 ),
rate.adj.hi = exp( log(rate.adj) + SE.log.rate.adj*1.96 )) ]
data[,c('lam.temp','var.temp','SE.log.rate.adj') := NULL]
}
else {
ie <- paste0('list(', obs, '=sum(',obs,'), ', pyrs, '=sum(',pyrs,'))')
l <- parse(text = ie)
data <- data[, eval(l), by=print]
}
# rate
ia <- paste0('rate := ',obs,'/', pyrs)
k <- parse(text = ia)
data[, eval(k), by = print]
# var(rate)
var_r <- paste0('SE.rate := sqrt(',obs,'/(',pyrs,'*',pyrs,'))')
k <- parse(text = var_r)
data[, eval(k), by = print]
# var(log(rate)) and CI
eval.me3 <- paste('exp(sqrt(1/',obs,'))')
eval.me3 <- parse(text = eval.me3)
data[, SE.log.rate := eval(eval.me3)]
data[, ':='(rate.lo = exp(log(rate)-log(SE.log.rate)*1.96),
rate.hi = exp(log(rate)+log(SE.log.rate)*1.96)) ]
data[, SE.log.rate := NULL]
return(data[])
}
globalVariables(c('var.temp','lam.temp','rate.adj','SE.rate.adj','SE.rate','SE.log.rate','SE.log.rate.adj'))
|