1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
|
#' @title Compute Mean Survival Times Using Extrapolation
#' @description Computes mean survival times based on survival estimation up to
#' a point in follow-up time (e.g. 10 years),
#' after which survival is extrapolated
#' using an appropriate hazard data file (`pophaz`) to yield the "full"
#' survival curve. The area under the full survival curve is the mean survival.
#' @author Joonas Miettinen
#' @param formula a `formula`, e.g. `FUT ~ V1` or
#' `Surv(FUT, lex.Xst) ~ V1`.
#' Supplied in the same way as to `[survtab]`, see that help
#' for more info.
#' @param data a `Lexis` data set; see `[Epi::Lexis]`.
#' @param adjust variables to adjust estimates by, e.g. `adjust = "agegr"`.
#' [Flexible input][flexible_argument].
#' @param weights weights to use to adjust mean survival times. See the
#' [dedicated help page][direct_standardization] for more details on
#' weighting. `survmean`
#' computes curves separately by all variables to adjust by, computes mean
#' survival times, and computes weighted means of the mean survival times.
#' See Examples.
#' @param breaks a list of breaks defining the time window to compute
#' observed survival in, and the intervals used in estimation. E.g.
#' `list(FUT = 0:10)` when `FUT` is the follow-up time scale in your
#' data.
#' @param pophaz a data set of population hazards passed to
#' `[survtab]` (see the
#' [dedicated help page][pophaz] and the help page of
#' `survtab` for more information). Defines the
#' population hazard in the time window where observed survival is estimated.
#' @param e1.breaks `NULL` or a list of breaks defining the time
#' window to compute
#' **expected** survival in, and the intervals used in estimation. E.g.
#' `list(FUT = 0:100)` when `FUT` is the follow-up time scale in your
#' data to extrapolate up to 100 years from where the observed survival
#' curve ends. **NOTE:** the breaks on the survival time scale
#' MUST include the breaks supplied to argument `breaks`; see Examples.
#' If `NULL`, uses decent defaults (maximum follow-up time of 50 years).
#' @param e1.pophaz Same as `pophaz`, except this defines the
#' population hazard in the time window where **expected**
#' survival is estimated. By default uses the same data as
#' argument `pophaz`.
#' @param r either a numeric multiplier such as `0.995`, `"auto"`, or
#' `"autoX"` where `X` is an integer;
#' used to determine the relative survival ratio (RSR) persisting after where
#' the estimated observed survival curve ends. See Details.
#' @param surv.method passed to `survtab`; see that help for more info.
#' @param subset a logical condition; e.g. `subset = sex == 1`;
#' subsets the data before computations
#' @param verbose `logical`; if `TRUE`, the function is returns
#' some messages and results along the run, which may be useful in debugging
#' @details
#' **Basics**
#'
#' `survmean` computes mean survival times. For median survival times
#' (i.e. where 50 % of subjects have died or met some other event)
#' use `[survtab]`.
#'
#' The mean survival time is simply the area under the survival curve.
#' However, since full follow-up rarely happens, the observed survival curves
#' are extrapolated using expected survival: E.g. one might compute observed
#' survival till up to 10 years and extrapolate beyond that
#' (till e.g. 50 years) to yield an educated guess on the full observed survival
#' curve.
#'
#' The area is computed by trapezoidal integration of the area under the curve.
#' This function also computes the "full" expected survival curve from
#' T = 0 till e.g. T = 50 depending on supplied arguments. The
#' expected mean survival time is the area under the
#' mean expected survival curve.
#' This function returns the mean expected survival time to be compared with
#' the mean survival time and for computing years of potential life lost (YPLL).
#'
#' Results can be formed by strata and adjusted for e.g. age by using
#' the `formula` argument as in `survtab`. See also Examples.
#'
#' **Extrapolation tweaks**
#'
#' Argument `r` controls the relative survival ratio (RSR) assumed to
#' persist beyond the time window where observed survival is computed
#' (defined by argument `breaks`; e.g. up to `FUT = 10`).
#' The RSR is simply `RSR_i = p_oi / p_ei` for a time interval `i`,
#' i.e. the observed divided by the expected
#' (conditional, not cumulative) probability of surviving from the beginning of
#' a time interval till its end. The cumulative product of `RSR_i`
#' over time is the (cumulative) relative survival curve.
#'
#'
#' If `r` is numeric, e.g. `0.995`, that RSR level is assumed
#' to persist beyond the observed survival curve.
#' Numeric `r` should be `> 0` and expressed at the annual level
#' when using fractional years as the scale of the time variables.
#' E.g. if RSR is known to be `0.95` at the month level, then the
#' annualized RSR is `0.95^12`. This enables correct usage of the RSR
#' with survival intervals of varying lengths. When using day-level time
#' variables (such as `Dates`; see `as.Date`), numeric `r`
#' should be expressed at the day level, etc.
#'
#' If `r` is `"auto"` or `"auto1"`, this function computes
#' RSR estimates internally and automatically uses the `RSR_i`
#' in the last survival interval in each stratum (and adjusting group)
#' and assumes that to persist beyond the observed survival curve.
#' Automatic determination of `r` is a good starting point,
#' but in situations where the RSR estimate is uncertain it may produce poor
#' results. Using `"autoX"` such as `"auto6"` causes `survmean`
#' to use the mean of the estimated RSRs in the last X survival intervals,
#' which may be more stable.
#' Automatic determination will not use values `>1` but set them to 1.
#' Visual inspection of the produced curves is always recommended: see
#' Examples.
#'
#' One may also tweak the accuracy and length of extrapolation and
#' expected survival curve computation by using
#' `e1.breaks`. By default this is whatever was supplied to `breaks`
#' for the survival time scale, to which
#'
#' `c(seq(1/12, 1, 1/12), seq(1.2, 1.8, 0.2), 2:19, seq(20, 50, 5))`
#'
#' is added after the maximum value, e.g. with `breaks = list(FUT = 0:10)`
#' we have
#'
#' `..., 10+1/12, ..., 11, 11.2, ..., 2, 3, ..., 19, 20, 25, ... 50`
#'
#' as the `e1.breaks`. Supplying `e1.breaks` manually requires
#' the breaks over time survival time scale supplied to argument `breaks`
#' to be reiterated in `e1.breaks`; see Examples. **NOTE**: the
#' default extrapolation breaks assume the time scales in the data to be
#' expressed as fractional years, meaning this will work extremely poorly
#' when using e.g. day-level time scales (such as `Date` variables).
#' Set the extrapolation breaks manually in such cases.
#' @md
#' @return
#' Returns a `data.frame` or `data.table` (depending on
#' `getOptions("popEpi.datatable")`; see `?popEpi`) containing the
#' following columns:
#' - `est`: The estimated mean survival time
#' - `exp`: The computed expected survival time
#' - `obs`: Counts of subjects in data
#' - `YPLL`: Years of Potential Life Lost, computed as
#' (`(exp - est) * obs`) --- though your time data may be in e.g. days,
#' this column will have the same name regardless.
#' The returned data also has columns named according to the variables
#' supplied to the right-hand-side of the formula.
#' @examples
#'
#' library(Epi)
#' ## take 500 subjects randomly for demonstration
#' data(sire)
#' sire <- sire[sire$dg_date < sire$ex_date, ]
#' set.seed(1L)
#' sire <- sire[sample(x = nrow(sire), size = 500),]
#'
#' ## NOTE: recommended to use factor status variable
#' x <- Lexis(entry = list(FUT = 0, AGE = dg_age, CAL = get.yrs(dg_date)),
#' exit = list(CAL = get.yrs(ex_date)),
#' data = sire,
#' exit.status = factor(status, levels = 0:2,
#' labels = c("alive", "canD", "othD")),
#' merge = TRUE)
#'
#' ## phony variable
#' set.seed(1L)
#' x$group <- rbinom(nrow(x), 1, 0.5)
#' ## age group
#' x$agegr <- cut(x$dg_age, c(0,45,60,Inf), right=FALSE)
#'
#' ## population hazards data set
#' pm <- data.frame(popEpi::popmort)
#' names(pm) <- c("sex", "CAL", "AGE", "haz")
#'
#' ## breaks to define observed survival estimation
#' BL <- list(FUT = seq(0, 10, 1/12))
#'
#' ## crude mean survival
#' sm1 <- survmean(Surv(FUT, lex.Xst != "alive") ~ 1,
#' pophaz = pm, data = x, weights = NULL,
#' breaks = BL)
#'
#' sm1 <- survmean(FUT ~ 1,
#' pophaz = pm, data = x, weights = NULL,
#' breaks = BL)
#' \donttest{
#' ## mean survival by group
#' sm2 <- survmean(FUT ~ group,
#' pophaz = pm, data = x, weights = NULL,
#' breaks = BL)
#'
#' ## ... and adjusted for age using internal weights (counts of subjects)
#' ## note: need also longer extrapolation here so that all curves
#' ## converge to zero in the end.
#' eBL <- list(FUT = c(BL$FUT, 11:75))
#' sm3 <- survmean(FUT ~ group + adjust(agegr),
#' pophaz = pm, data = x, weights = "internal",
#' breaks = BL, e1.breaks = eBL)
#' }
#' ## visual inspection of how realistic extrapolation is for each stratum;
#' ## solid lines are observed + extrapolated survivals;
#' ## dashed lines are expected survivals
#' plot(sm1)
#' \donttest{
#' ## plotting object with both stratification and standardization
#' ## plots curves for each strata-std.group combination
#' plot(sm3)
#'
#' ## for finer control of plotting these curves, you may extract
#' ## from the survmean object using e.g.
#' attributes(sm3)$survmean.meta$curves
#'
#'
#' #### using Dates
#'
#' x <- Lexis(entry = list(FUT = 0L, AGE = dg_date-bi_date, CAL = dg_date),
#' exit = list(CAL = ex_date),
#' data = sire[sire$dg_date < sire$ex_date, ],
#' exit.status = factor(status, levels = 0:2,
#' labels = c("alive", "canD", "othD")),
#' merge = TRUE)
#' ## phony group variable
#' set.seed(1L)
#' x$group <- rbinom(nrow(x), 1, 0.5)
#'
#'
#' ## NOTE: population hazard should be reported at the same scale
#' ## as time variables in your Lexis data.
#' data(popmort, package = "popEpi")
#' pm <- data.frame(popmort)
#' names(pm) <- c("sex", "CAL", "AGE", "haz")
#' ## from year to day level
#' pm$haz <- pm$haz/365.25
#' pm$CAL <- as.Date(paste0(pm$CAL, "-01-01"))
#' pm$AGE <- pm$AGE*365.25
#'
#' BL <- list(FUT = seq(0, 8, 1/12)*365.25)
#' eBL <- list(FUT = c(BL$FUT, c(8.25,8.5,9:60)*365.25))
#' smd <- survmean(FUT ~ group, data = x,
#' pophaz = pm, verbose = TRUE, r = "auto5",
#' breaks = BL, e1.breaks = eBL)
#' plot(smd)
#' }
#'
#'
#' @export
#' @family survmean functions
#' @family main functions
#'
survmean <- function(formula, data, adjust = NULL, weights = NULL,
breaks=NULL, pophaz = NULL,
e1.breaks = NULL, e1.pophaz = pophaz, r = "auto",
surv.method = "hazard", subset = NULL, verbose = FALSE) {
pt <- proc.time()
TF__ <- environment()
PF__ <- parent.frame(1L)
attr_form <- copy(formula)
surv.method <- match.arg(surv.method, c("hazard", "lifetable"))
## appease R CMD CHECK (due to using vars in DT[] only)
r.e2 <- last.p.e2 <- surv <- survmean_type <- est <- Tstart <- Tstop <-
lex.id <- surv.int <- delta <- surv.exp <- obs <- NULL
checkLexisData(data, check.breaks = FALSE)
checkPophaz(data, pophaz, haz.name = "haz")
checkPophaz(data, e1.pophaz, haz.name = "haz")
pophaz <- setDT(copy(pophaz))
e1.pophaz <- setDT(copy(e1.pophaz))
if (is.numeric(r) && r < 0L) stop("numeric r must be > 0, e.g. r = 0.95")
if (is.character(r)) {
if (substr(r, 1, 4) != "auto") {
stop("character string r must start with 'auto'; e.g. `auto` and ",
"`auto5` are accepted.")
}
if (r == "auto") r <- "auto1"
auto_ints <- regmatches(r, regexec("\\d+", text = r))
auto_ints <- as.integer(auto_ints)
r <- "auto"
}
tscales_all <- attr(data, "time.scales")
breaks_old <- attr(data, "breaks")
## breaks --------------------------------------------------------------------
if (!is.null(breaks_old)) checkBreaksList(data, breaks_old)
if (is.null(breaks)) breaks <- breaks_old
checkBreaksList(data, breaks)
## hmm - will later on set breaks on the found survival scale
if (!is.null(e1.breaks)) checkBreaksList(data, e1.breaks)
## prep & subset data --------------------------------------------------------
subset <- substitute(subset)
subset <- evalLogicalSubset(data, subset)
x <- setDT(data[subset, ])
forceLexisDT(x, breaks = breaks_old, allScales = tscales_all)
## ensure variables to merge pophaz datas by are kept ------------------------
## NOTE: temp var names avoid conflicts down the line
avoid <- unique(c(names(data), names(x), names(pophaz), names(e1.pophaz)))
pophaz_vars <- c(names(pophaz), names(e1.pophaz))
pophaz_vars <- setdiff(pophaz_vars, c(tscales_all, "haz"))
pophaz_vars <- intersect(pophaz_vars, names(x))
pophaz_vars_tmp <- makeTempVarName(names = avoid, pre = pophaz_vars)
if (!length(pophaz_vars)) {
pophaz_vars_tmp <- NULL
} else {
pophaz_vars_wh <- which(pophaz_vars %in% names(pophaz))
if (sum(pophaz_vars_wh)) {
setnames(pophaz, old = pophaz_vars[pophaz_vars_wh],
new = pophaz_vars_tmp[pophaz_vars_wh])
}
pophaz_vars_wh <- which(pophaz_vars %in% names(e1.pophaz))
if (sum(pophaz_vars_wh)) {
setnames(e1.pophaz, old = pophaz_vars[pophaz_vars_wh],
new = pophaz_vars_tmp[pophaz_vars_wh])
}
x[, (pophaz_vars_tmp) := copy(.SD), .SDcols = pophaz_vars]
}
## determine printing & adjusting vars ---------------------------------------
adSub <- substitute(adjust)
foList <- usePopFormula(formula, adjust = adSub, data = x, enclos = PF__,
Surv.response = "either")
## will avoid conflicts using temp names for tabulating variables
adjust_vars <- names(foList$adjust)
print_vars <- names(foList$print)
by_vars <- c(print_vars, adjust_vars)
avoid <- unique(c(names(data), names(x), names(pophaz), names(e1.pophaz)))
adjust_vars_tmp <- makeTempVarName(names = avoid, pre = adjust_vars)
if (!length(adjust_vars)) adjust_vars_tmp <- NULL
avoid <- unique(c(names(data), names(x), names(pophaz), names(e1.pophaz)))
print_vars_tmp <- makeTempVarName(names = avoid, pre = print_vars)
if (!length(print_vars)) print_vars_tmp <- NULL
by_vars_tmp <- c(print_vars_tmp, adjust_vars_tmp)
lex_vars <- c("lex.id", tscales_all, "lex.dur", "lex.Cst", "lex.Xst")
setcolsnull(x, keep = c(lex_vars, pophaz_vars_tmp), soft = FALSE)
if (length(adjust_vars) > 0L) x[, (adjust_vars_tmp) := foList$adjust]
if (length(print_vars) > 0L) x[, (print_vars_tmp) := foList$print]
## formula for survtab: we estimate survivals by all levels of both
## print and adjust; adjusting here means computing directly adjusted
## estimates of the mean survival time, so mean survival times are
## weighted later on.
formula <- paste0(deparse(formula[[2L]]), " ~ ")
if (length(c(adjust_vars_tmp, print_vars_tmp)) > 0L) {
formula <- paste0(formula, paste0(c(print_vars_tmp, adjust_vars_tmp),
collapse = " + "))
} else {
formula <- paste0(formula, "1")
}
formula <- as.formula(formula)
## detect survival time scale ------------------------------------------------
tscale_surv <- detectSurvivalTimeScale(lex = x, values = foList$y$time)
## check weights & adjust ----------------------------------------------------
test_obs <- x[, .(obs=.N), keyby=eval(TF__$by_vars_tmp)]
if (length(by_vars)) setnames(test_obs, by_vars_tmp, by_vars)
if (length(weights) && !length(adjust_vars)) {
weights <- NULL
warning("Replaced weights with NULL due to not supplying variables to ",
"adjust by.")
}
mwDTtest <- makeWeightsDT(test_obs, values = list("obs"), print = print_vars,
adjust = adjust_vars, weights = weights,
internal.weights.values = "obs")
if (length(by_vars)) setnames(test_obs, by_vars, by_vars_tmp)
## figure out extrapolation breaks -------------------------------------------
## now that the survival time scale is known this can actually be done.
if (is.null(e1.breaks)) {
e1.breaks <- copy(breaks[tscale_surv])
addBreaks <- max(e1.breaks[[tscale_surv]]) +
c(seq(0,1,1/12), seq(1.2, 1.8, 0.2), 2:19, seq(20, 50, 5))
e1.breaks[[tscale_surv]] <- unique(c(e1.breaks[[tscale_surv]], addBreaks))
checkBreaksList(x, e1.breaks)
}
if (!tscale_surv %in% names(e1.breaks)) {
stop("The survival time scale must be included in the list of breaks ",
"to extrapolate by ('e1.breaks').")
}
if (!all(breaks[[tscale_surv]] %in% e1.breaks[[tscale_surv]])) {
stop("The vector of breaks in 'breaks' for the survival time scale MUST",
"be a subset of the breaks for the survival time scale in ",
"'e1.breaks'. E.g. the former could be 0:10 and the latter 0:100.")
}
if (verbose) {
cat("Time taken by prepping data:", timetaken(pt), "\n")
}
## compute observed survivals ------------------------------------------------
## NOTE: do not adjust here; adjust in original formula means weighting
## the mean survival time results.
st <- survtab(formula, data = x, breaks = breaks,
pophaz = pophaz,
relsurv.method = "e2",
surv.type = "surv.rel",
surv.method = surv.method)
st_keep_vars <- c(by_vars_tmp, "Tstop", "r.e2", "surv.obs")
all_names_present(
st, st_keep_vars,
msg = paste0("Internal error: expected to have variables ",
"%%VARS%% after computing observed survivals ",
"but didn't. Blame the package maintainer if you ",
"see this.")
)
setcolsnull(st, keep = st_keep_vars, colorder = TRUE)
setDT(st)
setkeyv(st, c(by_vars_tmp, "Tstop"))
st[, "Tstart" := c(0, Tstop[-.N]), by = eval(by_vars_tmp)]
## decumulate for later cumulation
st[, c("r.e2", "surv.obs") := lapply(.SD, function(col) col/c(1, col[-.N])),
by = eval(by_vars_tmp),
.SDcols = c("r.e2", "surv.obs")
]
if (verbose) {
cat("Time taken by estimating relative survival curves:",
timetaken(pt), "\n")
}
## compute overall expected survival -----------------------------------------
## 1) take only those individuals that were diagnosed in the time window
## defined by breaks list in argument 'breaks'
pt <- proc.time()
setkeyv(x, c("lex.id", tscale_surv))
tol <- .Machine$double.eps^0.5
xe <- unique(x, by = key(x))[x[[tscale_surv]] < TF__$tol, ] ## pick rows with entry to FU
if (length(breaks) > 1L) {
## e.g. a period window was defined and we only use subjects
## entering follow-up in the time window.
breaks_drop_tmp <- setdiff(names(breaks), tscale_surv)
breaks_drop_tmp <- breaks[breaks_drop_tmp]
breaks_drop_tmp <- lapply(breaks_drop_tmp, range)
expr <- mapply(function(ch, ra) {
paste0("between(", ch, ", ", ra[1], ", ", ra[2] - tol, ", incbounds = TRUE)")
}, ch = names(breaks_drop_tmp), ra = breaks_drop_tmp, SIMPLIFY = FALSE)
expr <- lapply(expr, function(e) eval(parse(text = e), envir = xe))
setDT(expr)
expr <- expr[, rowSums(.SD)] == ncol(expr)
xe <- xe[expr, ]
}
xe <- x[lex.id %in% unique(xe[["lex.id"]])]
forceLexisDT(xe, breaks = breaks_old, allScales = tscales_all, key = FALSE)
## 2) compute Ederer I expected survival curves from T = 0 till e.g. T = 100
e1 <- comp_e1(xe, breaks = e1.breaks, pophaz = e1.pophaz, immortal = TRUE,
survScale = tscale_surv, by = by_vars_tmp, id = "lex.id")
setnames(e1, tscale_surv, "Tstop")
e1[, "Tstart" := c(0, Tstop[-.N]), by = eval(by_vars_tmp)]
e1[, "surv.int" := cut(Tstart, breaks = e1.breaks[[tscale_surv]],
right = FALSE, labels = FALSE)]
e1[, "delta" := Tstop - Tstart]
## decumulate for later cumulation
e1[, "surv.exp" := surv.exp/c(1, surv.exp[-.N]), by = eval(by_vars_tmp)]
if (verbose) {
cat("Time taken by computing overall expected survival curves:",
timetaken(pt), "\n")
}
## compute counts of subjects ------------------------------------------------
## these correspond to the counts of patients for which expected survival
## was computed. If observed survival is e.g. a period estimated curve,
## we only use subjects entering follow-up in the period window.
N_subjects <- xe[!duplicated(lex.id)][,
list(obs=.N),
keyby=eval(by_vars_tmp)
]
## combine all estimates into one data set -----------------------------------
pt <- proc.time()
st[, "surv.int" := cut(Tstart, breaks = e1.breaks[[tscale_surv]],
right = FALSE, labels = FALSE)]
x <- merge(e1, st[, .SD, .SDcols = c(by_vars_tmp, "surv.int", "r.e2", "surv.obs")],
by = c(by_vars_tmp,"surv.int"), all = TRUE)
setkeyv(x, c(by_vars_tmp, "surv.int"))
## extrapolation RSR definition ----------------------------------------------
if (is.numeric(r)) {
## manually given RSR for extrapolated part of the obs.surv curve
## here it is assumed that r is annualized
set(x, j = "last.p.e2", value = r^x[["delta"]])
} else {
## add last non-NA values as separate column
st <- st[, .SD[(.N-TF__$auto_ints+1):.N], by = eval(by_vars_tmp)]
st[, "delta" := Tstop - Tstart]
st[, "r.e2" := r.e2^(1/delta)] ## "annualized" RSRs
## mean annualized RSR in last N intervas by strata
st <- st[, .(last.p.e2 = mean(r.e2)), by = eval(by_vars_tmp)]
st[, "last.p.e2" := pmin(1, last.p.e2)]
if (verbose) {
cat("Using following table of mean RSR estimates",
"(scaled to RSRs applicable to a time interval one",
"unit of time wide, e.g. one year or one day)",
"based on", auto_ints, "interval(s) from the end of the relative",
"survival curve by strata: \n")
prST <- data.table(st)
setnames(prST, c(by_vars_tmp, "last.p.e2"), c(by_vars, "RSR"))
print(prST)
}
if (length(by_vars_tmp)) {
x <- merge(x, st, by = by_vars_tmp, all = TRUE)
} else {
set(x, j = "last.p.e2", value = st$last.p.e2)
}
x[, "last.p.e2" := last.p.e2^(delta)] ## back to non-annualized RSRs
## enforce RSR in extrapolated part of observed curve to at most 1
x[, "last.p.e2" := pmin(last.p.e2, 1)]
}
x[is.na(r.e2), "r.e2" := last.p.e2]
x[, "surv" := r.e2*surv.exp]
# setnames(x, "surv.obs", "surv")
# x[is.na(surv), "surv" := surv.exp*last.p.e2]
## cumulate again
setkeyv(x, c(by_vars_tmp, "surv.int"))
x[, c("surv", "surv.exp") := lapply(.SD, cumprod),
.SDcols = c("surv", "surv.exp"), by = eval(by_vars_tmp)]
x2 <- copy(x)
x[, "surv.exp" := NULL]
x2[, "surv" := NULL]
setnames(x2, "surv.exp", "surv")
x <- rbind(x, x2)
x[, "survmean_type" := rep(c("est", "exp"), each = nrow(x2))]
setcolsnull(
x,
keep = c(by_vars_tmp, "survmean_type",
"surv.int", "Tstart", "Tstop",
"delta", "surv", "surv.exp"),
colorder = TRUE
)
## check curve convergence to zero -------------------------------------------
## a good integration is based on curves that get very close to
## zero in the end
mi <- x[, .(surv = round(min(surv),4)*100),
keyby = eval(c(by_vars_tmp, "survmean_type"))]
if (any(mi$surv > 1)) {
warning("One or several of the curves used to compute mean survival times ",
"or expected mean survival times was > 1 % at the lowest point. ",
"Mean survival estimates may be significantly biased. To avoid ",
"this, supply breaks to 'e1.breaks' which make the curves longer ",
", e.g. e1.breaks = list(FUT = 0:150) where time scale FUT ",
"is the survival time scale (yours may have a different name).")
}
mi[, "surv" := paste0(formatC(surv, digits = 2, format = "f"), " %")]
mi[, "survmean_type" := factor(survmean_type, c("est", "exp"),
c("Observed", "Expected"))]
setnames(mi, c("survmean_type", "surv"),
c("Obs./Exp. curve", "Lowest value"))
if (length(by_vars)) setnames(mi, by_vars_tmp, by_vars)
if (verbose) {
cat("Lowest points in observed / expected survival curves by strata:\n")
print(mi)
}
## integrating by trapezoid areas --------------------------------------------
## trapezoid area: WIDTH*(HEIGHT1 + HEIGHT2)/2
## so we compute "average interval survivals" for each interval t_i
## and multiply with interval length.
setkeyv(x, c(by_vars_tmp, "survmean_type", "Tstop"))
sm <- x[, .(survmean = sum(delta*(surv + c(1, surv[-.N]))/2L)),
keyby = c(by_vars_tmp, "survmean_type")]
## cast ----------------------------------------------------------------------
sm <- cast_simple(sm, columns = "survmean_type",
rows = by_vars_tmp, values = "survmean")
## add numbers of subjects, compute YPLL -------------------------------------
setkeyv(sm, by_vars_tmp); setkeyv(N_subjects, by_vars_tmp)
sm[, "obs" := N_subjects$obs]
sm[, "YPLL" := (exp-est)*obs]
## adjusting -----------------------------------------------------------------
sm <- makeWeightsDT(sm, values = list(c("est", "exp", "obs", "YPLL")),
print = print_vars_tmp, adjust = adjust_vars_tmp,
weights = weights, internal.weights.values = "obs")
if (length(adjust_vars)) {
vv <- c("est", "exp", "obs", "YPLL")
sm[, c("est", "exp") := lapply(.SD, function(col) col*sm$weights),
.SDcols = c("est", "exp")]
sm <- sm[, lapply(.SD, sum), .SDcols = vv, by = eval(print_vars_tmp)]
}
if (verbose) {
cat("Time taken by final touches:", timetaken(pt), "\n")
}
## final touch ---------------------------------------------------------------
if (length(print_vars)) setnames(sm, print_vars_tmp, print_vars)
at <- list(call = match.call(),
formula = attr_form,
print = print_vars,
adjust = adjust_vars,
tprint = print_vars_tmp,
tadjust = adjust_vars_tmp,
breaks = breaks,
e1.breaks = e1.breaks,
survScale = tscale_surv,
curves = copy(x))
setattr(sm, "class", c("survmean","data.table", "data.frame"))
setattr(sm, "survmean.meta", at)
if (!return_DT()) setDFpe(sm)
return(sm[])
}
|