File: prevalence.R

package info (click to toggle)
r-cran-popepi 0.4.13%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,656 kB
  • sloc: sh: 13; makefile: 2
file content (142 lines) | stat: -rw-r--r-- 4,390 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142




prevtab <- function(
  formula,
  data,
  meanpop = NULL,
  breaks = NULL,
  adjust = NULL,
  weights = NULL,
  subset = NULL,
  verbose = FALSE
) {

  PF <- parent.frame(1L)
  TF <- environment()

  checkLexisData(data)
  checkPophaz(data, meanpop, haz.name = "meanpop")
  meanpop <- data.table(meanpop)

  allScales <- attr(data, "time.scales")
  oldBreaks <- attr(data, "breaks")

  lexis_vars <- c(allScales, "lex.dur", "lex.id", "lex.Cst", "lex.Xst")
  lexis_vars <- intersect(names(data), lexis_vars)

  meanpop_vars <- setdiff(names(meanpop), "meanpop")

  print_vars <- print_vars_tmp <- NULL
  adjust_vars <- adjust_vars_tmp <- NULL

  all_vars <- unique(intersect(names(data), c(lexis_vars, print_vars, adjust_vars, meanpop_vars)))

  ## appease R CMD CHECK -------------------------------------------------------
  at.risk <- NULL


  ## subsetting ----------------------------------------------------------------
  sb <- substitute(subset)
  subset <- evalLogicalSubset(data, substiset = sb, enclos = PF)

  ## data with only time scales and by variables -------------------------------

  data = data[subset, ]
  by_data <- usePopFormula(formula, Surv.response = FALSE,
                           data = data, enclos = PF)
  x <- setDT(mget(lexis_vars, as.environment(data)))
  if (!is.null(by_data[["print"]])) {
    print_vars <- names(by_data[["print"]])
    print_vars_tmp <- makeTempVarName(names = all_vars, pre = print_vars)
    set(x, j = print_vars_tmp, value = by_data[["print"]])
  }
  if (!is.null(by_data[["adjust"]])) {
    adjust_vars <- names(by_data[["adjust"]])
    adjust_vars_tmp <- makeTempVarName(names = all_vars, pre = adjust_vars)
    set(x, j = adjust_vars_tmp, value = by_data[["adjust"]])
  }
  forceLexisDT(x, breaks = oldBreaks, allScales = allScales)
  rm("by_data")
  x[, c("lex.Cst", "lex.Xst") := 0L]

  by_vars <- c(print_vars, adjust_vars)
  by_vars_tmp <- c(print_vars_tmp, adjust_vars_tmp)

  meanpop_vars_tmp <- makeTempVarName(
    names = c(names(x), names(data), names(meanpop)), pre = meanpop_vars
  )
  meanpop_vars_tmp <- unlist(lapply(seq_along(meanpop_vars), function(i) {
    if (!meanpop_vars[i] %in% by_vars) {
      return(meanpop_vars_tmp[i])
    }
    wh <- which(by_vars == meanpop_vars[i])
    by_vars_tmp[wh]
  }))

  lapply(seq_along(meanpop_vars), function(i) {
    set(x, j = meanpop_vars_tmp[i], value = data[[meanpop_vars[i]]])
  })

  ## Splitting to ensure breaks exist; also takes copy -------------------------
  x <- splitMulti(x, breaks = breaks, drop = TRUE, merge = TRUE)
  forceLexisDT(x, breaks = attr(x, "breaks"), allScales = allScales)

  newBreaks <- copy(attr(x, "breaks"))


  ## detect prevalence time scale ----------------------------------------------
  prevScale <- detectSurvivalTimeScale(data, eval(formula[[2]], envir = data))


  ## limit to prevalence time points -------------------------------------------
  ## since we want prevalence at certain points of time along the prevalence
  ## time scale, prevScale values not at the breaks are not considered at all.
  j <- list(newBreaks[[prevScale]])
  names(j) <- prevScale
  x <- x[j, on = prevScale, nomatch = 0L]

  ## aggregate -----------------------------------------------------------------
  aggre_vars <-  unique(c(print_vars_tmp, adjust_vars_tmp, meanpop_vars_tmp))
  print(aggre_vars)
  ag <- aggre(x, by = aggre_vars)
  ag <- setDT(ag)

  setkeyv(
    ag, c(aggre_vars, setdiff(aggre_vars, intersect(lexis_vars, print_vars_tmp)))
  )
  ag[, "n" := cumsum(at.risk), by = eval(aggre_vars)]
  ag <- setDT(mget(c(aggre_vars, meanpop_vars_tmp, "n"), as.environment(ag)))

  ## compute prevalence rates if appropriate -----------------------------------
  print(ag)
  ag <- merge(ag, meanpop, by = meanpop_vars_tmp)

  if (length(c(print_vars_tmp, adjust_vars_tmp))) {
    setnames(ag, c(print_vars_tmp, adjust_vars_tmp),
             c(print_vars, adjust_vars_tmp))
  }
  ag <- rate(data = ag, obs = "n", pyrs = "meanpop", print = print_vars,
             adjust = adjust_vars, weights = weights)

  return(ag)
}




prevtab_ag <- function(
  formula,
  data,
  meanpop = NULL,
  adjust = NULL,
  weights = NULL,
  subset = NULL,
  verbose = FALSE
) {
  ## prevtab(per ~ sex + fot)


}