1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
prevtab <- function(
formula,
data,
meanpop = NULL,
breaks = NULL,
adjust = NULL,
weights = NULL,
subset = NULL,
verbose = FALSE
) {
PF <- parent.frame(1L)
TF <- environment()
checkLexisData(data)
checkPophaz(data, meanpop, haz.name = "meanpop")
meanpop <- data.table(meanpop)
allScales <- attr(data, "time.scales")
oldBreaks <- attr(data, "breaks")
lexis_vars <- c(allScales, "lex.dur", "lex.id", "lex.Cst", "lex.Xst")
lexis_vars <- intersect(names(data), lexis_vars)
meanpop_vars <- setdiff(names(meanpop), "meanpop")
print_vars <- print_vars_tmp <- NULL
adjust_vars <- adjust_vars_tmp <- NULL
all_vars <- unique(intersect(names(data), c(lexis_vars, print_vars, adjust_vars, meanpop_vars)))
## appease R CMD CHECK -------------------------------------------------------
at.risk <- NULL
## subsetting ----------------------------------------------------------------
sb <- substitute(subset)
subset <- evalLogicalSubset(data, substiset = sb, enclos = PF)
## data with only time scales and by variables -------------------------------
data = data[subset, ]
by_data <- usePopFormula(formula, Surv.response = FALSE,
data = data, enclos = PF)
x <- setDT(mget(lexis_vars, as.environment(data)))
if (!is.null(by_data[["print"]])) {
print_vars <- names(by_data[["print"]])
print_vars_tmp <- makeTempVarName(names = all_vars, pre = print_vars)
set(x, j = print_vars_tmp, value = by_data[["print"]])
}
if (!is.null(by_data[["adjust"]])) {
adjust_vars <- names(by_data[["adjust"]])
adjust_vars_tmp <- makeTempVarName(names = all_vars, pre = adjust_vars)
set(x, j = adjust_vars_tmp, value = by_data[["adjust"]])
}
forceLexisDT(x, breaks = oldBreaks, allScales = allScales)
rm("by_data")
x[, c("lex.Cst", "lex.Xst") := 0L]
by_vars <- c(print_vars, adjust_vars)
by_vars_tmp <- c(print_vars_tmp, adjust_vars_tmp)
meanpop_vars_tmp <- makeTempVarName(
names = c(names(x), names(data), names(meanpop)), pre = meanpop_vars
)
meanpop_vars_tmp <- unlist(lapply(seq_along(meanpop_vars), function(i) {
if (!meanpop_vars[i] %in% by_vars) {
return(meanpop_vars_tmp[i])
}
wh <- which(by_vars == meanpop_vars[i])
by_vars_tmp[wh]
}))
lapply(seq_along(meanpop_vars), function(i) {
set(x, j = meanpop_vars_tmp[i], value = data[[meanpop_vars[i]]])
})
## Splitting to ensure breaks exist; also takes copy -------------------------
x <- splitMulti(x, breaks = breaks, drop = TRUE, merge = TRUE)
forceLexisDT(x, breaks = attr(x, "breaks"), allScales = allScales)
newBreaks <- copy(attr(x, "breaks"))
## detect prevalence time scale ----------------------------------------------
prevScale <- detectSurvivalTimeScale(data, eval(formula[[2]], envir = data))
## limit to prevalence time points -------------------------------------------
## since we want prevalence at certain points of time along the prevalence
## time scale, prevScale values not at the breaks are not considered at all.
j <- list(newBreaks[[prevScale]])
names(j) <- prevScale
x <- x[j, on = prevScale, nomatch = 0L]
## aggregate -----------------------------------------------------------------
aggre_vars <- unique(c(print_vars_tmp, adjust_vars_tmp, meanpop_vars_tmp))
print(aggre_vars)
ag <- aggre(x, by = aggre_vars)
ag <- setDT(ag)
setkeyv(
ag, c(aggre_vars, setdiff(aggre_vars, intersect(lexis_vars, print_vars_tmp)))
)
ag[, "n" := cumsum(at.risk), by = eval(aggre_vars)]
ag <- setDT(mget(c(aggre_vars, meanpop_vars_tmp, "n"), as.environment(ag)))
## compute prevalence rates if appropriate -----------------------------------
print(ag)
ag <- merge(ag, meanpop, by = meanpop_vars_tmp)
if (length(c(print_vars_tmp, adjust_vars_tmp))) {
setnames(ag, c(print_vars_tmp, adjust_vars_tmp),
c(print_vars, adjust_vars_tmp))
}
ag <- rate(data = ag, obs = "n", pyrs = "meanpop", print = print_vars,
adjust = adjust_vars, weights = weights)
return(ag)
}
prevtab_ag <- function(
formula,
data,
meanpop = NULL,
adjust = NULL,
weights = NULL,
subset = NULL,
verbose = FALSE
) {
## prevtab(per ~ sex + fot)
}
|