1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
|
#' @title Calculate SIR or SMR
#' @author Matti Rantanen, Joonas Miettinen
#' @description Poisson modelled standardised incidence or mortality ratios (SIRs / SMRs) i.e.
#' indirect method for calculating standardised rates. SIR is a ratio of observed and expected cases.
#' Expected cases are derived by multiplying the strata-specific population rate with the
#' corresponding person-years of the cohort.
#'
#' @details `sir` is a comprehensive tool for modelling SIRs/SMRs with flexible
#' options to adjust and print SIRs, test homogeneity and utilize
#' multi-state data. The cohort data and the variable names for observation
#' counts and person-years are required.
#' The reference data is optional, since the cohort data
#' can be stratified (`print`) and compared to total.
#'
#'
#' **Adjust and print**
#'
#' A SIR can be adjusted or standardised using the covariates found in both `coh.data` and `ref.data`.
#' Variable to adjust are given in `adjust`.
#' Variable names needs to match in both `coh.data` and `ref.data`.
#' Typical variables to adjust by are gender, age group and calendar period.
#'
#' `print` is used to stratify the SIR output. In other words, the variables
#' assigned to `print` are the covariates of the Poisson model.
#' Variable levels are treated as categorical.
#' Variables can be assigned in both `print` and `adjust`.
#' This means the output it adjusted and printed by these variables.
#'
#' `print` can also be a list of expressions. This enables changing variable
#' names or transforming variables with functions such as `cut` and `round`.
#' For example, `agegroup` can be transformed on-the-go with
#'
#' `print = list(my_ag = cut(agegroup, my_ag_breaks))`
#'
#' **ref.rate or ref.obs & ref.pyrs**
#'
#' The population rate variable can be given to the `ref.rate` parameter.
#' That is, when using e.g. the `popmort` or a comparable data file, one may
#' supply `ref.rate` instead of `ref.obs` and `ref.pyrs`, which
#' will be ignored if `ref.rate` is supplied.
#'
#'
#' Note that if all the stratifying variables in
#' `ref.data` are not listed in `adjust`,
#' or when the categories are otherwise combined,
#' the (unweighted) mean of rates is used for computing expected cases.
#' This might incur a small bias in comparison to when exact numbers of observations
#' and person-years are available.
#'
#'
#'
#' **mstate**
#'
#' E.g. using `lexpand` it's possible to compute counts for several outcomes
#' so that the population at risk is same for each
#' outcome such as a certain kind of cancer.
#' The transition counts are in wide data format,
#' and the relevant columns can be supplied to `sir`
#' in a vector via the `coh.obs` argument.
#' The name of the corresponding new column in `ref.data` is given in
#' `mstate`. It's recommended to include the `mstate` variable in `adjust`,
#' so the corresponding information should also be available in `ref.data`.
#' More examples in sir-vignette.
#'
#' This approach is analogous to where SIRs are calculated separately their
#' own function calls.
#'
#'
#' **Other parameters**
#'
#' `univariate` confidence intervals are calculated using exact
#' Poisson intervals (`poisson.ci`). The options `profile` and `wald` are
#' is based on a Poisson regression model: profile-likelihood confidence intervals
#' or Wald's normal-approximation. P-value is Poisson model based `conf.type`
#' or calculated using the method described by Breslow and Day. Function automatically
#' switches to another `conf.type` if calculation is not possible with a message.
#' Usually model fit fails if there is print stratum with zero expected values.
#'
#'
#' The LRT p-value tests the levels of `print`. The test can be either
#' `"homogeneity"`, a likelihood ratio test where the model variables defined in
#' `print` (factor) is compared to the constant model.
#' Option `"trend"` tests if the linear trend of the continuous variable in
#' `print` is significant (using model comparison).
#'
#'
#' **EAR: Excess Absolute Risk**
#'
#' Excess Absolute Risk is a simple way to quantify the absolute difference between cohort risk and
#' population risk.
#' Make sure that the person-years are calculated accordingly before using EAR. (when using mstate)
#'
#' Formula for EAR:
#' \deqn{EAR = \frac{observed - expected}{person years} \times 1000.}{EAR = (obs - exp)/pyrs * 1000.}
#'
#' **Data format**
#'
#' The data should be given in tabulated format. That is the number of observations
#' and person-years are represented for each stratum.
#' Note that also individual data is allowed as long as each observations,
#' person-years, and print and adjust variables are presented in columns.
#' The extra variables and levels are reduced automatically before estimating SIRs.
#' Example of data format:
#'
#' \tabular{rrrrr}{
#' sex \tab age \tab period \tab obs \tab pyrs \cr
#' 0 \tab 1 \tab 2010 \tab 0 \tab 390 \cr
#' 0 \tab 2 \tab 2010 \tab 5 \tab 385 \cr
#' 1 \tab 1 \tab 2010 \tab 3 \tab 308 \cr
#' 1 \tab 2 \tab 2010 \tab 12 \tab 315
#' }
#'
#'
#' @param coh.data aggregated cohort data, see e.g. `[lexpand]`
#' @param coh.pyrs variable name for person years in cohort data;
#' quoted (as a string `'myvar'`) or unquoted (AKA as a name; `myvar`)
#' @param coh.obs variable name for observed cases; quoted or unquoted. A vector when using `mstata`.
#' @param ref.data population data. Can be left NULL if `coh.data`
#' is stratified in `print`. See `[pophaz]` for details.
#' @param ref.rate population rate variable (cases/person-years). Overwrites
#' arguments `ref.pyrs` and `ref.obs`. Quoted or unquoted
#' @param ref.pyrs variable name for person-years in population data; quoted or unquoted
#' @param ref.obs variable name for observed cases; quoted or unquoted
#' @param subset logical condition to select data from `coh.data` before any computations
#' @param adjust variable names for adjusting without stratifying output; quoted vector or unquoted list
#' @param print variable names to stratify results; quoted vector or unquoted named list with functions
#' @param mstate set column names for cause specific observations; quoted or unquoted. Relevant only
#' when `coh.obs` length is two or more. See details.
#' @param test.type Test for equal SIRs. Test available are 'homogeneity' and 'trend'.
#' @param conf.type Confidence interval type: 'profile'(=default), 'wald' or 'univariate'.
#' @param conf.level Level of type-I error in confidence intervals, default 0.05 is 95% CI.
#' @param EAR logical; TRUE calculates Excess Absolute Risks for univariate SIRs.
#' (see details)
#'
#' @examples
#' data(popmort)
#' data(sire)
#' c <- lexpand( sire, status = status, birth = bi_date, exit = ex_date, entry = dg_date,
#' breaks = list(per = 1950:2013, age = 1:100, fot = c(0,10,20,Inf)),
#' aggre = list(fot, agegroup = age, year = per, sex) )
#' ## SMR due other causes: status = 2
#' se <- sir( coh.data = c, coh.obs = 'from0to2', coh.pyrs = 'pyrs',
#' ref.data = popmort, ref.rate = 'haz',
#' adjust = c('agegroup', 'year', 'sex'), print = 'fot')
#' se
#' ## for examples see: vignette('sir')
#'
#'
#' @seealso `[lexpand]`
#' \href{../doc/sir.html}{A SIR calculation vignette}
#' @family sir functions
#' @family main functions
#'
#' @return A sir-object that is a `data.table` with meta information in the attributes.
#'
#' @export
#'
#' @import data.table
#' @import stats
sir <- function( coh.data,
coh.obs,
coh.pyrs,
ref.data = NULL,
ref.obs = NULL,
ref.pyrs = NULL, ref.rate = NULL,
subset = NULL,
print = NULL,
adjust = NULL,
mstate = NULL,
test.type = 'homogeneity',
conf.type = 'profile',
conf.level = 0.95,
EAR = FALSE){
coh.data <- data.table(coh.data)
## subsetting---------------------------------------------------------------
## no copy taken of data!
subset <- substitute(subset)
subset <- evalLogicalSubset(data = coh.data, substiset = subset)
coh.data <- coh.data[subset,]
# print list --------------------------------------------------------------
# env1 <- environment() # set environment where to assign new print
# coh.data <- data_list(data = coh.data, arg.list = substitute(print), env = env1)
mstate <- as.character(substitute(mstate))
if(length(mstate) == 0) {
mstate <- NULL
}
if(!is.null(mstate)) {
coh.data[,(mstate) := 0L]
}
# evalPopArg
coh.obs <- substitute(coh.obs)
c.obs <- evalPopArg(data = coh.data, arg = coh.obs)
coh.obs <- names(c.obs)
coh.pyrs <- substitute(coh.pyrs)
c.pyr <- evalPopArg(data = coh.data, arg = coh.pyrs)
coh.pyrs <- names(c.pyr)
print <- substitute(print)
c.pri <- evalPopArg(data = coh.data, arg = print)
print <- names(c.pri)
adjust <- substitute(adjust)
c.adj <- evalPopArg(data = coh.data, arg = adjust)
adjust <- names(c.adj)
# collect data
coh.data <- cbind(c.obs, c.pyr)
if(!is.null(print)) coh.data <- cbind(coh.data, c.pri)
if(!is.null(adjust)) coh.data <- cbind(coh.data, c.adj)
if( !is.null(ref.data) ){
ref.obs <- as.character(substitute(ref.obs))
ref.pyrs <- as.character(substitute(ref.pyrs))
ref.rate <- as.character(substitute(ref.rate))
if (length(ref.obs) == 0) ref.obs <- NULL
if (length(ref.pyrs) == 0) ref.pyrs <- NULL
if (length(ref.rate) == 0) ref.rate <- NULL
}
# print(coh.data)
st <- sir_table( coh.data = coh.data,
coh.obs = coh.obs,
coh.pyrs = coh.pyrs,
ref.data = ref.data,
ref.obs = ref.obs,
ref.pyrs = ref.pyrs,
ref.rate = ref.rate,
print = print,
adjust = adjust,
mstate = mstate)
results <- sir_est( table = st,
print = print,
adjust = adjust,
conf.type = conf.type,
test.type = test.type,
conf.level = conf.level,
EAR = EAR)
## final touch ---------------------------------------------------------------
#setDT(data)
if (!return_DT()) {
for (i in 1:3) {
if (!is.null(results[[i]])) {
setDFpe(results[[i]])
}
}
}
data <- copy(results[[2]])
setattr(data, name = 'sir.meta', value = list(adjust = adjust,
print = print,
call = match.call(),
lrt.test= results$'lrt.test',
conf.type = results$'conf.type',
conf.level = conf.level,
lrt.test.type = results$'test.type',
pooled.sir = results[[1]]))
setattr(data, "class", c("sir", "data.table", "data.frame"))
return(data)
}
#' @title Estimate splines for SIR or SMR
#' @author Matti Rantanen, Joonas Miettinen
#'
#' @description Splines for standardised incidence or mortality ratio. A useful
#' tool to e.g. check whether a constant SIR can be assumed for all calendar periods,
#' age groups or follow-up intervals. Splines can be fitted for these time dimensions
#' separately or in the same model.
#'
#' @param coh.data cohort data with observations and at risk time variables
#' @param coh.pyrs variable name for person-years in cohort data
#' @param coh.obs variable name for observed cases
#' @param ref.data aggregated population data
#' @param ref.rate population rate observed/expected. This overwrites the parameters
#' `ref.pyrs` and `ref.obs`.
#' @param ref.pyrs variable name for person-years in population data
#' @param ref.obs variable name for observed cases
#' @param subset logical condition to subset `coh.data` before any computations
#' @param adjust variable names for adjusting the expected cases
#' @param print variable names for which to estimate SIRs/SMRs and
#' associated splines separately
#' @param mstate set column names for cause specific observations. Relevant only
#' when coh.obs length is two or more. See help for `sir`.
#' @param spline variable name(s) for the splines
#' @param knots number knots (vector), pre-defined knots (list of vectors) or for optimal number of knots left NULL
#' @param dependent.splines logical; if TRUE, all splines are fitted in same model.
#' @param reference.points fixed reference values for rate ratios. If left `NULL`
#' the smallest value is the reference point (where SIR = 1).
#' Ignored if `dependent.splines = FALSE`
#'
#'
#' @details
#'
#' See `[sir]` for help on SIR/SMR estimation in general; usage of splines
#' is discussed below.
#'
#' **The spline variables**
#'
#' The model can include one, two or three splines variables.
#' Variables can be included in the same model selecting `dependent.splines = TRUE`
#' and SIR ratios are calculated (first one is the SIR, others SIR ratios).
#' Reference points vector can be set via `reference.points`
#' where first element of the vector is the reference point for first ratio.
#'
#' Variable(s) to fit splines are given as a vector in argument `spline`.
#' Order will affect the results.
#'
#'
#' **dependent.splines**
#'
#' By default dependent.splines is FALSE and all splines are fitted in separate models.
#' If TRUE, the first variable in `spline` is a function of a SIR and other(s) are ratios.
#'
#' **knots**
#'
#' There are three options to set knots to splines:
#'
#' Set the number of knots for each spline variable with a **vector**.
#' The knots are automatically placed to the quantiles of observed cases in cohort data.
#' The first and last knots are always the maximum and minimum values, so knot
#' value needs to be at least two.
#'
#' Predefined knot places can be set with a **list** of vectors.
#' The vector for each spline in the list specifies the knot places. The lowest
#' and the largest values are the boundary knots and these should be checked beforehand.
#'
#' If `knots` is left **NULL**, the model searches the optimal number
#' of knots by model AIC by fitting models iteratively from 2 to 15 knots and
#' the one with smallest AIC is selected.
#' If `dependent.splines = TRUE`, the number of knots is searched by fitting each spline
#' variable separately.
#'
#'
#' **print**
#'
#' Splines can be stratified by the levels of variable given in `print`. If
#' `print` is a vector, only the first variable is accounted for. The knots
#' are placed globally for all levels of `print`. This also ensures that the likelihood
#' ratio test is valid.
#' Splines are also fitted independently for each level of `print`.
#' This allows for searching interactions, e.g. by fitting spline for period
#' (`splines='period'`) for each age group (`print = 'agegroup'`).
#'
#'
#' **p-values**
#'
#' The output p-value is a test of whether the splines are equal (homogenous)
#' at different levels of `print`.
#' The test is based on the likelihood ratio test, where the full model
#' includes `print` and is
#' compared to a null model without it.
#' When `(dependent.splines = TRUE)` the p-value returned is a global p-value.
#' Otherwise the p-value is spline-specific.
#'
#'
#' @return A list of data.frames and vectors.
#' Three spline estimates are named as `spline.est.A/B/C` and the corresponding values
#' in `spline.seq.A/B/C` for manual plotting
#'
#'
#' @seealso `[splitMulti]`
#' \href{../doc/sir.html}{A SIR calculation vignette}
#' @family sir functions
#' @family main functions
#'
#' @export sirspline
#' @import data.table
#' @import splines
#' @import stats
#'
#' @examples \donttest{
#' ## for examples see: vignette('sir')
#' }
sirspline <- function( coh.data,
coh.obs,
coh.pyrs,
ref.data = NULL,
ref.obs = NULL,
ref.pyrs = NULL,
ref.rate = NULL,
subset = NULL,
print = NULL,
adjust = NULL,
mstate = NULL,
spline,
knots = NULL,
reference.points = NULL,
dependent.splines = TRUE){
coh.data <- data.table(coh.data)
## subsetting-----------------------------------------------------------------
## no copy taken of data!
subset <- substitute(subset)
subset <- evalLogicalSubset(data = coh.data, substiset = subset)
coh.data <- coh.data[subset,]
# print list --------------------------------------------------------------
env1 <- environment()
coh.data <- data_list(data = coh.data, arg.list = substitute(print), env = env1)
mstate <- as.character(substitute(mstate))
if(length(mstate) == 0) {
mstate <- NULL
}
if(!is.null(mstate)) {
coh.data[,(mstate) := 0L]
}
# evalPopArg
spline <- substitute(spline)
c.spl <- evalPopArg(data = coh.data, arg = spline)
spline <- names(c.spl)
coh.obs <- substitute(coh.obs)
c.obs <- evalPopArg(data = coh.data, arg = coh.obs)
coh.obs <- names(c.obs)
coh.pyrs <- substitute(coh.pyrs)
c.pyr <- evalPopArg(data = coh.data, arg = coh.pyrs)
coh.pyrs <- names(c.pyr)
print <- substitute(print)
c.pri <- evalPopArg(data = coh.data, arg = print)
print <- names(c.pri)
adjust <- substitute(adjust)
c.adj <- evalPopArg(data = coh.data, arg = adjust)
adjust <- names(c.adj)
# collect data
coh.data <- cbind(c.obs, c.pyr, c.spl)
if(!is.null(print)) {
coh.data <- cbind(coh.data, c.pri[, print[!print %in% spline], with=FALSE])
}
if(!is.null(adjust)) {
coh.data <- cbind(coh.data, c.adj[, adjust[!adjust %in% spline], with=FALSE])
}
if( !is.null(ref.data) ){
ref.obs <- as.character(substitute(ref.obs))
ref.pyrs <- as.character(substitute(ref.pyrs))
ref.rate <- as.character(substitute(ref.rate))
if (length(ref.obs) == 0) ref.obs <- NULL
if (length(ref.pyrs) == 0) ref.pyrs <- NULL
if (length(ref.rate) == 0) ref.rate <- NULL
}
st <- sir_table( coh.data = coh.data,
coh.obs = coh.obs,
coh.pyrs = coh.pyrs,
ref.data = ref.data,
ref.obs = ref.obs,
ref.pyrs = ref.pyrs, ref.rate = ref.rate,
print = print,
adjust = adjust,
mstate = mstate,
spline = spline)
results <- sir_spline( table = st,
print = print,
adjust = adjust,
spline = spline,
knots = knots,
reference.points = reference.points,
dependent.splines = dependent.splines)
setclass(results, c('sirspline', 'pe', class(results)))
return(results)
}
# Input: two data.table:s
# output: one data.table including rates
#' @import stats
#' @import data.table
sir_table <- function( coh.data,
coh.obs,
coh.pyrs,
ref.data = NULL,
ref.obs = NULL,
ref.pyrs = NULL,
ref.rate = NULL,
print = NULL,
adjust = NULL,
spline = NULL,
mstate = NULL) {
# initial checks -------------------------------------------------
if(is.null(ref.data)) {
if(is.null(print)){
stop('Both ref.data and print cannot be NULL.')
}
ref.data <- data.table(coh.data)
ref.obs <- coh.obs
ref.pyrs <- coh.pyrs
}
coh.data <- data.table(coh.data)
ref.data <- data.table(ref.data)
vl <- unique( c(coh.pyrs, coh.obs, adjust, print) )
if( !is.null(mstate) ) {
vl <- vl[which( vl != mstate )]
}
all_names_present(coh.data, vl )
if ( !is.null(ref.pyrs) & !is.null(ref.obs) ) {
all_names_present(ref.data, c(ref.pyrs, ref.obs, adjust))
}
# Melt lexpand data -------------------------------------------------------
if( length(coh.obs) > 1 ) {
if( is.null(mstate) ){
stop('coh.obs length is > 1. Set variable name for mstate.')
}
if( !mstate %in% names(ref.data) ){
warning('mstate variable name does not match names in ref.data.')
}
aggre <- unique(c(adjust, print, spline, coh.pyrs))
aggre <- aggre[which(aggre != mstate)]
coh.data <- melt( data = coh.data, id.vars = aggre, measure.vars = coh.obs,
value.name = 'coh.observations',
variable.name = mstate, variable.factor = FALSE)
coh.obs <- 'coh.observations'
# parse Y name form string 'formXtoY'
q <- quote(
robust_values(substr(get(mstate),
start = regexpr( pattern = 'to', text = get(mstate) ) + 2,
stop = nchar(x = get(mstate) )))
)
coh.data[,(mstate) := eval(q) ]
if( !(mstate %in% adjust)) {
warning('Consider including mstate variable also in adjust. See help(sir) for details.')
}
}
# prepare data steps, reduce dimensions -----------------------------------
setnames(coh.data, c(coh.obs, coh.pyrs), c('coh.observations','coh.personyears'))
coh.data <- expr.by.cj(data = coh.data,
by.vars = unique( sort(c(adjust, print, spline)) ),
expr = list(coh.observations = sum(coh.observations),
coh.personyears = sum(coh.personyears)))
#coh.data <- na2zero(coh.data)
#coh.data <- na.omit(coh.data)
coh.data[is.na(coh.observations), coh.observations := 0]
coh.data[is.na(coh.personyears), coh.personyears := 0]
coh.data <- na.omit(coh.data)
# rates
if( !is.null(ref.rate) ){
setnames(ref.data, ref.rate, 'ref.rate')
ref.data <- expr.by.cj(data = ref.data, by.vars = c(adjust),
expr = list(ref.rate = mean(ref.rate)))
} else {
setnames(ref.data, c(ref.obs, ref.pyrs), c('ref.obs','ref.pyrs'))
ref.data <- expr.by.cj(data = ref.data, by.vars = c(adjust),
expr = list(ref.obs = sum(ref.obs),
ref.pyrs= sum(ref.pyrs)))
ref.data[, ref.rate := ref.obs / ref.pyrs ]
}
# Merge
sir.table <- merge(coh.data, ref.data, by=c(adjust), all.x=TRUE)
sir.table[, expected := ref.rate * coh.personyears]
sir.table <- na2zero(sir.table)
if ( !is.null(print) | !is.null(spline)){
sir.table <- sir.table[ ,list(observed = sum(coh.observations),
expected = sum(expected),
pyrs = sum(coh.personyears)),
by = c(unique(c(print, spline)))]
setkeyv(sir.table, c(print, spline))
}
else {
sir.table <- sir.table[ ,list(observed = sum(coh.observations),
expected = sum(expected),
pyrs = sum(coh.personyears))]
}
return(sir.table)
}
# Input: sir.table
# Output: list of data.tables and values
sir_est <- function( table,
print = NULL,
adjust = NULL,
EAR = FALSE,
test.type = 'homogeneity',
conf.level = 0.95,
conf.type = 'profile') {
pyrs <- NULL ## APPEASE R CMD CHECK
setDT(table)
if(!is.numeric(conf.level) | conf.level > 1) {
stop('Confidence level must be a numeric value between 0-1')
}
# function to SIR p-value
chi.p <- function(o, e) {
pchisq( ( (abs(o - e) - 0.5)^2)/e, df=1, lower.tail=FALSE)
}
# total sir
combined <- data.table(table)[,list(observed = sum(observed),
expected = sum(expected),
pyrs = sum(pyrs))]
combined[ ,':='(sir = observed/expected,
sir.lo = poisson.ci(observed, expected, conf.level=conf.level)[,4],
sir.hi = poisson.ci(observed, expected, conf.level=conf.level)[,5],
p_value = chi.p(observed, expected))]
# Poisson regression ------------------------------------------------------
# write model formula
fa <- a <- NULL
sir.formula <- paste('observed ~ 1')
if(!is.null(print)){
fa <- rev(print) # fa <- print
# drop variables with only one value
u <- c(t(table[, lapply(.SD, uniqueN), .SDcols = fa]))
if (length(u[u==1]) > 0){
message('Variable "', paste(fa[which(u==1)], collapse = '","'),'" (has only one level) removed from model.')
fa <- fa[-which(u==1)]
}
if(length(fa)>0){
# model formula
a <- paste0('as.factor(',paste( fa, collapse = '):as.factor('),')')
sir.formula <- paste('observed ~ 0 +', a)
}
}
# fit model if possible -----------------------------------------------------
fit <- tryCatch(do.call("glm", list(formula = terms(as.formula(sir.formula), keep.order = FALSE),
offset = log(table[,expected]),
data = table, family = poisson(log))),
error=function(f) NULL )
if(!is.null(fit)) eg <- expand.grid(fit$xlevels) # for further testing
# LRT test (homogeneity or trend) --------------------------------------------
test.type <- match.arg(test.type, c('homogeneity','trend'))
lrt_sig <- NULL
if( sir.formula != 'observed ~ 1' & !is.null(fit) ) {
if (test.type == 'homogeneity') covariates <- a
if (test.type == 'trend') covariates <- paste(print, collapse=' + ')
fit_full <- tryCatch(
do.call("glm", list(formula = terms(as.formula( paste0('observed ~ 1 + ', a) )),
offset = log(table[,expected]),
data = table, family=poisson(log))),
error=function(f) NULL )
fit_null <- tryCatch(
do.call("glm", list(formula = terms(as.formula('observed ~ 1') ),
offset = log(table[,expected]),
data = table, family=poisson(log))),
error=function(f) NULL )
if (!is.null(fit_full)){
lrt <- anova(fit_full, fit_null, test = 'Chisq')
lrt_sig <- lrt[['Pr(>Chi)']][2]
}
}
# confidence intervals ----------------------------------------------------
conf.type <- match.arg(conf.type, c('wald','profile','univariate'))
ci.info <- NULL
ci <- NULL
if (is.null(fit) & conf.type %in% c('wald','profile')) {
conf.type <- 'univariate'
ci.info <- 'Model fitting failed. Univariate confidence intervals selected.'
if(any(table$expected == 0)) {
ci.info <- paste(ci.info, '(zero values in expected)')
}
}
if (conf.type == 'profile') {
confint_glm <- function(object, parm, level = 0.95, trace = FALSE, ...) {
pnames <- names(coef(object))
if (missing(parm)) {
parm <- seq_along(pnames)
}
else if (is.character(parm)) {
parm <- match(parm, pnames, nomatch = 0L)
}
object <- profile(object, which = parm, alpha = (1 - level)/4, trace = trace)
confint(object, parm = parm, level = level, trace = trace, ...)
}
ci <- suppressMessages( suppressWarnings(
tryCatch(exp(confint_glm(fit, level=conf.level)), error=function(e) NULL )
))
if(!is.null(ci)) {
ci <- as.data.table(ci)
if (is.null(print) | length(fa)==0) ci <- data.table(t(ci)) # transpose if only one row
} else {
conf.type <- 'wald'
ci.info <- 'Could not solve profile-likelihood. Wald confidence intervals selected.'
}
}
if (conf.type == 'wald') {
ci <- data.table( exp(confint.default(fit)) )
}
if(conf.type == 'univariate') {
ci <- data.table(poisson.ci(table$observed, table$expected, conf.level = conf.level))[,.(lower, upper)]
pv <- chi.p(table$observed, table$expected)
} else {
pv <- as.vector(summary(fit)$coef[, "Pr(>|z|)"])
}
if(!is.null(ci.info)) message(ci.info)
# collect results -----------------------------------------------------
setnames(ci, 1:2, c('sir.lo','sir.hi'))
table[, ':=' ( sir = observed/expected,
sir.lo = ci[, sir.lo],
sir.hi = ci[, sir.hi],
p_value = round(pv,5))]
# Round results -----------------------------------------------------------
cols1 <- c('sir','sir.lo','sir.hi','expected','pyrs')
table[,(cols1) := lapply(.SD, round, digits=4), .SDcols=cols1]
combined[,(cols1) := lapply(.SD, round, digits=4), .SDcols=cols1]
# tests -----------------------------------
if (table[!is.na(sir) & (sir < sir.lo | sir > sir.hi), .N] > 0) {
warning('There is something wrong with confidence intervals')
}
if (table[!is.na(sir.lo) & !is.na(sir.hi)][sir.lo > sir.hi, .N] > 0) {
warning('CIs might be incorrect')
}
if(!is.null(fit) & length(fa)>0) {
# pseudo test if the modelled confidence intervals are merged correctly:
t1 <- copy(table)[,lapply(.SD, factor),.SDcols = fa]
if(any(t1 != data.table(eg))) {
message('CIs levels might not match. Contact the package maintainer and use univariate CIs.')
}
}
# EAR -----------------------------------------------------------------
if (EAR) {
table[,EAR := round((observed - expected)/pyrs * 1000, 3)]
}
results <- list(total = combined,
table = table,
adjusted = adjust,
lrt.test = lrt_sig,
test.type = test.type,
conf.type = conf.type,
ci.info = ci.info)
return(results)
}
#' @export
getCall.sir <- function (x, ...) {
attributes(x)$sir.meta$call
}
# Input: sir.table
# Output: estimates and sequences for plotting splines
#' @import splines
#' @import data.table
#' @import stats
sir_spline <- function( table,
print = NULL,
adjust = NULL,
spline,
knots = NULL,
reference.points = NULL,
dependent.splines = TRUE){
knts <-
spline.seq.A <-
spline.seq.B <-
spline.seq.C <-
spline.est.A <-
spline.est.B <-
spline.est.C <- NULL
if (!is.null(knots) & length(knots) != length(spline) ) {
stop('Arguments spline and knots has to be same length.')
}
# Spline functions -------------------------------------------------------
# function to get spline seq
spline.seq <- function(data, spline.var=NULL) {
# palauttaa jotaina
if(is.na(spline.var)) {
return(NULL)
}
spline.seq <- seq( min( data[,get(spline.var)] ),
max( data[,get(spline.var)] ), length.out = 100)
return(spline.seq)
}
# function to search optimal number of knots by AIC
spline.knots <- function(data, knots = NULL, spline.vars = NULL){
# search optimal number of knots
if( is.null(knots) ) {
knts <- list()
for (jj in 1:length(spline.vars)) {
# reduce data to fit model
data0 <- data[,list(observed=sum(observed), expected = sum(expected)), by = eval(spline.vars[jj])]
data0 <- data0[expected > 0]
spline.fit <- glm(observed ~ 1, offset=log(expected), family=poisson(log), data = data0)
aic0 <- summary(spline.fit)[['aic']]
limit <- 20
ii <- 2
while( ii < limit ){
tmp.knots <- ii
knts[jj] <- list( data0[ ,quantile( rep(get(spline.vars[jj]),observed), probs = seq(0,100,length.out = tmp.knots)/100)] )
spline.fit <- glm(observed ~ Ns(get(spline.vars[jj]), knots = knts[[jj]]), offset=log(expected), family=poisson(log), data=data0)
aic0 <- c(aic0, summary(spline.fit)[['aic']])
ii <- ii + 1
}
tmp.knots <- which(aic0 == min(aic0))[1]
if(tmp.knots == 1) {
message(paste0('Null model better than spline in ', jj))
tmp.knots <- 2
}
knts[jj] <- list(data0[ ,quantile( rep(get(spline.vars[jj]),observed), probs = seq(0,100,length.out = tmp.knots)/100)])
rm(tmp.knots)
}
knots <- unlist(lapply(knts, length))
}
else {
# knot predefined
if( is.list(knots) ){
knts <- knots
knots <- unlist(lapply(knots, length))
}
# knot number predefined
else {
if( any(knots < 2) ) {
message('Min knots number set to 2.')
knots[knots < 2] <- 2
}
knts <- list()
for(i in 1:length(knots)) {
knts[i] <- list( data[ ,quantile( rep(get(spline.vars[i]), observed), probs = seq(0,100,length.out = knots[i])/100)])
}
}
}
names(knts) <- spline.vars
return(knts)
}
# function to estimate 2-3 dim splines in same model
spline.estimates.dep <- function(sir.spline = sir.spline,
spline.seq.A = spline.seq.A,
spline.seq.B = spline.seq.B,
spline.seq.C = spline.seq.C,
reference.points = reference.points,
knts = knts
){
if( all(!is.null(reference.points), (length(reference.points) + 1) != length(spline)) ){
stop('Parameter reference.points length should be length of spline - 1.')
}
form <- 'Ns(get(spline[[1]]), kn=knts[[1]])'
nsA <- Ns( spline.seq.A, knots = knts[[1]])
if ( length(spline) >= 2) {
form <- paste0(form, ' + Ns(get(spline[[2]]), kn=knts[[2]])')
nsB <- Ns( spline.seq.B, knots = knts[[2]])
}
if ( length(spline) == 3) {
form <- paste0(form, ' + Ns(get(spline[[3]]), kn=knts[[3]])')
nsC <- Ns( spline.seq.C, knots = knts[[3]])
}
form <- paste0('observed ~ ', form)
spline.fit <- do.call("glm", list(formula = as.formula(form),
offset = log(sir.spline[expected > 0,expected]),
family = poisson,
data = sir.spline[expected>0]))
if( any( ci.exp(spline.fit)[,1] == 1) ){
message("NA's in spline estimates.")
}
aic <- summary(spline.fit)[['aic']]
rf.C <- rf.B <- NA
# set assigned reference points or get minimum values
if( !is.null(reference.points) ) {
rf.B <- reference.points[1]
rf.C <- reference.points[2]
}
else {
rf.B <- min( sir.spline[,get(spline[2])] )
if(!is.na(spline[3])) {
rf.C <- min( sir.spline[,get(spline[3])] )
}
}
if( !is.na(rf.B) ) {
B <- Ns( rep(rf.B, 100), knots = knts[[2]])
if( findInterval(rf.B, range(sir.spline[,get(spline[2])])) != 1 ) {
message("WARNING: reference point 2 doesn't fall into spline variable interval")
}
}
if( !is.na(rf.C) ){
C <- Ns( rep(rf.C, 100), knots = knts[[3]])
if( findInterval(rf.C, range(sir.spline[,get(spline[3])])) != 1) {
message("WARNING: reference point 3 doesn't fall into spline variable interval")
}
}
# make subset of model parameters
if( !is.null(knts[2]) ) {
sub.B <- which( grepl('spline[[2]]', names(spline.fit$coefficients),fixed = TRUE) )
}
if( !is.null(knts[3]) ) {
sub.C <- which( grepl('spline[[3]]', names(spline.fit$coefficients),fixed = TRUE) )
}
if ( length(spline) == 2) {
spline.est.A <- ci.exp(spline.fit, ctr.mat = cbind(1, nsA, nsB))
spline.est.B <- ci.exp(spline.fit, subset = sub.B, ctr.mat = nsB - B)
spline.est.C <- NULL
}
if ( length(spline) == 3) {
spline.est.A <- ci.exp(spline.fit, ctr.mat = cbind(1, nsA, nsB, nsC))
spline.est.B <- ci.exp(spline.fit, subset= sub.B, ctr.mat = nsB - B)
spline.est.C <- ci.exp(spline.fit, subset= sub.C, ctr.mat = nsC - C)
}
list(a = spline.est.A,
b = spline.est.B,
c = spline.est.C)
}
# function to estimate independet splines
spline.estimates.uni <- function(data, spline.var, spline.seq, knots, knum) {
if(is.na(spline.var)) return(NULL)
knots <- knots[[knum]]
data <- data[,list(observed=sum(observed), expected = sum(expected)), by = eval(spline.var)][expected > 0]
spline.uni <- glm(observed ~ Ns(get(spline.var), knots = knots), offset=log(expected), family=poisson(log), data = data)
nsx <- Ns( spline.seq, knots = knots)
spline.est <- ci.exp(spline.uni, ctr.mat = cbind(1, nsx))
spline.est
}
# Poisson regression Splines -------------------------------------------------
sir.spline <- data.table(table)
# convert spline variables to numeric
temp.fun <- function(x){
as.numeric(as.character(x))
}
sir.spline[, (spline) := lapply(.SD, temp.fun), .SDcols = spline]
# set knots
knts <- spline.knots(data=sir.spline, knots = knots, spline.vars = spline)
# set sequences
spline.seq.A <- spline.seq(data=sir.spline, spline.var=spline[1])
spline.seq.B <- spline.seq(data=sir.spline, spline.var=spline[2])
spline.seq.C <- spline.seq(data=sir.spline, spline.var=spline[3])
if( length(spline) == 1 ) {
dependent.splines <- FALSE
}
# convert print to factor
print <- print[1]
# loop for each level of print:
if( !is.null(print) ) {
prnt.levels <- sir.spline[,unique( get(print) )]
sir.spline[,(print) := factor(get(print))]
}
else {
print <- 'temp'
sir.spline[,temp := 1]
prnt.levels <- 1
}
spline.est.A <- NULL
spline.est.B <- NULL
spline.est.C <- NULL
for(i in prnt.levels){
if( dependent.splines ) {
out <- spline.estimates.dep(sir.spline = sir.spline[get(print) == i],
spline.seq.A = spline.seq.A,
spline.seq.B = spline.seq.B,
spline.seq.C = spline.seq.C,
reference.points = reference.points,
knts = knts)
est.A <- out[['a']]
est.B <- out[['b']]
est.C <- out[['c']]
}
else{
est.A <- spline.estimates.uni(data = sir.spline[get(print) == i], spline.var = spline[1], spline.seq = spline.seq.A, knots = knts, knum = 1)
est.B <- spline.estimates.uni(data = sir.spline[get(print) == i], spline.var = spline[2], spline.seq = spline.seq.B, knots = knts, knum = 2)
est.C <- spline.estimates.uni(data = sir.spline[get(print) == i], spline.var = spline[3], spline.seq = spline.seq.C, knots = knts, knum = 3)
}
add_i <- function(est.x, i){
if(is.null(est.x)) {
return(NULL)
}
cbind(i, data.frame(est.x))
}
est.A <- add_i(est.A, i)
est.B <- add_i(est.B, i)
est.C <- add_i(est.C, i)
spline.est.A <- rbind(spline.est.A, est.A)
spline.est.B <- rbind(spline.est.B, est.B)
spline.est.C <- rbind(spline.est.C, est.C)
}
# get p-value and anova-table
anovas <- NULL
p <- NULL
if(dependent.splines) {
form.a <- 'Ns(get(spline[[1]]), kn=knts[[1]]) + Ns(get(spline[[2]]), kn=knts[[2]])'
form.b <- 'get(print):Ns(get(spline[[1]]), kn=knts[[1]]) + get(print):Ns(get(spline[[2]]), kn=knts[[2]])'
if ( length(spline) == 3) {
form.a <- paste0(form.a, ' + Ns(get(spline[[3]]), kn=knts[[3]])')
form.b <- paste0(form.b, ' + get(print):Ns(get(spline[[3]]), kn=knts[[3]])')
}
fit.fun <- function( form.string ){
do.call("glm", list(formula = as.formula( form.string ),
offset = log(sir.spline[expected > 0,expected]),
family = poisson,
data = sir.spline[expected>0]))
}
fit.1 <- fit.fun( paste0('observed ~ ', form.a) )
fit.2 <- fit.fun( paste0('observed ~ ', 'get(print)+', form.a))
fit.3 <- fit.fun( paste0('observed ~ ', form.b))
fit.4 <- fit.fun( paste0('observed ~ ', 'get(print)+', form.b) )
global.p<- anova(fit.4, fit.1, test='LRT')
level.p <- anova(fit.2, fit.1, test='LRT')
#shape.p <- anova(fit.4, fit.3, test='LRT')
anovas <- list(global.p = global.p, level.p = level.p)
p <- rbind(global.p[['Pr(>Chi)']][2], level.p[['Pr(>Chi)']][2]) # , shape.p,
}
else {
lrt.uni <- function(data=sir.spline, spline.var=spline[1], print=print, knots=knts, knum = 1) {
if (is.na(spline.var)) return (NULL)
data <- data.table(data)
knots <- knots[[knum]]
fit0 <- glm(observed ~ get(print)+Ns(get(spline.var), knots = knots), offset=log(expected), family=poisson(log), data = data[expected>0])
fit1 <- glm(observed ~ Ns(get(spline.var), knots = knots), offset=log(expected), family=poisson(log), data = data[expected>0])
fit2 <- glm(observed ~ get(print)*Ns(get(spline.var), knots = knots), offset=log(expected), family=poisson(log), data = data[expected>0])
anova(fit2,fit1,fit0, test='Chisq') # [['Pr(>Chi)']][2]
}
var1.p <- lrt.uni(spline.var = spline[1], print=print, knots=knts, knum = 1)
var2.p <- lrt.uni(spline.var = spline[2], print=print, knots=knts, knum = 2)
var3.p <- lrt.uni(spline.var = spline[3], print=print, knots=knts, knum = 3)
p <- list(spline.a = var1.p[['Pr(>Chi)']][2],
spline.b = var2.p[['Pr(>Chi)']][2],
spline.c = var3.p[['Pr(>Chi)']][2])
anovas <- list(spline.a = var1.p, spline.b = var2.p, spline.c = var3.p)
}
output <- list( spline.est.A = spline.est.A,
spline.est.B = spline.est.B,
spline.est.C = spline.est.C,
spline.seq.A = spline.seq.A,
spline.seq.B = spline.seq.B,
spline.seq.C = spline.seq.C,
adjust = adjust,
print = print,
spline = spline,
anovas = anovas,
knots = knts,
spline.dependent = dependent.splines,
p.values = p)
output
}
# input data and argument list. replaces print in upper environment with name a vector.
data_list <- function( data, arg.list, env ) {
if(missing(env)){
arg.list <- substitute(arg.list)
env <- parent.frame()
}
d <- data.table(data)
l <- eval(arg.list, envir = d, enclos = parent.frame())
if( is.list( l ) ) {
n <- intersect(names(l), names(d))
if(length(n)>0){
d[,(n) := NULL]
}
# if(is.null(names(l))) {
# v <- 1:length(l)
# setnames(l, v, paste0('V', v))
# }
l <- as.data.table(l)
l <- data.table(l)
assign('print', colnames(l), envir = env) # set names to parent environment
if( ncol(d) > 0) {
l <- data.table(d, l)
}
return(l)
} else {
return(data)
}
}
#' @export
coef.sir <- function(object, ...) {
factors <- attr(object, 'sir.meta')$print
q <- paste("paste(",paste(factors,collapse=","),", sep = ':')")
q <- parse(text=q)
n <- object[,eval(q)]
res <- object$sir
attr(res, 'names') <- n
res
}
#' @export
confint.sir <- function(object, parm, level = 0.95, conf.type = 'profile',
test.type = 'homogeneity', ...) {
meta <- attr(object, 'sir.meta')
object <- copy(object)
object <- sir_est(table = object,
print = meta$print,
adjust = NULL,
conf.type = conf.type,
test.type = test.type,
conf.level = level,
EAR = FALSE)
object <- object$table
q <- paste("paste(",paste(meta$print,collapse=","),", sep = ':')")
q <- parse(text=q)
n <- object[,eval(q)]
res <- cbind(object$sir.lo, object$sir.hi)
rownames(res) <- n
colnames(res) <- paste( c( (1-level)/2*100, (1 - (1-level)/2)*100), '%')
res
}
#' @title Calculate SMR
#' @author Matti Rantanen
#' @description Calculate Standardized Mortality Ratios (SMRs) using
#' a single data set that includes
#' observed and expected cases and additionally person-years.
#'
#' @details These functions are intended to calculate SMRs from a single data set
#' that includes both observed and expected number of cases. For example utilizing the
#' argument `pop.haz` of the `[lexpand]`.
#'
#' `sir_lex` automatically exports the transition `fromXtoY` using the first
#' state in `lex.Str` as `0` and all other as `1`. No missing values
#' is allowed in observed, pop.haz or person-years.
#'
#' @param x Data set e.g. `aggre` or `Lexis` object
#' (see: `[lexpand]`)
#' @param obs Variable name of the observed cases in the data set
#' @param exp Variable name or expression for expected cases
#' @param pyrs Variable name for person-years (optional)
#' @param print Variables or expression to stratify the results
#' @param test.type Test for equal SIRs. Test available are 'homogeneity' and 'trend'
#' @param conf.level Level of type-I error in confidence intervals, default 0.05 is 95% CI
#' @param conf.type select confidence interval type: (default=) `profile`, `wald`, `univariate`
#' @param subset a logical vector for subsetting data
#'
#' @seealso `[lexpand]`
#' \href{../doc/sir.html}{A SIR calculation vignette}
#' @family sir functions
#'
#' @return A sir object
#'
#' @examples
#'
#' \donttest{
#' BL <- list(fot = 0:5, per = c("2003-01-01","2008-01-01", "2013-01-01"))
#'
#' ## Aggregated data
#' x1 <- lexpand(sire, breaks = BL, status = status != 0,
#' birth = bi_date, entry = dg_date, exit = ex_date,
#' pophaz=popmort,
#' aggre=list(sex, period = per, surv.int = fot))
#' sir_ag(x1, print = 'period')
#'
#'
#' # no aggreate or breaks
#' x2 <- lexpand(sire, status = status != 0,
#' birth = bi_date, entry = dg_date, exit = ex_date,
#' pophaz=popmort)
#' sir_lex(x2, breaks = BL, print = 'per')
#' }
#'
#' @import data.table
#' @import stats
#' @export
sir_exp <- function(x, obs, exp, pyrs=NULL, print = NULL,
conf.type = 'profile', test.type = 'homogeneity',
conf.level = 0.95, subset = NULL) {
# subsetting
subset <- substitute(subset)
subset <- evalLogicalSubset(data = x, substiset = subset)
x <- x[subset,]
# evalPopArg
obs <- substitute(obs)
c.obs <- evalPopArg(data = x, arg = obs)
obs <- names(c.obs)
print <- substitute(print)
c.pri <- evalPopArg(data = x, arg = print)
print <- names(c.pri)
exp <- substitute(exp)
c.exp <- evalPopArg(data = x, arg = exp)
exp <- names(c.exp)
pyrs <- substitute(pyrs)
c.pyr <- evalPopArg(data = x, arg = pyrs)
if(is.null(c.pyr)) c.pyr <- data.table(pyrs=0)
pyrs <- names(c.pyr)
# collect data
x <- cbind(c.obs, c.pyr, c.exp)
if(any(is.na(x))) stop('Missing values in expected cases.')
if(!is.null(print)) x<- cbind(x, c.pri)
express <- paste0('list(observed = sum(', obs, '), expected = sum(',exp,'), pyrs = sum(', pyrs,'))')
# aggregate
es <- parse(text = express)
y <- x[, eval(es), keyby = print] # keyby is must
results <- sir_est( table = y,
print = print,
adjust = NULL,
conf.type = conf.type,
test.type = test.type,
conf.level = conf.level,
EAR = FALSE)
if (!return_DT()) {
for (i in 1:2) {
if (!is.null(results[[i]])) {
setDFpe(results[[i]])
}
}
}
data <- copy(results[[2]])
setattr(data, name = 'sir.meta', value = list(adjust = NULL,
print = print,
call = match.call(),
lrt.test= results$'lrt.test',
conf.type = results$'conf.type',
conf.level = conf.level,
lrt.test.type = results$'test.type',
pooled.sir = results[[1]]))
setattr(data, "class", c("sir", "data.table", "data.frame"))
return(data)
}
#' Calculate SMRs from a split Lexis object
#'
#' @description `sir_lex` solves SMR from an `[Epi::Lexis]` object
#' calculated with `[lexpand]`.
#'
#' @param breaks a named list to split age group (age), period (per) or follow-up (fot).
#' @param ... pass arguments to `sir_exp`
#'
#'
#' @describeIn sir_exp
#'
#' @export
sir_lex <- function(x, print = NULL, breaks = NULL, ... ) {
## R CMD CHECK appeasement
lex.dur <- NULL
if(!inherits(x, 'Lexis')) {
stop('x has to be a Lexis object (see lexpand or Lexis)')
}
if(!"pop.haz" %in% names(x)) {
stop("Variable pop.haz not found in the data.")
}
# reformat date breaks
if(!is.null(breaks)) {
breaks <- lapply(breaks, function(x) {
if(is.character(x)) c(cal.yr(as.Date(x)))
else x
})
}
print <- substitute(print)
# copy to retain the attributes
x <- copy(x)
# guess the first value
first_value <- lapply(c("lex.Cst", "lex.Xst"), function(var) {
if (is.factor(x[[var]])) levels(x[[var]]) else sort(unique(x[[var]]))
})
first_value <- unique(unlist(first_value))[1]
col <- x$lex.Xst
set(x, j = "lex.Cst", value = 0L)
set(x, j = "lex.Xst", value = ifelse(col == first_value, 0L, 1L))
if(!is.null(breaks)) {
x <- splitMulti(x, breaks = breaks)
}
a <- copy(attr(x, "time.scales"))
a <- a[!vapply(get_breaks(x), is.null, logical(1))]
x[, d.exp := pop.haz*lex.dur]
TF <- environment()
if(any(is.na(x[,d.exp]))) stop('Missing values in either pop.haz or lex.dur.')
x <- aggre(x, by = TF$a, sum.values = 'd.exp')
if(!'from0to1' %in% names(x)) {
stop('Could not find any transitions between states in lexis')
}
x <- sir_exp(x = x, obs = 'from0to1', print = print, exp = 'd.exp', pyrs = 'pyrs', ...)
# override the match.call from sir_exp
attr(x, 'sir.meta')$call <- match.call()
return(x)
}
#' SMR method for an `aggre` object.
#'
#' @description `sir_ag` solves SMR from a `[aggre]` object
#' calculated using `[lexpand]`.
#'
#' @describeIn sir_exp
#'
#' @export
sir_ag <- function(x, obs = 'from0to1', print = attr(x, 'aggre.meta')$by, exp = 'd.exp', pyrs = 'pyrs', ... ) {
if(!inherits(x, 'aggre')) {
stop('x should be an aggre object (see lexpand or sir_lex)')
}
obs <- substitute(obs)
print <- substitute(print)
x <- copy(x)
x <- sir_exp(x = x, obs = obs, print = print, exp = 'd.exp', pyrs = 'pyrs', ...) # original
attr(x, 'sir.meta')$call <- match.call() # override the call from sir_exp
x
}
globalVariables(c('observed','expected','p_adj','p_value','temp','coh.observations','coh.personyears',
'd.exp', 'lower', 'pop.haz', 'sir.hi','sir.lo','upper'))
|