1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
#' @title Split case-level observations
#' @author Joonas Miettinen
#' @description Split a `Lexis` object along one time scale
#' (as `[Epi::splitLexis]`) with speed
#' @param lex a Lexis object, split or not
#' @param breaks a vector of `[a,b)` breaks to split `data` by
#' @param timeScale a character string; name of the time scale to split by
#' @param merge logical; if `TRUE`, retains all variables
#' from the original data - i.e. original variables are
#' repeated for all the rows by original subject
#' @param drop logical; if `TRUE`, drops all resulting rows
#' after expansion that reside outside the time window
#' defined by the given breaks
#'
#'
#' @details
#'
#' `splitLexisDT` is in essence a \pkg{data.table} version of
#' `splitLexis` or `survSplit` for splitting along a single
#' time scale. It requires a Lexis object as input, which may have already
#' been split along some time scale.
#'
#' Unlike `splitLexis`, `splitLexisDT` drops observed time outside
#' the roof and floor of `breaks` by default - with `drop = FALSE`
#' the functions have identical behaviour.
#'
#' The `Lexis` time scale variables can be of any arbitrary
#' format, e.g. `Date`,
#' fractional years (see `[Epi::cal.yr]`) and `[get.yrs]`.
#'
#' @return
#' A `data.table` or `data.frame`
#' (depending on `options("popEpi.datatable")`; see `?popEpi`)
#' object expanded to accommodate split observations.
#'
#' @export
#' @family splitting functions
#' @examples
#' library(Epi)
#' data("sire", package = "popEpi")
#' x <- Lexis(data=sire[1000:1100, ],
#' entry = list(fot=0, per=get.yrs(dg_date), age=dg_age),
#' exit=list(per=get.yrs(ex_date)), exit.status=status)
#' BL <- list(fot=seq(0, 5, by = 3/12), per=c(2008, 2013))
#'
#' x2 <- splitMulti(x, breaks = BL, drop = FALSE)
#'
#' x3 <- splitLexisDT(x, breaks = BL$fot, timeScale = "fot", drop = FALSE)
#' x3 <- splitLexisDT(x3, breaks = BL$per, timeScale = "per", drop = FALSE)
#'
#' x4 <- splitLexis(x, breaks = BL$fot, time.scale = "fot")
#' x4 <- splitLexis(x4, breaks = BL$per, time.scale = "per")
#' ## all produce identical results
#'
#' ## using Date variables
#' x <- Lexis(data=sire[1000:1100, ],
#' entry = list(fot=0, per=dg_date, age=dg_date-bi_date),
#' exit=list(per=ex_date), exit.status=status)
#' BL <- list(fot = 0:5*365.25, per = as.Date(c("2008-01-01", "2013-01-01")))
#'
#' x2 <- splitMulti(x, breaks = BL, drop = FALSE)
#'
#' x3 <- splitLexisDT(x, breaks = BL$fot, timeScale = "fot", drop = FALSE)
#' x3 <- splitLexisDT(x3, breaks = BL$per, timeScale = "per", drop = FALSE)
#'
#' ## splitLexis may not work when using Dates
splitLexisDT <- function(lex, breaks, timeScale, merge = TRUE, drop = TRUE) {
do_split <- TRUE
tol <- .Machine$double.eps^0.5
checkLexisData(lex, check.breaks = FALSE)
attr_list <- copy(attributes(lex)[c("time.scales", "breaks", "time.since")])
allScales <- attr_list[["time.scales"]]
allBreaks <- attr_list[["breaks"]]
if (!timeScale %in% allScales) {
stop("timeScale '", timeScale,"' not among following existing time scales: ",
paste0("'", allScales, "'", collapse = ", "))
}
## lexVars: if !merge, will drop all but these (NOTE: checkLexisData
## check for existence of these)
lexVars <- c("lex.id", "lex.multi", allScales, "lex.dur", "lex.Cst", "lex.Xst")
lexVars <- intersect(lexVars, names(lex))
othVars <- setdiff(names(lex), lexVars)
## basic checks on breaks
if (drop && length(breaks) == 1L) {
stop("Length of breaks vector is one, but argument 'drop' is TRUE. ",
"Cannot do dropping with only one break. Either supply at least ",
"two breaks or set drop = FALSE.")
}
if (length(breaks) == 0L) {
stop("No breaks supplied (length of breaks is zero).")
}
## remove any existing breaks already split by;
## NOTE: setdiff would break Date format breaks!
orig_breaks <- copy(breaks)
if (length(allBreaks[[timeScale]])) {
## because any test like (x %in% NULL) results in FALSE.
breaks <- breaks[!breaks %in% allBreaks[[timeScale]]]
}
breaks <- matchBreakTypes(lex, breaks, timeScale, modify.lex = FALSE)
if (length(breaks) == 0L || (length(orig_breaks) == 2L && drop)) {
## former means no additional splitting to do. (we still crop & drop
## if argument drop = TRUE)
## latter means we only need to crop & drop.
do_split <- FALSE
breaks <- orig_breaks
}
breaks <- sort(breaks)
if (!drop) breaks <- protectFromDrop(breaks)
BL <- list(breaks)
setattr(BL, "names", timeScale)
checkBreaksList(x = lex, breaks = BL)
## use subset lex if dropping for efficiency
orig_lex <- lex
if (drop) {
keepVars <- if (merge) NULL else lexVars ## NULL: all vars
lex <- subsetDTorDF(lex, select = keepVars)
rm(keepVars)
lex <- data.table(lex)
setattr(lex, "class", c("Lexis", "data.table", "data.frame"))
lex <- intelliCrop(lex, breaks = BL, allScales = allScales,
cropStatuses = TRUE, tol = tol)
lex <- intelliDrop(lex, breaks = BL, dropNegDur = TRUE,
check = FALSE, tol = tol)
}
if (!do_split) {
l <- if (!drop) copy(lex) else lex
} else {
## currently cannot handle NA values in split time scale; will add them in
## the end
ts_is_na <- is.na(lex[[timeScale]])
ts_any_na <- any(ts_is_na)
if (ts_any_na) {
warning("NA values in the time scale you are splitting along ('",
timeScale,"'). Results may deviate from that produced by ",
"splitLexis from package Epi. For safety you may want to split ",
"using only the data with no NA values and combine the the split",
" data with the NA-valued data using rbind.")
lex_na <- lex[ts_is_na, ]
lex <- lex[!ts_is_na, ]
}
## will use this due to step below (and laziness)
ts_values <- lex[[timeScale]]
## Date objects are based on doubles and therefore keep the most information
if (inherits(ts_values, c("IDate"))) ts_values <- as.Date(ts_values)
N_expand <- length(breaks)
N_subjects <- nrow(lex)
## use tmp id to ensure correct status rolling -----------------------------
id_dt <- data.table(
tmp_id_values = 1:nrow(lex),
orig_id_values = lex[["lex.id"]]
)
on.exit(set(lex, j = "lex.id", value = id_dt[["orig_id_values"]]))
set(lex, j = "lex.id", value = id_dt[["tmp_id_values"]])
## quick data expansion ------------------------------------------------------
l <- vector(mode = "list", length = N_expand)
l[[1]] <- data.table(lex)
if (!merge) setcolsnull(l[[1]], keep = lexVars, soft = FALSE)
tmpID <- makeTempVarName(data = l[[1]], pre = "TEMP_SPLITTING_ID")
tmpIE <- makeTempVarName(data = l[[1]], pre = "TEMP_SPLIT_INT_END")
set(l[[1]], j = tmpID, value = 1:nrow(l[[1]]))
if (N_expand > 1L) {
for (k in 2:(N_expand)) {
l[[k]] <- l[[1]]
}
}
l <- rbindlist(l)
## time scale value determination --------------------------------------------
set(l, j = tmpIE, value = rep(breaks, each = N_subjects))
set(l, j = tmpIE, value = pmin(l[[tmpIE]], l[[timeScale]] + l$lex.dur) )
set(l, j = timeScale, value = c(
ts_values,
pmax(ts_values, rep(breaks[-length(breaks)], each = N_subjects))
))
set(l, j = "lex.dur", value = l[[tmpIE]] - l[[timeScale]] )
## other time scale values ---------------------------------------------------
otherScales <- setdiff(allScales, timeScale)
if (length(otherScales) > 0) {
## change in timeScale
ts_delta <- l[[timeScale]] - ts_values
for (k in otherScales) {
set(l, j = k, value = lex[[k]] + ts_delta)
}
}
## dropping ----------------------------------------------------------------
## drops very very small intervals as well as dur <= 0
has_zero_dur <- l[["lex.dur"]] < tol
if (any(has_zero_dur)) {
l <- l[!has_zero_dur]
}
## roll states -------------------------------------------------------------
# this avoids duplicate deaths, etc., where appropriate.
setkeyv(l, c("lex.id", timeScale))
lex_id <- mget_cols(c("lex.Cst", "lex.Xst", "lex.id"), data = lex)
setattr(lex_id, "time.scales", allScales)
roll_lexis_status_inplace(
unsplit.data = lex_id, split.data = l, id.var = "lex.id"
)
rm("lex_id")
set(l, j = c(tmpIE, tmpID), value = NULL)
## revert to original IDs --------------------------------------------------
set(l, j = "lex.id", value = {
id_dt[
i = list(tmp_id_values = l$lex.id),
j = .SD,
on = "tmp_id_values",
.SDcols = "orig_id_values"
]
})
if (ts_any_na) {
l <- rbind(l, lex_na)
setkeyv(l, c("lex.id", timeScale))
}
}
## harmonize statuses --------------------------------------------------------
harmonizeStatuses(x = l, C = "lex.Cst", X = "lex.Xst")
## ensure time scales and lex.dur have same (ish) class as before ------------
for (k in c(allScales, "lex.dur")) {
if (inherits(orig_lex[[k]], "difftime") && !inherits(l[[k]], "difftime")){
setattr(l[[k]], "class", "difftime")
setattr(l[[k]], "units", attr(orig_lex[[k]], "units"))
} else if (is.numeric(orig_lex[[k]]) && inherits(l[[k]], "difftime")) {
set(l, j = k, value = as.numeric(l[[k]]))
}
}
## harmonize time scales -----------------------------------------------------
## numeric time scales are forced to the lowest common denominator:
## difftime -> integer -> double (though difftime is not numeric class)
harmonizeNumericTimeScales(l, times = c(allScales, "lex.dur"))
## final touch & attributes --------------------------------------------------
setcolorder(l, neworder = intersect(c(lexVars, othVars), names(l))) #merge=T/F
if (!drop) breaks <- unprotectFromDrop(breaks)
allBreaks[[timeScale]] <- sort(unique(c(allBreaks[[timeScale]], breaks)))
allBreaks <- lapply(allScales, function(scale_nm) {
allBreaks[[scale_nm]] ## intentionally NULL if not there
})
names(allBreaks) <- allScales
setattr(l, "breaks", allBreaks)
setattr(l, "time.scales", allScales)
setattr(l, "time.since", attr_list[["time.since"]])
setattr(l, "class", c("Lexis","data.table","data.frame"))
if (!return_DT()) setDFpe(l)
l[]
}
|