1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
|
#' @template survival_doc_template
#' @param formula a `formula`; the response
#' must be the time scale to compute survival time function estimates
#' over, e.g. `fot ~ sex`. Variables on the right-hand side of the formula
#' separated by `+` are considered stratifying variables, for which
#' estimates are computed separately. May contain usage of `adjust()`
#' --- see Details and Examples.
#' @param data since popEpi 0.4.0, a `data.frame`
#' containing variables used in `formula` and other arguments.
#' `aggre` objects are recommended as they contain information on any
#' time scales and are therefore safer; for creating `aggre` objects see
#' `[as.aggre]` when your data is already aggregated and `aggre`
#' for aggregating split `Lexis` objects.
#'
#' @param surv.breaks a vector of breaks on the
#' survival time scale. Optional if `data` is an `aggre` object
#' and mandatory otherwise. Must define each intended interval;
#' e.g. `surv.breaks = 0:5` when data has intervals defined by
#' breaks `seq(0, 5, 1/12)` will aggregate to wider intervals first.
#' It is generally recommended (and sufficient;
#' see Seppa, Dyban and Hakulinen (2015)) to use monthly
#' intervals where applicable.
#'
#' @param n variable containing counts of subjects at-risk at the start of a
#' time interval; e.g. `n = "at.risk"`.
#' Required when `surv.method = "lifetable"`.
#' [Flexible input][flexible_argument].
#'
#' @param d variable(s) containing counts of subjects experiencing an event.
#' With only one type of event, e.g. `d = "deaths"`. With multiple types of
#' events (for CIF or cause-specific survival estimation), supply e.g.
#' `d = c("canD", "othD")`. If the survival time function to be estimated
#' does not use multiple types of events, supplying more than one variable
#' to `d` simply causes the variables to be added together.
#' Always required. [Flexible input][flexible_argument].
#'
#' @param n.cens variable containing counts of subjects censored during a
#' survival time interval; E.g. `n.cens = "alive"`.
#' Required when `surv.method = "lifetable"`.
#' [Flexible input][flexible_argument].
#' @param pyrs variable containing total subject-time accumulated within a
#' survival time interval; E.g. `pyrs = "pyrs"`.
#' Required when `surv.method = "hazard"`. Flexible input.
#' @param d.exp variable denoting total "expected numbers of events"
#' (typically computed `pyrs * pop.haz`, where
#' `pop.haz` is the expected hazard level)
#' accumulated within a survival time interval; E.g. `pyrs = "pyrs"`.
#' Required when computing EdererII relative survivals or
#' CIFs based on excess counts of events. Flexible input.
#' @param n.pp variable containing total Pohar-Perme weighted counts of
#' subjects at risk in an interval,
#' supplied as argument `n` is supplied.
#' Computed originally on the subject
#' level as analogous to `pp * as.integer(status == "at-risk")`.
#' Required when `relsurv.method = "pp"`. Flexible input.
#'
#' @param d.pp variable(s) containing Pohar-Perme weighted counts of events,
#' supplied as argument `d` is supplied. Computed originally on the subject
#' level as analogous to `pp * as.integer(status == some_event)`.
#' Required when `relsurv.method = "pp"`. Flexible input.
#' @param d.pp.2 variable(s) containing total Pohar-Perme
#' "double-weighted" counts of events,
#' supplied as argument `d` is supplied. Computed originally on the subject
#' level as analogous to `pp * pp * as.integer(status == some_event)`.
#' Required when `relsurv.method = "pp"`. Flexible input.
#' @param n.cens.pp variable containing total Pohar-Perme weighted counts
#' censorings,
#' supplied as argument `n.cens` is supplied.
#' Computed originally on the subject
#' level as analogous to `pp * as.integer(status == "censored")`.
#' Required when `relsurv.method = "pp"`. Flexible input.
#' @param pyrs.pp variable containing total Pohar-Perme weighted subject-times,
#' supplied as argument `pyrs` is supplied.
#' Computed originally on the subject
#' level as analogous to `pp * pyrs`.
#' Required when `relsurv.method = "pp"`. Flexible input.
#' @param d.exp.pp variable containing total Pohar-Perme weighted counts
#' of excess events,
#' supplied as argument `pyrs` is supplied.
#' Computed originally on the subject
#' level as analogous to `pp * d.exp`.
#' Required when `relsurv.method = "pp"`. Flexible input.
#'
#'
#' @section Data requirements:
#'
#' `survtab_ag` computes estimates of survival time functions using
#' pre-aggregated data. For using subject-level data directly, use
#' `[survtab]`. For aggregating data, see `[lexpand]`
#' and `[aggre]`.
#'
#' By default, and if data is an `aggre` object (not mandatory),
#' `survtab_ag` makes use of the exact same breaks that were used in
#' splitting the original data (with e.g. `lexpand`), so it is not
#' necessary to specify any `surv.breaks`. If specified, the
#' `surv.breaks` must be a subset of the pertinent
#' pre-existing breaks. When data is not an `aggre` object, breaks
#' must always be specified. Interval lengths (`delta` in output) are
#' also calculated based on whichever breaks are used,
#' so the upper limit of the breaks should
#' therefore be meaningful and never e.g. `Inf`.
#'
#'
#' @examples
#' ## see more examples with explanations in vignette("survtab_examples")
#'
#' #### survtab_ag usage
#'
#' data("sire", package = "popEpi")
#' ## prepare data for e.g. 5-year "period analysis" for 2008-2012
#' ## note: sire is a simulated cohort integrated into popEpi.
#' BL <- list(fot=seq(0, 5, by = 1/12),
#' per = c("2008-01-01", "2013-01-01"))
#' x <- lexpand(sire, birth = bi_date, entry = dg_date, exit = ex_date,
#' status = status %in% 1:2,
#' breaks = BL,
#' pophaz = popmort,
#' aggre = list(fot))
#'
#' ## calculate relative EdererII period method
#' ## NOTE: x is an aggre object here, so surv.breaks are deduced
#' ## automatically
#' st <- survtab_ag(fot ~ 1, data = x)
#'
#' summary(st, t = 1:5) ## annual estimates
#' summary(st, q = list(r.e2 = 0.75)) ## 1st interval where r.e2 < 0.75 at end
#' \donttest{
#' plot(st)
#'
#'
#' ## non-aggre data: first call to survtab_ag would fail
#' df <- data.frame(x)
#' # st <- survtab_ag(fot ~ 1, data = x)
#' st <- survtab_ag(fot ~ 1, data = x, surv.breaks = BL$fot)
#'
#' ## calculate age-standardised 5-year relative survival ratio using
#' ## Ederer II method and period approach
#'
#' sire$agegr <- cut(sire$dg_age,c(0,45,55,65,75,Inf),right=FALSE)
#' BL <- list(fot=seq(0, 5, by = 1/12),
#' per = c("2008-01-01", "2013-01-01"))
#' x <- lexpand(sire, birth = bi_date, entry = dg_date, exit = ex_date,
#' status = status %in% 1:2,
#' breaks = BL,
#' pophaz = popmort,
#' aggre = list(agegr, fot))
#'
#' ## age standardisation using internal weights (age distribution of
#' ## patients diagnosed within the period window)
#' ## (NOTE: what is done here is equivalent to using weights = "internal")
#' w <- aggregate(at.risk ~ agegr, data = x[x$fot == 0], FUN = sum)
#' names(w) <- c("agegr", "weights")
#'
#' st <- survtab_ag(fot ~ adjust(agegr), data = x, weights = w)
#' plot(st, y = "r.e2.as", col = c("blue"))
#'
#' ## age standardisation using ICSS1 weights
#' data(ICSS)
#' cut <- c(0, 45, 55, 65, 75, Inf)
#' agegr <- cut(ICSS$age, cut, right = FALSE)
#' w <- aggregate(ICSS1~agegr, data = ICSS, FUN = sum)
#' names(w) <- c("agegr", "weights")
#'
#' st <- survtab_ag(fot ~ adjust(agegr), data = x, weights = w)
#' lines(st, y = "r.e2.as", col = c("red"))
#'
#'
#' ## cause-specific survival
#' sire$stat <- factor(sire$status, 0:2, c("alive", "canD", "othD"))
#' x <- lexpand(sire, birth = bi_date, entry = dg_date, exit = ex_date,
#' status = stat,
#' breaks = BL,
#' pophaz = popmort,
#' aggre = list(agegr, fot))
#' st <- survtab_ag(fot ~ adjust(agegr), data = x, weights = w,
#' d = c("fromalivetocanD", "fromalivetoothD"),
#' surv.type = "surv.cause")
#' plot(st, y = "surv.obs.fromalivetocanD.as")
#' lines(st, y = "surv.obs.fromalivetoothD.as", col = "red")
#'
#'
#' }
#' @export
survtab_ag <- function(formula = NULL,
data,
adjust = NULL,
weights = NULL,
surv.breaks = NULL,
n = "at.risk",
d = "from0to1",
n.cens = "from0to0",
pyrs = "pyrs",
d.exp = "d.exp",
n.pp = NULL,
d.pp = "d.pp",
d.pp.2 = "d.pp.2",
n.cens.pp = "n.cens.pp",
pyrs.pp = "pyrs.pp",
d.exp.pp = "d.exp.pp",
surv.type="surv.rel",
surv.method="hazard",
relsurv.method="e2",
subset = NULL,
conf.level = 0.95,
conf.type = "log-log",
verbose=FALSE) {
if (verbose) starttime <- proc.time()
Tstop <- delta <- Tstart <- surv.int <- n.eff <- n.eff.pp <- surv.obs <-
lag1_surv.obs <- p.obs <- CIF.rel <- NULL ## APPEASE R CMD CHECK
TF <- environment()
PF <- parent.frame(1L)
this_call <- match.call()
used_args <- as.list(this_call)[-1L]
fl <- formals("survtab_ag")
used_args <- c(used_args, fl[!names(fl) %in% names(used_args)])
used_args <- used_args[names(fl)]
rm(fl)
attrs <- copy(attributes(data))
# check data -----------------------------------------------------------------
if (missing(data) || nrow(data) == 0) stop("data missing or has no rows")
# check arguments ------------------------------------------------------------
surv.type <- match.arg(surv.type, c("surv.obs","surv.rel","surv.cause", "cif.obs", "cif.rel"))
surv.method <- match.arg(surv.method, c("lifetable","hazard"))
relsurv.method <- match.arg(relsurv.method, c("e2", "pp", "EdererII", "Pohar-Perme", "pohar-perme", "edererII", "ederer2"))
if (relsurv.method %in% c("EdererII", "edererII", "ederer2")) relsurv.method <- "e2"
if (relsurv.method %in% c("Pohar-Perme", "pohar-perme")) relsurv.method <- "pp"
relsurv.method <- match.arg(relsurv.method, c("e2", "pp"))
conf.type <- match.arg(conf.type, c("log","log-log","plain"))
## argument 'formula' pre-check ----------------------------------------------
if (!(inherits(formula, "formula") && length(formula) == 3L)) {
stop("Argument 'formula' does not appear to be a two-sided formula. ",
"Usage: e.g. fot ~ sex")
}
surv.scale <- deparse(formula[[2]])
if (!surv.scale %in% names(data)) {
stop("Left-hand-side of formula must be a column in data; e.g. ",
"fot ~ sex, where 'fot' is the name of a column in data.")
}
## check breaks --------------------------------------------------------------
surv.breaks <- select_breaks(data = data, ts = surv.scale, br = surv.breaks)
surv.breaks <- sort(unique(surv.breaks))
# if (!breaks_in_data(surv.breaks, surv.scale, data)) {
# stop("Used breaks do not all appear to exist in data. Make sure the ",
# "breaks match to the values that your time scale variable has in the ",
# "data.")
# }
# data prep & subsetting -----------------------------------------------------
subset <- substitute(subset)
subset <- evalLogicalSubset(data, subset)
origData <- data
data <- data[subset, ]
setDT(data)
# handle count etc. variables ------------------------------------------------
valVars <- c("d")
valVars <- c(valVars, if (surv.method == "hazard") "pyrs" else c("n", "n.cens"))
valVars <- c(valVars, if (surv.type == "surv.rel" && relsurv.method == "e2") "d.exp" else NULL)
valVars <- c(valVars, if (surv.type == "cif.rel") "d.exp" else NULL)
ppVars <- c("d.pp", "d.exp.pp", "d.pp.2",
if (surv.method == "hazard") "pyrs.pp" else c("n.cens.pp", "n.pp"))
valVars <- c(valVars, if (surv.type == "surv.rel" && relsurv.method == "pp") ppVars else NULL)
fo <- formals("survtab_ag")
mc <- as.list(match.call())[-1]
mc <- c(mc, fo[!names(fo) %in% names(mc)])
mc <- mc[valVars]
mc <- lapply(mc, function(elem) {
evalPopArg(data = data, arg = elem, DT = TRUE, enclos = PF, recursive = TRUE)
})
## if given as multiple vars, combine these into one (e.g. n = c("v1", "v2"))
combValVars <- c("n", "n.cens", "d.exp", "d.pp", "d.exp.pp", "d.pp.2",
"pyrs", "pyrs.pp", "n.cens.pp", "n.pp")
combValVars <- intersect(names(mc), combValVars)
mc[combValVars] <- lapply(combValVars, function(val_var) {
tab <- mc[[val_var]]
if (!is.data.frame(tab) || length(tab) == 1L) return(tab)
tab_na <- names(tab)
e <- paste0(tab_na, collapse = " + ")
e <- parse(text = e)
tab <- data.table(V1 = tab[, eval(e)])
setnames(tab, "V1", val_var)
tab
})
## NOTE: this does not delete but sets the value to NULL.
mc[unlist(lapply(mc, function(x) {
NROW(x) == 0L || is.null(x) || is.language(x) || inherits(x, "try-error")
}))] <- NULL
lackVars <- setdiff(valVars, names(mc[!unlist(lapply(mc, is.null))]))
if (length(lackVars) > 0) {
stop("Following arguments were NULL or could not be evaluated but are ",
"required: ", paste0("'", lackVars, "'", collapse = ", "), ". ",
"Usual suspects: arguments are NULL or refer to variables that ",
"cannot be found in data.")
}
eventVars <- NULL
mc[[1]] <- data.table(mc[[1L]]) ## this avoids an exotic error in set().
nl <- lapply(mc, names)
for (k in 1:length(mc)) {
jay <- argName <- names(mc[k])
cn <- names(mc[[k]])
if (length(cn) > 1) jay <- paste0(jay, ".", cn) ## e.g. d.1, d.2, ...
if (argName %in% c("d")) {
eventVars <- jay
if (surv.type %in% c("surv.cause") && length(cn) == 1L) {
stop("surv.type = 'surv.cause', but only one type of event supplied ",
"via argument 'd'. If you want to compute cause-specific ",
"survivals, please supply multiple types of events via ",
"'d'; otherwise use surv.type = 'surv.obs'")
} else if (length(cn) > 1 && !argName %in% c("d","d.pp", "d.pp.2", "n.pp")) {
stop("'", argName, "' has/evaluates to ", length(cn),
" columns; only 'd', 'd.pp', and 'd'pp.2', 'n.pp' may evaluate ",
"to more than one column of the value arguments")
}
}
setnames(mc[[k]], cn, jay)
set(mc[[1]], j = jay, value = mc[[k]])
nl[[argName]] <- jay
}
mc <- mc[[1]]
if (!is.null(eventVars)) {
set(mc, j = "d", value = rowSums(mc[, mget(eventVars)]))
valVars <- unique(c(valVars, "d", eventVars))
}
all_names_present(mc, valVars,
msg = paste0("Expected internal temp data to have ",
"variables %%VARS%% at this point, but didn't",
". This is most likely a bug and should be ",
"reported to pkg maintainer."))
setcolorder(mc, valVars)
## addition: internal weights use n at beginning of first interval
if (is.character(weights)) {
checkWeights(weights)
if (!"n" %in% valVars) {
n <- substitute(n)
mc$n <- evalPopArg(n, data = data, enclos = PF)
valVars <- unique(c(valVars, "n"))
if (is.null(mc$n)) {
stop("Requested internal weights to be computed and used to standardize ",
"estimates, but argument 'n' not supplied. This is currently ",
"required for computing internal weights (the values of 'n' ",
"in the first interval will be used for this). Please supply 'n' ",
"or supply hand-made weights (preferred for your clarity).")
}
}
data[, c("n") := mc$n]
}
# making weighted table of aggregated values ---------------------------------
## NOTE: at-risk counts require special treatment when surv.breaks
## are a subset of the available breaks: cannot sum at-risk figures!
## instead should simply pick the value at the start of the
## (now larger) interval. Will accomplish this by setting values not
## at the start of an interval to zero and summing anyway.
if (surv.method == "lifetable") {
wh_internal <- list(surv.breaks)
names(wh_internal) <- surv.scale
wh_internal <- data[wh_internal, on = eval(surv.scale), which = TRUE]
wh_internal <- setdiff(1:nrow(data), wh_internal)
mc[wh_internal, intersect(c("n", "n.pp"), names(mc)) := 0L]
}
## NOTE: while ssSub will pass the whole column of e.g. fot values, which will
## not limit the data to e.g. up 5 years of follow-up if original data went
## further, surv.breaks may be only up to 5 years and will limit the data
## in makeWeightsDT using a CJ-merge-trick appropriately (via custom.levels).
bl <- list(surv.breaks)
setattr(bl, "names", surv.scale)
adjust <- evalPopArg(data, adjust, enclos = PF, naming = "model")
iws <- NULL
if (is.character(weights) && pmatch(weights, c("internal", "cohort"), 0)) {
if (!"n" %in% names(data)) {
stop("Need 'n' specified for when using internal weights: Internal ",
"weights are computed as the counts of subjects at the start of ",
"follow-up.")
}
iws <- makeTempVarName(data, pre = "internal_weights_")
data[, c(iws) := 0.0]
data[data[[surv.scale]] == surv.breaks[1], c(iws) := n]
}
data <- makeWeightsDT(data = data, values = list(mc), enclos = PF,
print = NULL, formula = formula, adjust = adjust,
by.other = surv.scale, Surv.response = FALSE,
custom.levels = bl, weights = weights,
internal.weights.values = iws,
custom.levels.cut.low = surv.scale)
allVars <- attr(data, "makeWeightsDT")
allVars[] <- lapply(allVars, function(x) if (length(x) == 0L) NULL else x)
prVars <- allVars$prVars
adVars <- allVars$adVars
# boVars <- allVars$boVars ## this is surv.scale
valVars <- allVars$vaVars
## to avoid e.g. 'factor(sex, 1:2)' going bonkers
prVars_orig <- prVars
if (length(prVars) > 0L) {
prVars <- makeTempVarName(names = c(names(data), adVars),
pre = paste0("print_", 1:length(prVars)))
}
adVars_orig <- adVars
if (length(adVars) > 0L) {
adVars <- makeTempVarName(names = c(names(data), prVars),
pre = paste0("print_", 1:length(adVars)))
}
if (length(c(prVars, adVars))) setnames(data, c(prVars_orig, adVars_orig), c(prVars, adVars))
byVars <- c(prVars, adVars)
# formulate some needed variables --------------------------------------------
setkeyv(data, c(byVars, surv.scale))
data[, "Tstop" := rep(surv.breaks[-1],length.out=.N)]
setnames(data, surv.scale, "Tstart")
data[, "delta" := Tstop - Tstart]
data[, "surv.int" := 1:.N, by = eval(byVars)]
setcolorder(data, c(byVars, "surv.int", "Tstart", "Tstop", "delta", valVars, intersect(names(data), "weights")))
if (surv.method == "lifetable") {
testEvents <- data[, n - shift(n, n = 1, type = "lead", fill = NA), by = eval(byVars)]$V1
testEvents <- data$n.cens + data$d - testEvents
if (sum(abs(testEvents), na.rm = TRUE)) {
on.exit({
data[, "n.cens + d - (n-lead1_n)" := testEvents]
wh <- testEvents != 0L
wh <- wh & !is.na(wh)
if (interactive()) {
printSD <- c(byVars, "Tstop", "d", "n", "n.cens",
"n.cens + d - (n-lead1_n)")
print(data[wh, .SD, .SDcols = printSD], top = 5, nrow = 10)
}
}, add = TRUE)
stop("Supplied n.cens and d do not sum to total number of events and ",
"censorings based on n alone. Note that lifetable analysis ",
"is currently not supported for period analysis (or other ",
"comparable limitations of data).",
if (interactive())" See table below and check your variables.")
}
rm(testEvents)
data[, "n.eff" := n - n.cens/2L]
}
# compute observed survivals ------------------------------------------------
if (verbose) ostime <- proc.time()
if (surv.method=="lifetable") {
comp.st.surv.obs.lif(surv.table = data, surv.by.vars = byVars)
}
if (surv.method=="hazard") {
comp.st.surv.obs.haz(surv.table = data, surv.by.vars = byVars)
}
data <- comp.st.conf.ints(data, al=1-conf.level, surv="surv.obs", transform = conf.type)
if (verbose) {
message("* popEpi::survtab_ag: computed observed survival estimates; ",
data.table::timetaken(ostime))
}
## empty surv.int checking ---------------------------------------------------
testVar <- if (surv.method == "lifetable") "n" else "pyrs"
## sum over adjusting variables
data <- test_empty_surv_ints(data, by = c(prVars, adVars),
show.by = c(prVars_orig, adVars_orig),
sum.over = adVars,
test.var = testVar)
## sum over nothing
if (length(adVars) > 0L) {
data <- test_empty_surv_ints(data, by = c(prVars, adVars),
show.by = c(prVars_orig, adVars_orig),
sum.over = NULL, test.var = testVar)
}
## if adjusting, crop all estimates by adjusting variables
## to shortest estimate
if (length(adVars)) {
adLe <- data[, list(min = min(surv.int), max = max(surv.int)), keyby = eval(adVars)]
adLe <- c(max(adLe$min), min(adLe$max))
data <- data[surv.int %in% `:`(adLe[1L], adLe[2L])]
}
# create and print table of bad surv.ints ------------------------------------
badObsSurv <- data$surv.obs == 0 | is.na(data$surv.obs)
if (sum(badObsSurv)) {
zerotab <- data[badObsSurv,
list(first.bad.surv.int = min(as.integer(surv.int)),
last.bad.surv.int = max(as.integer(surv.int)),
surv.obs=min(surv.obs)), keyby = eval(byVars)]
message("* popEpi::survtab_ag: Some cumulative surv.obs were zero or NA:")
if (length(byVars)) setnames(zerotab, c(prVars, adVars), c(prVars_orig, adVars_orig))
print(zerotab)
if (surv.method == "lifetable" && data[surv.obs == 0, .N] > 0) {
message("* popEpi::survtab_ag: NOTE: Zero surv.obs leads to zero ",
"relative survivals as well. Adjusting with weights WILL use ",
"the zero surv.obs / relative survival values.")
}
}
rm(badObsSurv)
# compute cause-specific survivals ------------------------------------------
if (surv.type == "surv.cause") {
## NOTE: these related to adjusting life-table estimates for delayed entry...
# data[, "n.eff" := n - n.cens/2 + n.de/2 + n.de.cens/4] # + d.de/2
# "n.cens_1" := n.cens + (d-d_1)
# "n.de.cens" := n.de.cens + (d.de - d.de_1)
if (surv.method == "lifetable") {
for (k in eventVars) {
k <- gsub(pattern = "d_", replacement = "", x = k)
d_k <- paste0("d_", k)
# d.de_k <- paste0("d.de_",k)
n.eff_k <- paste0("n.eff_",k)
## old: " := n - (n.cens + (d-", d_k,")/2 + n.de/2 + (n.de.cens + d.de - ", d.de_k,")/4 )"
# expr <- paste0(n.eff_k, " := n - (n.cens + (d-", d_k,")/2 )")
set(data, j = c(n.eff_k), value = data$n.eff + (data$d - data[[d_k]])/2L ) # + d.de/2
# data[, eval(parse(text = expr), envir = .SD)]
}
}
surv_names <- names(data)[grep("surv.obs", names(data))]
surv_names <- c("d", if (surv.method == "lifetable") "n.eff" else NULL, surv_names)
setnames(data, surv_names, paste0(surv_names, ".orig"))
for (k in eventVars) {
k <- gsub(pattern = "d.", replacement = "", x = k)
setnames(data, paste0("d.",k), "d")
if (surv.method=="hazard") {
comp.st.surv.obs.haz(surv.table = data, surv.by.vars = byVars)
} else {
setnames(data, paste0("n.eff_", k), "n.eff")
comp.st.surv.obs.lif(surv.table = data, surv.by.vars = byVars)
}
os.table <- comp.st.conf.ints(data, al=1-conf.level, surv="surv.obs", transform = conf.type)
new_surv_names <- setdiff(surv_names, c("d", if (surv.method == "lifetable") "n.eff" else NULL))
new_surv_names <- gsub("surv.obs", paste0("surv.obs.", k), new_surv_names)
new_surv_names <- c(paste0(c("d.", if (surv.method == "lifetable") "n.eff." else NULL), k), new_surv_names)
setnames(data, surv_names, new_surv_names)
}
setnames(data, paste0(surv_names, ".orig"), surv_names)
}
# compute cause-specific/excess-case CIFs ------------------------------------
if (surv.type %in% c("cif.obs", "cif.rel")) {
data[, "lag1_surv.obs" := shift(surv.obs, n = 1L, type = "lag", fill = 1), by = eval(byVars)]
data[, "p.obs" := surv.obs/lag1_surv.obs]
if (surv.type == "cif.obs") {
for (k in eventVars) {
k <- gsub("d.", "", x = k)
d.k <- paste0("d.", k)
d.var <- paste0("d.",k)
q.var <- paste0("q.", k)
CIF_var <- paste0("CIF_", k)
data[, (q.var) := (1-p.obs)*get(d.var)/d]
data[get(d.var) == 0L | d == 0L, (q.var) := 0]
data[, (CIF_var) := cumsum(lag1_surv.obs*get(q.var)), by = eval(byVars)]
}
}
if (surv.type == "cif.rel") {
## assuming d.exp in data
data[, "CIF.rel" := (1-p.obs)*(d-d.exp)/d]
data[d.exp>d, "CIF.rel" := NA]
data[, "CIF.rel" := cumsum(lag1_surv.obs*CIF.rel), by = eval(byVars)]
}
## SEs currently not known for CIFs; impute 0 to make adjusting work
CIF_vars <- names(data)[substr(names(data),1,3) == "CIF"]
data[, c(paste0("SE.", CIF_vars)) := 0L]
setcolsnull(data, c("lag1_surv.obs", "p.obs", paste0("q.", substr(eventVars, 3, nchar(eventVars)))))
}
# relative survivals ---------------------------------------------------------
if (surv.type == "surv.rel" & relsurv.method == "e2") {
# compute r.e2 -------------------------------------------------------------
comp.st.rs <- function(rs.table, rs.by.vars = byVars) {
p.exp <- delta <- surv.exp <- surv.obs <- n.eff.pp <-
surv.obs <- NULL ## APPEASE R CMD CHECK
## EdererII
##-------------
if (surv.method == "hazard") {
rs.table[, "p.exp" := exp(-delta*d.exp/pyrs)]
rs.table[, "surv.exp" := cumprod(p.exp), by = eval(rs.by.vars)]
comp.st.r.e2.haz(surv.table = rs.table, surv.by.vars = rs.by.vars)
} else {
rs.table[, "p.exp" := 1 - d.exp/n]
rs.table[, "surv.exp" := cumprod(p.exp), by = eval(rs.by.vars)]
if (rs.table[, min(surv.obs, na.rm=TRUE) == 0]) {
rs.table[surv.obs == 0, "surv.exp" := 1]
}
comp.st.r.e2.lif(surv.table = rs.table, surv.by.vars = rs.by.vars)
if (rs.table[, min(surv.obs, na.rm=TRUE) == 0]) {
rs.table[surv.obs == 0, intersect(c("surv.exp","r.e2","SE.r.e2","r.e2.lo","r.e2.hi"), names(rs.table)) := 0]
}
}
## ------------
rs.table <- comp.st.conf.ints(rs.table, al=1-conf.level, surv="r.e2", transform = conf.type)
return(rs.table)
}
data <- comp.st.rs(rs.table = data)
}
# compute r.pp ---------------------------------------------------------------
if (surv.type == "surv.rel" & relsurv.method == "pp") {
all_names_present(data, c("d.pp", "d.exp.pp", "d.pp.2"))
## pohar perme: analysis weighted by expected cumulative survival
comp.st.pp <- function(pp.table, by.vars = byVars) {
## relative survival
if (surv.method == "hazard") {
all_names_present(data, c("pyrs.pp"),
msg = paste0("internal error: work data did not have",
" variable named pyrs.pp. Complain ",
"to package maintainer if you see this."))
comp.st.r.pp.haz(surv.table = pp.table, surv.by.vars = by.vars)
} else {
data[, "n.eff.pp" := n.pp - 0.5*n.cens.pp]
all_names_present(data, c("n.pp", "n.cens.pp", "n.eff.pp"),
msg = paste0("internal error: work data did not have",
" variable named n.eff.pp. Complain ",
"to package maintainer if you see this."))
comp.st.r.pp.lif(surv.table = pp.table, surv.by.vars = by.vars)
if (pp.table[, min(surv.obs, na.rm=TRUE) == 0]) {
pp.table[surv.obs == 0, intersect(c("r.pp","SE.r.pp","r.pp.lo","r.pp.hi"), names(pp.table)) := 0]
}
}
pp.table <- comp.st.conf.ints(pp.table, al=1-conf.level, surv="r.pp", transform = conf.type )
return(pp.table)
}
data <- comp.st.pp(pp.table = data)
}
# compute adjusted estimates -------------------------------------------------
if ("weights" %in% names(data)) {
w_est_vars <- names(data)[substr(names(data), 1, 8) == "surv.obs"]
w_est_vars <- c(w_est_vars, "r.e2", "r.pp")
w_est_vars <- c(w_est_vars, names(data)[substr(names(data),1,3)=="CIF"])
w_est_vars <- intersect(w_est_vars, names(data))
w_est_vars <- w_est_vars[unlist(lapply(w_est_vars, function(x) {
!substr(x, nchar(x)-2L, nchar(x)) %in% c(".lo", ".hi")
}))]
w_se_vars <- paste0("SE.", w_est_vars)
w_est <- data[, lapply(.SD, function(x) sum(x*weights)),
keyby = c(prVars, "surv.int"), .SDcols = w_est_vars]
w_se <- data[, lapply(.SD, function(x) sqrt(sum((x^2)*(weights^2)))),
keyby = c(prVars, "surv.int"), .SDcols = w_se_vars]
data <- data[, lapply(mget(valVars), sum),
keyby = c(prVars, "surv.int", "Tstart", "Tstop", "delta")]
set(data, j = w_se_vars, value = mget(w_se_vars, as.environment(w_se)))
set(data, j = w_est_vars, value = mget(w_est_vars, as.environment(w_est)))
setnames(data, old = c(w_est_vars, w_se_vars),
new = paste0(c(w_est_vars, w_se_vars), ".as"))
for (var in paste0(w_est_vars, ".as")) {
data <- comp.st.conf.ints(data, al = 1-conf.level,
surv = var, transform = conf.type)
}
}
# clean-up -------------------------------------------------------------------
## back to original names of print / adjust (used to avoid e.g.
## 'factor(V1, 1:2)' going bonkers in data.table)
if (length(c(prVars))) setnames(data, c(prVars), c(prVars_orig))
prVars <- prVars_orig
adVars <- adVars_orig
## reorder table, format numeric values, etc.
miscVars <- intersect(names(data), c("surv.int", "Tstart", "Tstop", "delta"))
survVars <- c("surv.obs.lo","surv.obs","surv.obs.hi","SE.surv.obs",
"r.e2.lo","r.e2","r.e2.hi","SE.r.e2",
"r.pp.lo","r.pp","r.pp.hi","SE.r.pp",
paste0("CIF.rel.", c("lo", "", "hi")), "SE.CIF.rel",
"surv.obs.as.lo","surv.obs.as","surv.obs.as.hi","SE.surv.obs.as",
"r.e2.as.lo","r.e2.as","r.e2.as.hi","SE.r.e2.as",
"r.pp.as.lo","r.pp.as","r.pp.as.hi","SE.r.pp.as",
paste0("CIF.rel.as.", c("lo", "", "hi")), "SE.CIF.rel.as"
)
survVars <- intersect(survVars, names(data))
## which variables are estimates, SEs, CIs, etc.
survVars.ca <- setdiff(names(data), c(prVars, valVars, miscVars, survVars))
CIF_vars <- survVars.ca[substr(survVars.ca, 1,3)=="CIF" | substr(survVars.ca, 1,6)=="SE.CIF"]
survVars <- c(survVars, CIF_vars)
surv.obs.vars <- survVars.ca[substr(survVars.ca, 1,8) == "surv.obs" | substr(survVars.ca, 1,11) == "SE.surv.obs"]
survVars <- c(survVars, surv.obs.vars)
survVars <- unique(intersect(survVars, names(data)))
## remove some unuseful variables
setcolsnull(data, c("SE.A", "SE.B"))
setcolsnull(data, survVars[substr(survVars, 1, 6) == "SE.CIF"]) ## since they are zero for now
survVars <- intersect(survVars, names(data))
SEVars <- survVars[substr(survVars, 1, 3) == "SE."]
CIVars <- survVars[substr(survVars, nchar(survVars) - 2L, nchar(survVars)) %in% c(".lo", ".hi")]
estVars <- setdiff(survVars, c(SEVars, CIVars))
order <- unique(c(prVars, miscVars, valVars, survVars))
order <- intersect(order, names(data))
setcolsnull(data, setdiff(names(data), order))
setcolorder(data,order)
setkeyv(data, c(prVars, "surv.int"))
# attributes -----------------------------------------------------------------
setkeyv(data, c(prVars, "surv.int"))
setattr(data, "class", c("survtab", "data.table", "data.frame"))
if (!return_DT()) setDFpe(data)
if (length(prVars) == 0) prVars <- NULL ## might be character(0)
used_args$data <- origData
used_args$formula <- formula
used_args$weights <- evalRecursive(arg = weights, env = PF)$weights
arglist <- list(call = this_call,
arguments = used_args,
surv.scale = surv.scale,
surv.breaks = surv.breaks,
print.vars = prVars,
adjust.vars = adVars,
value.vars = valVars,
misc.vars = miscVars,
surv.vars = survVars,
est.vars = estVars,
SE.vars = SEVars,
CI.vars = CIVars)
varsArgs <- substr(names(arglist), nchar(names(arglist))-4L, nchar(names(arglist))) == ".vars"
varsArgs <- names(arglist)[varsArgs]
arglist[varsArgs] <- lapply(arglist[varsArgs], function(x) if (length(x) == 0L) NULL else x)
setattr(data, "survtab.meta", arglist)
if (verbose) {
message("* popEpi::survtab_ag: finished whole process; ",
data.table::timetaken(starttime))
}
data[]
}
# ag <- lexpand(sire, birth = "bi_date", entry = "dg_date", exit = "ex_date",
# status = status %in% 1:2, pophaz = popmort, pp = TRUE,
# aggre = list(sex, fot), fot = seq(0, 5, 1/12))
# ag[, d.exp := pmax(0L, from0to1 - 3L)]
# st <- survtab_ag(ag, surv.type = "surv.obs", surv.method = "hazard")
# st <- survtab_ag(ag, surv.type = "surv.cause", surv.method = "hazard", d = list(a = from0to1-3, b = 3))
# sire <- copy(sire)
# sire$sex <- rbinom(nrow(sire), size = 1, prob = 0.5)
# ag <- lexpand(sire, birth = "bi_date", entry = "dg_date", exit = "ex_date",
# status = status %in% 1:2, pophaz = popmort, pp = TRUE,
# aggre = list(sex, agegr = cut(dg_age, c(0,60,70,80, Inf), labels = FALSE), fot),
# fot = seq(0, 5, 1/12))
# ag <- lexpand(sire, birth = "bi_date", entry = "bi_date", exit = "ex_date",
# status = status %in% 1:2,
# aggre = list(sex, age),
# age = seq(0, 100, 1))
# wdt <- data.table(agegr = 1:4, weights = c(0.2, 0.4, 0.3, 0.1))
# wli <- list(agegr = c(0.2, 0.4, 0.3, 0.1))
# st <- survtab_ag(fot ~ sex + adjust(agegr), data = ag, surv.type = "surv.obs", surv.method = "hazard", weights = wli)
# st <- survtab_ag(fot ~ sex + adjust(agegr), data = ag, surv.type = "surv.rel",
# d.pp = "from0to1.pp", d.pp.2 = "from0to1.pp.2",
# d.exp.pp = "d.exp.pp", pyrs.pp = "ptime.pp",
# surv.method = "hazard", weights = wli,
# relsurv.method = "pp")
# ag <- lexpand(sire, birth = "bi_date", entry = "dg_date", exit = "ex_date",
# status = status, pophaz = popmort, pp = TRUE,
# aggre = list(sex, agegr = cut(dg_age, c(0,60,70,80, Inf), labels = FALSE), fot),
# fot = seq(0, 5, 1/12))
# st <- survtab_ag(fot ~ sex + adjust(agegr), data = ag,
# d = list(cand = from0to1, othd = from0to2),
# surv.type = "surv.cause", weights = wli)
# st <- survtab_ag(fot ~ sex, data = ag, surv.type = "surv.obs", surv.method = "hazard", adjust = "agegr", weights = wli)
# st <- survtab_ag(fot ~ adjust(agegr), data = ag, surv.type = "surv.obs", weights = wli)
# st <- survtab_ag(fot ~ 1, data = ag, adjust = "agegr", surv.type = "surv.obs", weights = wli)
# st <- survtab_ag(fot ~ 1, data = ag, adjust = "agegr", surv.type = "surv.obs", weights = wli)
# st <- survtab_ag(fot ~ 1, data = ag, surv.type = "surv.obs")
# wli2 <- wli
# wli$sex <- c(0.4, 0.6)
# st <- survtab_ag(fot ~ adjust(sex, agegr), data = ag, surv.type = "surv.obs", weights = wli)
# st <- survtab_ag(fot ~ adjust(agegr), data = ag, surv.type = "surv.obs", weights = wli["agegr"])
# ag[, d.exp := pmax(from0to1 - 1, 0L)]
# st <- survtab_ag(fot ~ adjust(sex, agegr), data = ag, surv.type = "surv.rel", weights = wli)
# st <- survtab_ag(fot ~ adjust(sex, agegr), data = ag, surv.type = "surv.cause", weights = wli)
# ag[, othd := pmax(from0to1 - 1L, 0L)]
# st <- survtab_ag(fot ~ adjust(sex, agegr), data = ag, d = list(cand = from0to1, othd = pmax(from0to1-1L, 0L)), surv.type = "surv.cause", weights = wli)
|