1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
|
# @title Make a `data.table` of Tabulated, Aggregated Values and Weights
# @description An internal function that aggregates a table
# and merges in weights.
# @param data DF/DT; passed to `envir` in `eval`
# @param values values to tabulate. Anything `evalPopArg` can evaluate.
# @param print variables to tabulate by and include in `prVars` in attributes
# @param adjust variables to tabulate by and include in `adVars` in attributes
# @param formula a formula such as `fot ~ sex` or `Surv(fot, lex.Xst) ~ sex`
# @param Surv.response logical, if `TRUE` throws error if response in
# `formula` is not a `Surv` object and vice versa
# @param by.other other variables to tabulate by and include
# in `boVars` in attributes
# @param custom.levels a named list of values. When "inflating" the data
# in the cross-join / cartesian join sense (try e.g. `merge(1:5, 1:2)`),
# one can supply the levels to inflate by using this to ensure inflation is full.
# E.g. data might only have levels present to do inflation analogous to
# `merge(2:5, 1:2)` although `merge(1:5, 1:2)` is intended and
# needed.
# @param custom.levels.cut.low a character string vector of variable names.
# These variables mentioned in `custom.levels` and existing in data
# or first modified (in data) using `cutLow()` (essentially
# `cut()` with `right = FALSE` and returning the lower bounds
# as values). Handy for aggregating data e.g. to survival intervals.
# **NOTE**: the appropriate elements in `custom.levels` for these
# variables must exceptionally contain an extra value as the roof used in
# cutting, which will not be used in "inflating" the table using a merge.
# See Examples.
# @param weights a named list or long-form data.frame of weights. See Examples.
# @param internal.weights.values the variable to use to compute internal
# weights; only used if `weights = "internal"`.
# @param enclos the enclosing environment passed on to `eval`. Variables
# not found in `data` or searched for here.
# @param NA.text a character string to display in a `warning`
# if there are any rows with missing `values` or `adjust` values.
# **special:** key phrase `%%NA_COUNT%%` in text is replaced
# with the count of missing observations.
# E.g. `"Missing %%NA_COUNTS%% observations due to derpness."`
# @examples
# library(data.table)
#
# makeWeightsDT <- popEpi:::makeWeightsDT ## this avoids errors during tests
#
# sire <- copy(popEpi::sire)
# set.seed(1L)
# sire$sex <- rbinom(nrow(sire), 1, 0.5)
# ag <- lexpand(sire, birth = "bi_date", entry = "dg_date", exit = "ex_date",
# status = status %in% 1:2, pophaz = popmort, pp = FALSE,
# aggre = list(sex, agegr = cut(dg_age, c(0,50,75,Inf)), fot),
# fot = seq(0, 5, 1/12))
# ps <- quote(list(sex, fot))
# as <- quote(list(agegr))
# vs <- list(quote(list(pyrs, at.risk)))
# ws <- list(agegr = c(0.2,0.4,0.4))
#
# #### custom.levels usage
# fb <- seq(0, 5-1/12, 1/12) ## exclude 5 as no row has that value
# ag2 <- ag[fot > 0.5,]
# # repeats fot intervals < 0.5 as empty rows
# # may be the safest way to do this
# dt <- makeWeightsDT(ag2, print = ps, adjust = as,
# values = vs, weights = ws,
# custom.levels = list(fot = fb))
# ## aggregate from intervals seq(0, 5, 1/12) to 0:5
# fb2 <- 0:5 ## (this time we include 5 as the roof)
# dt <- makeWeightsDT(ag2, print = ps, adjust = as,
# values = vs, weights = ws,
# custom.levels = list(fot = fb2),
# custom.levels.cut.low = "fot")
#
#
# #### use of enclos
# TF <- environment()
# gender <- factor(ag$sex)
# dt <- makeWeightsDT(ag, print = quote(gender), adjust = as,
# values = vs, weights = ws, enclos = TF)
# ## or NULL: uses calling frame by default.
# dt <- makeWeightsDT(ag, print = quote(gender), adjust = as,
# values = vs, weights = ws,
# enclos = NULL)
# ## passing parent.fram(1) is the same thing (as below),
# ## but won't pass in testing these examples somehow (but work in real life)
# # dt <- makeWeightsDT(ag, print = quote(gender), adjust = as,
# # values = vs, weights = ws,
# # enclos = NULL)
#
# #### formula usage
# form <- Surv(fot, factor(from0to1))~gender
# dt <- makeWeightsDT(ag, formula = form, Surv.response = TRUE,
# adjust = as, values = vs, weights = ws,
# enclos = NULL)
#
# ## or
# form <- Surv(fot, factor(from0to1))~gender + adjust(agegr)
# dt <- makeWeightsDT(ag, formula = form, Surv.response = TRUE,
# adjust = NULL, values = vs, weights = ws,
# enclos = NULL)
#
# ## or
# form <- from0to1 ~ fot + gender + adjust(agegr)
# dt <- makeWeightsDT(ag, formula = form, Surv.response = FALSE,
# adjust = NULL, values = vs, weights = ws,
# enclos = NULL)
#
# form <- from0to1 ~ fot + adjust(agegr) + adjust(sex)
# ws2 <- list(agegr = c(0.33, 0.33, 0.33), sex = c(0.5, 0.5))
# dt <- makeWeightsDT(ag, formula = form, Surv.response = FALSE,
# adjust = NULL, values = vs, weights = ws2,
# enclos = NULL)
#
# ## international standard pops
# ag <- lexpand(sire, birth = "bi_date", entry = "dg_date", exit = "ex_date",
# status = status %in% 1:2, pophaz = popmort, pp = FALSE,
# aggre = list(sex, agegr = cut(dg_age, c(seq(0, 85, 5), Inf)), fot),
# fot = seq(0, 5, 1/12))
#
# form <- from0to1 ~ fot + adjust(agegr)
# dt <- makeWeightsDT(ag, formula = form, Surv.response = FALSE,
# adjust = NULL, values = vs, weights = "world_1966_18of5",
# enclos = NULL)
#
# form <- from0to1 ~ fot + adjust(agegr, sex)
# dt <- makeWeightsDT(ag, formula = form, Surv.response = FALSE,
# adjust = NULL, values = vs,
# weights = list(agegr = "nordic_2000_18of5", sex=c(1,1)),
# enclos = NULL)
makeWeightsDT <- function(data, values = NULL,
print = NULL, adjust = NULL,
formula = NULL, Surv.response = TRUE,
by.other = NULL, custom.levels = NULL,
custom.levels.cut.low = NULL, weights = NULL,
internal.weights.values = NULL,
enclos = NULL, NA.text = NULL) {
# environmentalism -----------------------------------------------------------
TF <- environment()
PF <- parent.frame(1L)
if (missing(enclos) || is.null(enclos)) {
enclos <- PF
}
enclos <- eval(enclos, envir = TF)
if (!is.environment(enclos)) {
stop("Argument 'enclos' is not an environment. (Probably internal error, ",
"meaning you should complain to the package maintainer if you are not",
"doing something silly.)")
}
THIS_CALL <- match.call()
## dataism -------------------------------------------------------------------
if (!is.data.frame(data)) stop("data must be a data.frame")
## tmpDum for convenience. will be deleted in the end. (if no tabulating vars)
origData <- data
tmpDum <- makeTempVarName(origData, pre = "dummy_")
data <- data.table(rep(1L, nrow(origData)))
setnames(data, 1, tmpDum)
# formula: vars to print and adjust by ---------------------------------------
adSub <- adjust
adjust <- evalPopArg(data = origData, arg = adSub, DT = TRUE, enclos = enclos)
if (!is.null(formula)) {
foList <- usePopFormula(formula, adjust = adjust,
data = origData, enclos = enclos,
Surv.response = Surv.response)
print <- foList$print
adjust <- foList$adjust
} else {
prSub <- substitute(print)
print <- evalPopArg(data = origData, arg = prSub, DT = TRUE, enclos = enclos)
}
if (length(weights) && length(adjust)) {
checkWeights(weights, adjust = adjust)
}
# variables to print by ----------------------------------------------------
prVars <- tmpDum
if (length(print) > 0) {
prVars <- names(print)
data[, c(prVars) := TF$print]
data[, c(tmpDum) := NULL]
}
rm(print)
# standardization ----------------------------------------------------------
## note: adjust evaluated above with formula
adVars <- NULL
if (length(adjust) > 0) {
adVars <- names(adjust)
data[, c(adVars) := TF$adjust]
}
rm(adjust)
if (is.null(weights) && length(adVars)) {
stop("Variables to adjust by were defined but no weights were supplied.")
}
if (!length(adVars)) {
if (!is.null(weights)) {
message("NOTE: Weights ignored since no adjusting variables given")
}
weights <- NULL
}
# variables to sum -----------------------------------------------------------
if (!is.list(values)) stop("Argument 'values' must be a list ",
"(internal error: complain to the package",
"maintainer if you see this)")
values <- lapply(values, function(x) {
evalPopArg(data = origData, arg = x, DT = TRUE, enclos = enclos)
})
for (dt in setdiff(seq_along(values), 1L)) {
values[[1L]] <- cbind(values[[1L]], values[[dt]])
}
values <- values[[1L]]
vaVars <- NULL
if (nrow(values) != nrow(data)) {
stop("mismatch in numers of rows in data (", nrow(data),
") and 'values' (", nrow(values), "). If you see this message, ",
"complain to the package maintainer.")
}
if (length(values) > 0) {
vaVars <- names(values)
data[, c(vaVars) := TF$values]
} else {
stop("no values given to sum!")
}
rm(values)
# additionally, values to compute internal weights by: -----------------------
iwVar <- NULL
if (is.character(weights) &&
pmatch(weights, c("internal", "cohort"), nomatch = 0L)) {
iw <- substitute(internal.weights.values)
iw <- evalPopArg(data = origData, iw, DT = TRUE,
enclos = PF, recursive = TRUE,
types = c("character", "expression", "list", "NULL"))
if (length(iw) > 1L) stop("Argument 'internal.weights.values' ",
"must produce only one column.")
if (length(iw) == 1L && is.character(weights) &&
pmatch(weights, c("internal", "cohort"), nomatch = 0L)) {
iwVar <- makeTempVarName(names=c(names(data), names(origData)), pre = "iw_")
data[, c(iwVar) := TF$iw]
}
if (length(iwVar) == 0L) {
stop("Requested computing internal weights, but no values to compute ",
"internals weights with were supplied (internal error: If you see ",
"this, complain to the package maintainer).")
}
rm(iw)
}
# other category vars to keep ------------------------------------------------
boSub <- by.other
by.other <- evalPopArg(data = origData, arg = boSub, DT = TRUE, enclos = enclos)
boVars <- NULL
if (length(by.other) > 0) {
boVars <- names(by.other)
data[, c(boVars) := TF$by.other]
}
rm(by.other)
# check for aliased columns --------------------------------------------------
aliased_cols(data, cols = c(prVars, adVars, boVars))
# check for conflicting column names -----------------------------------------
dupCols <- c(prVars, adVars, boVars, vaVars, iwVar)
dupCols <- unique(dupCols[duplicated(dupCols)])
if (length(dupCols) > 0L) {
dupCols <- paste0("'", dupCols, "'", collapse = ", ")
stop("Following column names duplicated (columns created by arguments ",
"print, adjust, etc.): ", dupCols, ". If you see this, please ensure ",
"you are not passing e.g. the same column to both for adjusting ",
"and stratification (printing).")
}
# check for NA values --------------------------------------------------------
## NOTE: NA values of print/by.other are OK. values/adjust are NOT.
NAs <- data[, lapply(.SD, function(x) is.na(x)), .SDcols = c(vaVars, iwVar, adVars)]
NAs <- rowSums(NAs) > 0L
if (sum(NAs)) {
if (!is.null(NA.text)) {
NA.text <- gsub(x = NA.text, pattern = "%%NA_COUNT%%",
replacement = sum(NAs))
warning(NA.text)
}
data <- data[!NAs]
}
# inflate data ---------------------------------------------------------------
## on the other hand we aggregate data to levels of print, adjust and
## by.other; on the other hand the data will always have tabulating variables
## represented as cross-joined, e.g. merge(1:5, 1:2).
## this means some rows might have zeros as values in the 'values'
## columns.
## (necessary for correct standardization with weights)
## NOTE: have to do CJ by hand: some levels of adjust or something may not
## have each level of e.g. fot repeated!
sortedLevs <- function(x) {
if (!is.factor(x)) return(sort(unique(x)))
factor(levels(x), levels(x), levels(x))
}
cj <- list()
cj <- lapply(data[, .SD, .SDcols = c(prVars, adVars, boVars)], sortedLevs)
## e.g. if data only has fot = seq(0, 4, 1/12), but want to display table
## with fot = seq(0, 5, 1/12). Very important sometimes for handy usage
## of weights.
if (length(custom.levels) > 0) cj[names(custom.levels)] <- custom.levels
## SPECIAL: if e.g. a survival time scale with breaks seq(0, 5, 1/12)
## is to be "compressed" to breaks 0:5, and the latter breaks were passed
## via custom.levels, the following ensures e.g. intervals between 0 and 1
## are aggregated to the same row in what follows after.
if (!is.null(custom.levels.cut.low)) {
cl_msg <- paste0("Internal error: tried to cut() variables in ",
"internally used work data that did not exist. ",
"If you see this, complain to the ",
"package maintainer. Bad variables: %%VARS%%.")
all_names_present(data, custom.levels.cut.low, msg = cl_msg)
all_names_present(cj, custom.levels.cut.low, msg = cl_msg)
for (var in custom.levels.cut.low) {
set(data, j = var, value = cutLow(data[[var]], breaks = cj[[var]]))
}
## NOTE: if used cutlow(), then assume passed values via custom.levels
## also contained the roof of the values which should not be repeated.
cj[custom.levels.cut.low] <- lapply(cj[custom.levels.cut.low],
function(elem) elem[-length(elem)])
}
## form data.table to merge by - the merge will inflate the data.
cj <- do.call(function(...) CJ(..., unique = FALSE, sorted = FALSE), cj)
## inflate & aggregate.
setkeyv(data, c(prVars, adVars, boVars))
data <- data[cj, lapply(.SD, sum), .SDcols = c(vaVars, iwVar), by = .EACHI]
for (k in c(vaVars, iwVar)) {
data[is.na(get(k)), (k) := 0]
}
setcolsnull(data, tmpDum)
prVars <- setdiff(prVars, tmpDum); if (length(prVars) == 0) prVars <- NULL
## merge in weights ----------------------------------------------------------
if (!is.null(weights)) {
if (is.list(weights) && !is.data.frame(weights)) {
## in case one of the elements is a standardization scheme string,
## such as "world_x_y".
whChar <- which(unlist(lapply(weights, is.character)))
if (sum(whChar)) {
weights[whChar] <- lapply(weights[whChar], function(string) {
## expected to return data.frame with 1) age groups 2) weights
## as columns.
stdr.weights(string)[[2]]
})
}
## now list only contains numeric weights i hope.
}
## NOTE: adjust used here to contain levels of adjust arguments only
adjust <- list()
if (length(adVars) > 0L) {
adjust <- lapply(data[, eval(adVars), with = FALSE], sortedLevs)
}
if (is.character(weights)) {
if (pmatch(weights, c("internal", "cohort"), nomatch = 0L)) {
all_names_present(data, iwVar,
msg = paste0(
"Internal error: expected to have variable ",
"%%VARS%% in working data but didn't. Complain ",
"to the pkg maintainer if you see this."
))
weights <- lapply(seq_along(adjust), function(i) {
cn <- names(adjust)[i]
le <- unique(adjust[[i]])
le <- structure(list(le), names = cn)
data[le, lapply(.SD, sum), .SDcols = iwVar, by = .EACHI, on = cn][[iwVar]]
})
names(weights) <- names(adjust)
setcolsnull(data, iwVar)
setkeyv(data, c(prVars, adVars, boVars))
} else {
## expected to return data.frame with 1) age groups 2) weights
## as columns.
weights <- stdr.weights(weights)
weights <- weights[[2]]
}
}
if (!is.data.frame(weights) && is.vector(weights)) {
## note: lists are vectors
if (!is.list(weights)) {
weights <- list(weights) ## was a vector of values
setattr(weights, "names", adVars[1])
}
weVars <- names(weights)
weights <- weights[names(adjust)]
adjust <- do.call(function(...) CJ(..., unique = FALSE, sorted = FALSE), adjust)
weights <- do.call(function(...) CJ(..., unique = FALSE, sorted = FALSE), weights)
weVars <- paste0(weVars, ".w")
setnames(weights, adVars, weVars)
weights[, (adVars) := adjust]
set(weights, j = "weights", value = 1L)
for (k in weVars) {
set(weights, j = "weights", value = weights$weights * weights[[k]])
}
setcolsnull(weights, delete = weVars, soft = FALSE)
## NOTE: weights will be repeated for each level of print,
## and for each level of print the weights must sum to one for things
## to work.
weights[, "weights" := weights/sum(weights)]
}
if (!is.data.frame(weights)) {
stop("Something went wrong: 'weights' was not collated into a ",
"data.frame to merge with data. ",
"Blame the package maintainer please!")
}
## at this points weights is a data.frame.
weights <- data.table(weights)
weights[, "weights" := as.double(weights)]
## ensure repetition by print levels if some adjust levels
## that exist in weights do not exist in data.
## NOTE: weights data.frame has at least as many levels as adjust column
## in data (or it has more sometimes).
wm <- lapply(adVars, function(chStr) {
col <- weights[[chStr]]
if (is.factor(col)) return(levels(col))
sort(unique(col))
})
names(wm) <- adVars
if (length(prVars)) {
wm[prVars] <- lapply(prVars, function(chStr) {
col <- data[[chStr]]
if (is.factor(col)) return(levels(col))
sort(unique(col))
})
}
wm <- setDT(do.call(CJ, wm))
weights <- merge(wm, weights, by = adVars, all.x = TRUE, all.y = TRUE)
dt_robust_by(
'weights[, "weights" := weights/sum(weights), by = %%BY_VAR_NMS%%]',
by.var.nms = prVars
)
data[i = weights, on = c(prVars, adVars), j = "weights" := weights]
if (any(is.na(data$weights))) {
## should not be any NAs since we checked for level congruence
## in checkWeights
stop("Internal error: some weights were NA after merging to working ",
"data. Complain to the package maintainer if you see this.")
}
}
setattr(data, "makeWeightsDT", list(prVars = prVars, adVars = adVars,
boVars = boVars, vaVars = vaVars,
NAs = NAs))
return(data[])
}
checkCharWeights <- function(w) {
if (is.character(w)) {
if (length(w) != 1L) {
stop("weights supplied as a character string must be of length one.")
}
if (!pmatch(w, c("internal", "cohort"), nomatch = 0L)) {
stdr.weights(w)
}
}
}
checkWeights <- function(weights, adjust) {
## INTENTION: given a list/DF/vector/string specifying weights
## and a data.frame/list of the adjusting variables,
## checks they are congruent and complains if not.
allowed_classes <- c("list","data.frame","integer","numeric","character",
"NULL")
if (!any(class(weights) %in% allowed_classes)) {
stop("weights must be either a list, a data.frame, a numeric variable, ",
"or a character string specifing the weighting scheme to use. ",
"See ?direct_standardization for more information.")
}
if (is.list(weights) && !is.data.frame(weights) &&
length(adjust) != length(weights)) {
stop("Mismatch in numbers of variables (NOT necessarily in the numbers of ",
"levels/values within the variables) in adjust (", length(adjust),
" variables) and weights (", length(weights)," variables); ",
"make sure each given weights vector has a corresponding ",
"variable in adjust and vice versa. ",
"See ?direct_standardization for more information.")
}
if (is.list(weights)) {
isChar <- unlist(lapply(weights, is.character))
if (any(isChar)) {
lapply(weights[isChar], checkCharWeights)
weights[isChar] <- lapply(weights[isChar], function(string) {
if (pmatch(string, c("cohort", "internal"), nomatch = 0L)) {
stop("List of weights had 'cohort' or 'internal' as at least one ",
"element, which is currently not supported. ",
"See ?direct_standardization for more information.")
}
stdr.weights(string)[[2]]
})
}
}
if (is.character(weights)) {
checkCharWeights(weights)
if (pmatch(weights, c("internal", "cohort"), nomatch = 0L)) {
## done checking since internal weights are pretty fool-proof.
return(invisible())
}
## if not, pass along as vector of weights.
weights <- stdr.weights(weights)[[2]]
}
if (is.numeric(weights)) {
if (length(adjust) != 1L) {
stop("Weights is a numeric vector of weights, ",
"but there are more or less than one adjusting variable. ",
"See ?direct_standardization for more information.")
}
weights <- list(weights)
names(weights) <- names(adjust)
}
## by now either a list or a data.frame of weights...
adVars <- names(adjust)
weVars <- names(weights)
if (is.data.frame(weights)) {
if (!"weights" %in% weVars) {
stop("data.frame of weights did not have column named 'weights'. ",
"see ?direct_standardization for more information.")
}
weVars <- setdiff(weVars, "weights")
}
badAdVars <- setdiff(adVars, weVars)
badWeVars <- setdiff(weVars, adVars)
if (length(badAdVars) > 0) {
stop("Mismatch in names of variables in adjust and weights; ",
"following adjust variables not mentioned in weights: ",
paste0("'", badAdVars, "'", collapse = ", "))
}
if (length(badWeVars) > 0) {
stop("Mismatch in names of variables in adjust and weights; ",
"following weights variables not mentioned in adjust: ",
paste0("'", badWeVars, "'", collapse = ", "))
}
if (is.data.frame(weights)) {
levDiff <- lapply(names(adjust), function(var) {
!all(adjust[[var]] %in% weights[[var]])
})
levDiff <- unlist(levDiff)
if (any(levDiff)) {
## take only first conflicting variable for brevity of error message-
badVar <- names(adjust)[1]
badLevs <- setdiff(adjust[[badVar]], weights[[badVar]])
badLevs <- paste0("'", badLevs, "'", collapse = ", ")
stop("Missing levels in weights data.frame in variable '", badVar, "': ",
badLevs, ". These levels were found to exist in the corresponding ",
"adjusting variable. ",
"Usual suspects: adjusting variable is a factor and you ",
"only supplied weights for unique values in your data ",
"as opposed to the levels of the factor, which may contain levels ",
"that no row has. Try table(yourdata$yourvariable).")
}
} else {
weights <- as.list(weights)
weights <- weights[adVars]
## check variable levels
adjust <- lapply(adjust, function(elem) {
if (is.factor(elem)) {
levels(elem)
} else {
sort(unique(elem))
}
})
weLen <- unlist(lapply(weights, length))
adLen <- unlist(lapply(adjust, length))
badLen <- names(adjust)[weLen != adLen]
if (length(badLen) > 0) {
stop("Mismatch in numbers of levels/unique values in adjusting variables ",
"and lengths of corresponding weights vectors. ",
"Names of mismatching variables: ",
paste0("'", badLen, "'", collapse = ", "), ". There were ",
weLen[weLen != adLen], " weights and ", adLen[weLen != adLen],
" adjusting variable levels.")
}
}
invisible()
}
|